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Abstract—Energy consumption has become one of the most
critical issues in the evolution of High Performance Computing
systems (HPC). Controlling the energy consumption of HPC
platforms is not only a way to control the cost but also a step
forward on the road towards exaflops. Powercapping is a widely
studied technique that guarantees that the platform will not
exceed a certain power threshold instantaneously but it gives
no flexibility to adapt job scheduling to a longer term energy
budget control.

We propose a job scheduling mechanism that extends the
backfilling algorithm to become energy-aware. Simultaneously,
we adapt resource management with a node shutdown tech-
nique to minimize energy consumption whenever needed. This
combination enables an efficient energy consumption budget
control on a cluster during a period of time. The technique is
experimented, validated and compared with various alternatives
through extensive simulations. Experimentation results show high
system utilization and limited bounded slowdown along with
interesting outcomes in energy efficiency while respecting an
energy budget during a particular time period.

Index Terms—HPC; Resource Management; Scheduling; En-
ergy Budget;

I. INTRODUCTION

Modern supercomputers run on huge amounts of electrical
power. For instance, Sunway TaihuLight (the leading system
of the TOP500) develops 93 petaflop/s and consumes a power
of 15 megawatts (MW)1. For such platforms, the electricity bill
for their lifespan can be roughly equal to their hardware cost.
The energy consumption is the most important obstruction for
building exascale machines [1].

To control the energy consumption of such huge platforms,
multiple techniques have been developped. One of them, pow-
ercapping, limits the power consumption to a certain threshold.
Limiting this during a time period leads to controlling the
energy consumption (as

∫

power.dt = energy). The survey
provided in [2] gives a thorough analysis of related work
on power management strategies along with details upon the
relationship between supercomputing centers and electricity
service providers in the US. Among the different studied
techniques, powercapping in conjuction with job scheduling
and shutdown mechanisms appeared as the most promising. By
employing these methods we can manage energy consumption
through the control of the instant power consumption. Never-
theless, they lack in adaptability, given that power is controlled

1https://www.top500.org/system/178764

independently of the instant load. A recent study [3], implicat-
ing a larger group of supercomputers and electricity providers
in both the US and Europe, showed that while the upper
power-bound is an important parameter, power variations do
not affect the final energy cost in most use cases. In this paper,
we show that adopting flexible power adaptive scheduling
techniques, by setting restriction on energy consumption in-
stead of power, can optimize system utilization, slowdown and
even energy efficiency when compared to rigid powercapping
strategies.

We present an adaptation of a standard job scheduling
algorithm that is able to limit the energy consumption during a
time period. It is similar to powercapping, with the difference
that instead of limiting execution under a maximum instan-
taneous power consumption, we limit the maximum energy
consumption for a particular time duration. The developed
techniques are extensions to the backfilling mechanism [4].
Instead of considering only the availability of computing
resources, they also take the availability of energy into account.
Overall, they enable the platform to meet a certain energy
consumption budget. The reduction of energy consumption
takes place through idling or opportunistic shutdown of nodes.
Experimentations through intensive simulations show that our
techniques keep high performances while respecting specific
energy budget objectives.

We start by describing the problem in Section II. Then, we
present and discuss in Section III the main existing approaches
to control power and energy. Section IV presents our new
algorithms to support energy budgeting. Then, Section V
reports the simulations done with actual log data. Finally, in
Section VI, conclusions and future works are presented.

II. PROBLEM DESCRIPTION

A. Scheduling Jobs in HPC

In our context, a job is an application that a user wants
to execute on a computing platform. In order to execute
those jobs, the scheduler needs to determine when and where
they should be executed, based on some algorithm. Usually,
only limited information is known about the jobs in practice.
Indeed, users typically specify the number of computational
resources they need and an execution time upper bound, which
is called the walltime – if a job reaches its walltime, it is
killed. Sometimes a few more constraints can be specified,



such as the minimum amount of memory required. In this
work, we define a job j by its arrival date rj (called release

date in the scheduling community), its number of requested
processors mj , an estimation of the running time wallj and
the real running time pj (pj is not known in advance and is
called processing time in the scheduling community).

We do not consider the network hierarchy existing in most
HPC centers. More simply, we consider that all processors are
totally ordered, and that a job must run on neighboring proces-
sors. This simplification reduces the complexity of allocating
jobs while being close (or even equal) to actual scheduling
problems.

B. Energy and Power-saving Techniques

We use a simplistic model of energy consumption in which
a processor may have three states: In case it is idle, it consumes
Pidle; If a job is running on it, it consumes Pcomp; And if it
is switched off, it consumes Poff .

In order to reduce and control the energy consumption,
there exist techniques which allow energy savings on different
levels. Some of these techniques are introduced by architecture
manufacturers (e.g. DVFS), others are invariant possibilities
of the infrastructure (e.g. node On/Off, heterogeneity, etc).
In this work, we take into consideration only the shutdown
technique and we consider that each processor can be switched
off independently.

The shut down of a processor consumes Pon→off , during
ton→off . The power on of a processor consumes Poff→on,
during toff→on.

Despite the simplicity of this model, we think that it
meets our needs for two reasons. First, the experiments that
we conducted (see section V-B) show that it is sufficient
and summarizes well our use cases. Second, a more precise
measure of energy would have a prohibitive cost: a hardware
cost (integrated energy sensors are not accurate enough [5]),
a software architecture cost (dedicated software for accurate
energy measurements should be added over the cluster), and a
data management cost (to store and analyze the data). A basic
energy measurement reduces the cost of all these steps.

Readers may wonder why we do not take DVFS into ac-
count, since DVFS can be used to control the power consump-
tion of a job. Previous studies [6], [7] have shown that control-
ling the energy consumption of jobs with DVFS is not trivial.
Depending on the type of application, a given DVFS value may
either increase or decrease the total energy consumption of
the application. Thus, without a precise knowledge about each
job, the scheduler cannot guarantee that a given DVFS value
will decrease the energy consumption. Since the scheduler
usually does not have this type of information, we think
that dynamically adapting the DVFS to reduce the energy
consumption should be done within the job itself, not at the
scheduling level, as it will result in better energy efficiency.

Similar to DVFS another technique to dynamically adjust
the power consumption of sockets is RAPL (Running Average
Power Limit) [8], [9]. This technique is particular to modern
Intel processors and our goal in this article is to have a solution

that would be adapted to any kind of architecture including
ARM and AMD.

Nevertheless, we would like to outline that our approach is
totally compatible with job-level DVFS optimisations or RAPL
powercapping.

Specifically, we are interested in the problem of scheduling
jobs on a large number of resources, with the following
constraint: During a certain time frame – starting at ts and
ending at te – the energy consumption of the whole computing
platform cannot exceed a given limit B. The energy limit
we are using here (in joules) must be distinguished from
an electrical power limit (in watts). Budget periods can be
successive but we will study only one time frame for clarity
and conciseness.

C. Scheduling Algorithms Evaluation

No perfect scheduling objective exists [10]. However, in
this paper, we will consider three different measures. The first
measure is the utilization : The proportion of processors that
have been used during a time period. This objective is mostly
used by cluster owners, as it may represent the productivity
of a cluster.

The bounded slowdown [11] (or bounded stretch) is more
end-user centered. It tries to measure how fast an end-user will
obtain its result. Most of the time its average is computed:

AVEbsld =
1

n

∑

j

max
(waitj + pj

max(pj , τ)
, 1
)

where waitj = startj − rj is the waiting time of job j
(startj is the moment at which job j starts to be executed),
τ is the bounding constant (generally set to 10 seconds in the
literature), and n the number of jobs. The third measure is of
course the energy consumed. In this paper we do not try to
reduce it, but to control it in a period of time.

III. RELATED WORK

A. Controlling Power and Energy Consumption

Many papers focus on controlling the power consump-
tion [12], [9], [13]. In these studies, the objective is to
control the final energy cost of the cluster while keeping good
performances. Patki et al. [14] argue that thanks to the control
of power consumption, one can buy a bigger cluster for the
same annual price. A bigger cluster improves the allocations
and the scheduling performances.

Powercap mechanisms have two major drawbacks: they may
require high knowledge about the running applications (to tune
DVFS or a similar technique), and it also delays some jobs.
In our previous study [6], we found that only controlling the
power increases the turnaround time of big jobs (as it is harder
for them to ”fit” in the powercap). This is why we focus
here on energy budgeting, as we want to keep the benefit of
controlling the cost of the cluster, while not discriminating
against any type of job.

Gholkar et al. in [15] presented a 2-level hierarchical power-
capping solution based on RAPL technique which is certainly
more adapted than DVFS to guarantee a global powercap.



Energy budgeting has been studied for a long time in
embedded systems [16] as these systems are mainly limited by
their battery capacity. Nevertheless, we cannot use the results
from this field because they are applied to real-time small-
scale systems.

A quite similar energy budget policy has been studied in
[17]. The algorithm was implemented upon LSF which is a
proprietary resource and job management system and it makes
use of CPU Frequency scaling technique. The authors claim
that while their policy manages to control the cluster’s energy
budget they did not observe any energy reduction. In contrast
to that work our energy budget mechanism studied in this
article is based on a processor shut-down technique and under
particular conditions we did observe improvements in energy
efficiency.

In [18], Murali et al. study a metascheduler that controls
multiple HPC centers. The objective is to reduce the overall
cost by adapting the energy consumption to the electricity
price of each different cluster. Yang et al. [19] consider the
scheduling problem with 2 periods: one during which an
energy limit is set, and the other one without energy limit.
While this approach is interesting, the algorithm they used is
not scalable and is hardly extendable with other constraints.
In the study [20], Khemka et al. maximize a ”utility” function
in a cluster with daily energy budget. They solve the problem
thanks to an offline heuristic. Instead of relying on an utility
function, we use classic scheduling objectives as described in
Section II-C.

The energy consumption of a shut-down node is very
small [21]. The technique called opportunistic shutdown takes
advantage of this power saving. This technique consists of
shutting down the nodes that are idle. To do so, the nodes are
monitored. As soon as a defined idle period is witnessed, the
decision of shutting them down is made. As shown in [22],
such a solution could lead to non-negligible energy savings.
However, this solution has some limitations. One of them is the
cost, in both time and energy, which is involved by switching
nodes on or off. Going off and on again can take several
minutes at maximum power [23].

B. Resource and Job Management Systems

Current high-performance computing centers contain thou-
sands of computing nodes, which can amount to millions of
cores. These computational resources are managed by one
software called the Resources and Jobs Management System
(RJMS), or in more simple terms the scheduler. This software
is in charge of monitoring the resources, and executing parallel
jobs on them.

Managing resources at this scale compels the scheduling
algorithm to be very efficient. Therefore, greedy algorithms
such as EASY Backfilling [4] are commonly used in HPC
centers. Unfortunately, these algorithms do not take energy
consumption into account during their decision process.

The EASY Backfilling algorithm – summarized in Algo-
rithm 1 – is one of the most widely used scheduling algorithms
in the systems we are interested in. This algorithm only

Algorithm 1: The EASY Backfilling algorithm

for job ∈ queue do
if system has enough processors to start job now

then
launch job;
remove job from queue;

else
break;

end
end
firstJob = pop first element of queue;
Reserve processors in the future for firstJob;
for job ∈ queue do

if system has enough processors to start job now

and does not overlap with firstJob reservation

then
launch job;
remove job from queue;

end
end
Remove the processor reservation of firstJob;
Push back firstJob at the top of queue;

focuses on the present time since the future is unpredictable as
we do not know beforehand several events, like node failures
or the ending of jobs (the running time pj is unknown before
it happens). This EASY backfilling policy is quite aggressive
since only the first job in the queue cannot be delayed by
backfilled jobs, which leads to an increased resource utilization
rate. The popularity of this algorithm can then be explained
by: 1) the ease of implementation, 2) the ease of extending
the basic policy, 3) the high resource utilization rate implied
by this aggressive backfilling policy, and 4) the scalability of
being present-focused.

IV. PROPOSED ALGORITHM

A. Desired Properties

Obviously, the proposed algorithm should comply with
an energy budget during a given period. This energy bud-
get should be strictly respected. Moreover, we wanted the
algorithm to be modular enough to support extra features,
like opportunistic shutdown. Since large-scale platforms are
targeted by our algorithm, we wanted it to be efficient on
them. Finally, for the purpose of maximizing our algorithm
adoption, we wanted it to avoid dramatic changes over cur-
rently implemented solutions.

B. Algorithm Description

As EASY Backfilling (summarized in Algorithm 1) has all
the desired properties but the energy ones, we chose to base
our algorithm on it. In order to comply with the energy budget,
we defined two rules which our algorithm must respect under
all circumstances.

• Rule 1: Avoid spending the whole budget too early, as
it would unbalance the performances during the budget
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Fig. 1: Main idea behind our algorithms: set a power limit
then use the saved energy to start jobs that exceed the power
limit. Here, the energy saved during job 1 is then used to run
job 2.

period. To this end, the budget’s energy is made available
gradually over time, at a rate of B/(te − ts) joules per
second.

• Rule 2: Never have energy debts. Thus, before taking
the decision of running a job, we have to ensure that
enough energy is available for the entire duration of the
job execution. This comprises taking the past, present
and future power consumption of the whole cluster into
account.

If we replace energy by money and running jobs by buying

stuff, these two rules could describe how someone that never
wants to be in debt would manage its monthly paycheck.
Figure 1 shows the global idea behind these two rules: we
save energy by consuming less than the power rate and, then,
we can use this energy to run jobs that require more energy
than the power rate to run.

These 2 rules are integrated within the EASY Backfilling
algorithm in the following manner. A counter named Cea

stores the amount of available energy, i.e. the amount of energy
that the algorithm is allowed to spend at the present time.
Cea equals to the amount of energy made available since
the beginning of the budget period (via rule 1), minus the
energy which has been consumed by the cluster. Whenever
the algorithm checks whether enough processors are available
to run a job, it also checks whether enough energy is available.
The energy balance should always be positive during the entire
execution time of the job (to fulfill rule 2). The algorithm uses
wallj to estimate the length of job j.

Whenever the job at the top of the queue cannot be started
immediately, a processor reservation is made for it (as in
regular EASY Backfilling). The backfilling rule dictates that
other jobs might be executed before the first job if they do
not delay it. However, because of our set of rules, if jobs
were backfilled the usual fashion, they might delay the first
job by stealing its energy. Consequently, our algorithm also
makes energy reservation for the first job when it cannot be
started immediately.

Algorithm 2 describes our algorithm. The additions we have
done over EASY Backfilling to support energy budgets are
underlined and colored in brown.

Algorithm 2: Energy Budget Backfilling Algorithm

for job ∈ queue do
if system has enough processors

and enough energy is available to start job now

then
launch job;
remove job from queue;

else
break;

end
end
firstJob = pop first element of queue;
Reserve processors in the future for firstJob;
Reserve energy in the future for firstJob;
for job ∈ queue do

if system has enough processors

and enough energy is available to start job now

and does not overlap with firstJob reservation

then
launch job;
remove job from queue;

end
end
Remove the processor reservation of firstJob;
Remove the energy reservation of firstJob;
Push back firstJob at the top of queue;

C. Implementation details

1) Energy Consumption Monitoring: The counter Cea,
which stores the amount of available energy, is updated
whenever the algorithm is called but also at every monitoring

stage.
Whenever the algorithm is called, Cea is incremented by

a certain amount by applying rule 1. Furthermore, Cea is
decremented depending on the cluster’s energy consumption
since the last algorithm call. This energy consumption is
coarsely overestimated within the algorithm, by counting the
number of computing and non-computing nodes. Cea may also
be decremented whenever a reservation is done for a job during
the algorithm execution.

Monitoring stages allow to obtain the amount of energy
which has really been consumed by the cluster. Therefore,
Cea is incremented during these stages (because the algorithm
always overestimates this amount of energy). The stages occur
periodically every monitoring stage. The period value must be
set considering a trade-off between precision and the overhead
of gathering energetic data. The more precise the monitoring
of the energy is, the more precisely our algorithm will respect
the energy budget. Increasing the monitoring period increases
overheads as a fraction of the computing resources has to be
used to gather and transmit the data.

2) Energy Consumption Estimation: In the above explana-
tion of the algorithm, it is explained that the algorithm must
determine whether the energy balance would be positive in the



future. As accurately predicting the energy consumption of a
job (or a cluster) is difficult, we wanted our algorithm to work
even when estimations are imprecise.

We assume that, to predict the energy consumption of the
jobs (and of the cluster), using overestimated values is enough
to make our algorithm work.

We note P̃comp the estimation of the power consumption of
one computing processor (in watts), and P̃idle the estimation
of the power consumption of one idle processor (in watts).
With overestimated P̃comp and P̃idle, the algorithm will over-
estimate the energy consumption of the cluster in the future.
However, at every monitoring stage, the real energy consump-
tion is measured and Cea is updated with the available energy
minus the energy actually consumed. Thus, this overestimation
leads to saving more energy in the counter, which will allow
more jobs to be started later on.

In order to obtain such overestimations, we recommend to
benchmark the power consumption of the cluster in certain
scenarios and to use the maximum observed value. To estimate
P̃comp, executing a CPU-intensive application (e.g. one from
the LINPACK suite) is recommended. To estimate P̃idle,
observing processors doing nothing is recommended.

3) Interactions with opportunistic shutdown: The algorithm
we proposed does not need to be modified to work with
opportunistic shutdown. Indeed, the power consumption of
an off node is lesser than an idle node’s one. This leads
our algorithm to overestimate even more the cluster’s energy
consumption, which would make a greater amount of energy
available after monitoring stages.

4) Differences with EASY Backfilling: The EASY Back-
filling algorithm is called whenever a job arrives or some
resources are freed. Our algorithm is run in the same cases,
but also when more energy is available, namely at every
monitoring stage. The overhead is minimal, as the full
algorithm is only run if the amount of available energy is
sufficient to run the first job of the queue.

In the particular case of the energy budget is unlimited
(B = ∞), our algorithm produces the same schedules as
EASY Backfilling’s ones. Additionally, if the energy budget
B is very small, our algorithm will start the jobs in the order
of the queue.

D. An alternative similar to powercap

The proposed algorithm is close to a powercap mechanism.
Making B/(te − ts) joules available each second is close to
having a powercap limit of B/(te − ts). The rules introduced
previously can be seen as rules which allows to violate the
powercap in some cases (these cases being mostly ”when
energy is available”).

As powercapping is widely studied and already imple-
mented in several RJMSs, we propose a slightly modified
version of our energy budget algorithm, which is even closer
to a powercap mechanism. In the remainder of the paper,
the already presented algorithm will be called energyBud,
while the algorithm closer to powercapping will be called
reducePC.

The difference between energyBud and reducePC lies in
how the jobs respect their energy reservation. In energyBud,
the reserved energy is substracted from Cea. In reducePC, we
reduce the number of joules made available per second (as if
the powercap had been reduced). If job i makes a reservation
of Ji joules at time qi (and thus guarantees to start at qi), the
number of joules available per second is reduced by Ji/(qi −
now) during the time period between now and qi.

The main difference between the two algorithms can be
observed when a short job, which uses all the available
processors, is being backfilled while there is an ongoing energy
reservation. In energBud, if enough energy is available, the
job can be launched. However, in reducePC, as the number
of joules available per second has been reduced, the job cannot
be started at the present time.

V. EVALUATION

The aim of the evaluation is to answer the following
questions:

• How better are we compared to a standard powercap
mechanism?

• What is the gain of activating opportunistic shutdown?
• If the budget is reduced by 80%, are the performances

also reduced by 80%?
• Which is the best one, reducePC or energyBud?
The scripts used to produce, analyze and visualize the

results are available in a git repository to allow other scientists
to reproduce and improve them2.

A. Simulator

In order to evaluate our algorithms, we chose to analyze
their behavior through simulations. For this purpose, we used
Batsim [24], a scheduler simulator based on SimGrid [25].
We chose to use Batsim rather than an ad-hoc simulator for
separation of concerns, to avoid implementation issues and to
ensure the durability of the algorithms we propose.

The heuristics and mechanisms described in this paper were
all integrated into the Batsim code base.

B. Simulation Calibration

To calibrate our simulator, we made various measurements
on the Taurus Grid5000 [26] cluster. This cluster is composed
of 16 Dell PowerEdge R720 nodes, each with two Intel Xeon
E5-2630. The nodes are equipped with wattmeters, allowing to
measure precisely their energy consumption (one value every
second).

In order to obtain idle-related measurements, we reserved
the nodes and left them in an idle state for 200 seconds. The
wattmeters generated series of power consumption values for
each node, whose average over time has been computed for
each node. We then computed the average and the maximum
of these values over nodes to respectively obtain Pidle and
P̃idle. For the sake of simplicity we attribute the per node

measurements, calculated during the calibration, to per pro-

cessor values in our model.

2https://github.com/glesserd/energybudget-expe



Measure Value

Pidle 95.00 W

Pcomp 190.74 W

Poff→on 125.17 W

toff→on 151.52 s

Pon→off 101.00 W

ton→off 6.10 s

Poff 9.75 W

P̃idle 100.00 W

P̃comp 203.12 W

monitoring period 10 min

TABLE I: The values used to calibrate the simulator and to
parameterize our algorithms.

To obtain computation-related measurements, we did almost
the same as for idle-related measurements. We just run a
LINPACK benchmark on the nodes instead of letting them
idle. This allowed to obtain values for Pcomp and P̃comp.

In order to obtain switch-related measurements, we made 50
”switch on” and 50 ”switch off” operations on each node. We
consider a node to be off when the consumed power reaches
its minimum and on when the node is capable of starting a
new job (i.e. when all services are running and operational).
We were able to measure the amount of time and the amount of
consumed energy of each switch operation. We then chose to
average these amounts to obtain Poff→on, toff→on, Pon→off

and ton→off .
Finally, we chose a monitoring period of 10 minutes,

as it appears to be a good trade-off between precision and
monitoring overhead. This choice is complex as it depends on
the available energy sensors and the way to gather data from
the computing nodes to the controlling node. Simulations have
to be close enough to the reality and thus we choose a value
close to what seems to be used in various supercomputers.

C. Testset

To assess our algorithms, we chose to replay 1-week-long
extracts of real traces, available on the Parallel Workload
Archive [27]. We chose to use 3 different traces and to extract
10 disjoint weeks from each one of them, thus leading to 30
different input workloads for our simulator. Since scheduling
decisions have more impact when the utilization is high, the
weeks have been selected with this criterion in mind. The
original traces are:

• Curie (80640 processors, dates from 2012 and lasts 3
months),

• MetaCentrum (3356 processors, dates from 2013 and lasts
6 months),

• SDSC-Blue (1152 processors, dates from 2003 and lasts
32 months).

Every input trace is executed for its full length, which is
1 week. However, an energy-budgeted period is applied for
three days in the middle of each trace. We hope that this

choice allows to observe the impact of the energy-budgeted
period on the metrics during the period but also after it. In
the remainder of the paper, the energy budget is expressed as
a percentage. 100% corresponds to the energy that the cluster
would have consumed if all the processors on the cluster were
computing during the three days. We run each input trace with
the following budget values: 100%, 90%, 80%, 70%, 60%,
50%, 49% and 30%. 49% corresponds to the amount of energy
that the cluster would have consumed if all the processors were
idle for three days.

We evaluated 4 different algorithms. The first one is stan-
dard EASY Backfilling. As this algorithm does not support
energy budget, it is only executed with a 100% budget. The
second one is a powercapped EASY Backfilling. A power limit
is set during the whole energy budget period, which is set to
the energy budget (J) divided by the period length (s). The
platform energy consumption is estimated with P̃platform =
nidle × P̃idle + ncomp × P̃comp, where nidle is the number
of idle nodes and ncomp is the number of nodes which are
computing jobs. This algorithm is roughly the same as EASY
Backfilling, but jobs are not executed if they cause P̃platform

to be greater than the power limit. The last two algorithms are
the ones presented in section IV: energyBud and reducePC.

Furthermore, each algorithm which supports power bud-
geting is executed with and without opportunistic shutdown.
When the opportunistic shutdown mechanism is enabled, as
soon as idle nodes are witnessed , the decision of shutting
them down is made. Finally, our evaluation process comprises
1470 configurations, which have all been simulated.

D. Results

Each trace does not come from the same cluster and does
not have the same jobs. Thus, they do not present the same
values for the measures, nor the same opportunities for the
algorithms to improve results. As a consequence, to be able
to compare results, all measures are normalized to reduce the
effect of each trace. The method described in [28] normalizes
the data to remove the between-subject variability. All of the
following graphs present means of the normalized measures
considering the traces as the between-subject variable.

Also, as stated in sub-section II-C, some measures are
defined for a time period and some for a number of jobs. For
the ones that depend on a time period (utilization and relative
energy consumed), we use the whole week as the time period.
Thus, the jobs that have been scheduled after the end of the
week are not taken into account in these measures. For the
ones that depend on a number of jobs (AVEbsld and number
of job started), all jobs of each trace are taken into account.

E. How better are we compared to a standard powercap

mechanism?

Figure 2 depicts the normalized mean utilization for each
experimental condition and energy budget. The black line
is explained in Section V-G. We observe that energyBud
outperforms the other algorithms. reducePC performs better
than energyBud when opportunistic shutdown is activated for
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the former and deactivated for the latter. As expected, below an
energy budget of 49%, all experiments without opportunistic
shutdown have the same results – PC SHUT also has the
same performance as the PC mechanism cannot benefit from
the energy saved thanks to the opportunistic shutdown.

In Figure 3, the normalized mean AVEbsld for each exper-
imental condition and energy budget is shown. The AVEbsld
are very high because we choose traces with a high utilization.
In a production system, a high utilization also means a lot
of jobs waiting in the queue. AVEbslds increase even more
for low energy budgets as the used resources are limited
during a fair part of the week. Once again, energyBud
with and without the opportunistic shutdown outperforms all
other algorithms. Surprisingly, the powercap mechanism is
not the worst. The same results are obtained with and without
energetic shutdown as expected for an algorithm that does not
benefit from a reduced energy consumption.

In terms of energy, Figure 4 presents the normalized mean
energy consumed during the week relative to the total energy
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Fig. 4: Normalized mean energy consumed during the week
relative to the maximum energy consumable during the same
period.

consumable during the same period. Algorithms without op-
portunistic shutdown consume more than the energy available
when the budget is set at 30%, because at 30% the energy
budget is below the energy consumption of the cluster fully
idle. It appears clearly that when opportunistic shutdown is on,
the cluster consumes less energy. Also, energyBud consumes
more energy than reducePC which consumes more than
powercap. Our algorithms do not try to minimize the energy
consumption. They try to keep it under a certain value. This
behavior can be observed in this figure: powercap has a very
low energy consumption which can be seen as a non-utilization
of the energy saved. At the opposite, energyBud is quite
successful at using saved energy as it has a high utilization
while having a high energy consumption.

F. What do we gain by employing opportunistic shutdown?

Table II shows the average performance difference of differ-
ent measures when the opportunistic shutdown is employed.
To compute this table, we take every experimental condition
on each trace with opportunistic shutdown and compared it
to the same experiment without opportunistic shutdown. The
comparaison is done by computing the percent change of
opportunistic shutdown over idle: (ySHUT − yIDLE)/yIDLE ,
where ySHUT is a normalized measure with opportunistic
shutdown activated and yIDLE the normalized measure in the
exact same experimental setting (same algorithm and same
budget) as ySHUT but without opportunistic shutdown acti-
vated. This table presents the average of these computations.

As expected, by activating the opportunistic shutdown the
energy consumption of powercap decreases. On the two other
algorithms, it decreases less because the energy saved is used
to launch more jobs. energyBud takes the most of the oppor-
tunistic shutdown. While reducePC and energyBud increase
the number of jobs started by the same amount, energyBud
improves far more the utilization and AVEbsld. Even more,
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Fig. 5: Performance/energy trade-offs for each algorithm at different energy budgets.

Percentage change

Measure powercap reducePC energyBud

AVEbsld 0.16 % 0.88 % -8.61 %

Utilization -0.05 % 4.95 % 5.74 %

Number of job started -0.05 % 1.4 % 1.47 %

Energy consumed -4.74 % -1.78 % -1.42 %

TABLE II: Average improvements on different measures when
activating shutdown. For AVEbsld and Energy, negative values
are better

the activation of opportunistic shutdown dramatically reduces
the AVEbsld of energyBud.

G. If the budget is reduced by 80%, are the performances also

reduced by 80%?

In figure 2, the black line represents a theoretical perfor-
mance baseline. If we reduce the energy budget by a certain
amount, one can expect the performance to decrease by the
same amount. This is what this line represents. The line is not
the identity because the energy budget only lasts 3 days during
the 7 days considered. Thus, this theoretical performance
baseline is formulated as:

f(budget) = ūEASY bf .(
3

7
× budget+

4

7
)

where ūEASY bf is the mean normalized utilization when
running the standard EASY backfilling algorithm. If a point is
below this line, it means that the performance has decreased
more than the energy budget have been decreased.

Surprisingly, for an energy budget of 90% all points are
above the line. It means that, even with a simple powercap
mechanism, we achieve a better energy efficiency than EASY
Backfilling. Presumably, the small limitation in energy re-
duces the fragmentation and thus improves the utilization.
For energyBud with opportunistic shutdown, this is also true
for energy budgets of 60% and above. Without opportunistic
shutdown, this is only true for 80% and above.

If we go further in this analysis, we can take a look
at which algorithm has the best energy/performance trade-
off. Figure 5a shows the normalized mean utilization versus
the normalized relative mean energy consumption for each
experimental condition at different energy budget. The best
points in term of energy-performance trade-off are the most
upper left ones. The difference when opportunistic shutdown
is activated and when it is not can be clearly seen here: when
it is activated the points are in the upper left part of the graphs.
energyBud with opportunistic shutdown has the best trade-
off. powercap is on the Pareto curve but with a very low
utilization.

On Figure 5b, a trade-off between the normalized mean
AVEbsld and the normalized relative energy consumed is
shown. Here, it is the best points that are the lower left
ones. Again, powercap with opportunistic shutdown has a



good trade-off because of its low energy consumption. How-
ever, energyBud with opportunistic shutdown has the best
AVEbsld trade-off. If we only look at the points without
opportunistic shutdown, powercap and energyBud have also
the best energy/AVEbsld trade-offs.

H. Which is the best one, reducePC or energyBud?

We consider energyBud as the best of the two proposed
algorithms. This algorithm provides the best utilization and
AVEbsld results. Even more, we have seen that using this
algorithm for not so low energy budget increases the energy
efficiency of the cluster compared to the standard EASY
Backfilling.

VI. CONCLUSION

The purpose of this work was to extend the widely-used
EASY backfilling algorithm, to comply with periods during
which energy availibility is limited.

We proposed two new alternatives and showed their ef-
fectiveness on a wide range of scenarios, which have been
assessed through simulation. These two new algorithms not
only provide a way to control the energy consumption of
computing platforms, but they also optimized metrics such as
system utilization and bounded slowdown.

Moreover, when the amount of available energy is large, the
algorithms we proposed improve the energy efficiency of the
cluster.

As this work is an improvement of EASY backfilling, our
algorithms still support most existing extensions of this algo-
rithm, such as advanced reservations, preemption mechanisms
or the establishment of a maximum power limit.

As future work, we will implement our algorithm upon a
real open-source resource and job management system such
as Slurm or OAR and study its effects in a supercomputer
in production. Another extension we are going to consider
for energy reductions is to make use of techniques such as
CPU powercapping based on RAPL [8]. Furthermore, we will
evaluate the integration with job-level runtime systems such
as GEO [29], currently under development, whose goal is
to dynamically adapt frequency and power allocations across
nodes to improve the jobs’ power efficiency.

One limitation of our approach is that we only considered
periods with a fixed energy budget. Hence, this work could
be extended to become more dynamic: If the energy budget
followed electricity price, we could control and thus reduce a
significant part of the cluster’s costs. This would provide an
improved solution to the remaining use cases described in [3]
whom electricity cost vary since it may partially depend on
renewable sources.
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