
1

Energy consumption side-channel attack at Virtual
Machines in a Cloud

Helmut Hlavacs, Thomas Treutner
Research Group Entertainment Computing

University of Vienna, Austria
firstname.lastname@univie.ac.at

Jean-Patrick Gelas, Laurent Lefèvre, Anne-Cécile Orgerie
INRIA, LIP, Ecole Normale Supérieure de Lyon

University of Lyon, France
{jean-patrick.gelas, laurent.lefevre, annececile.orgerie}@ens-lyon.fr

Abstract—Virtualized data centers where several virtual ma-
chines (VMs) are hosted per server are becoming more popular
due to Cloud Computing. As a consequence of energy efficiency
concerns, the exact combination of VMs running on a specific
server will most likely change over time. We present experimental
results how to use the energy/power consumption logs of a power
monitored server as a side-channel that allows us to recognize the
exact combination of VMs it currently hosts to a high degree. For
classification, we use a maximum log-likelihood approach, which
works well for comparably small training and test set sizes. We
also show to which degree a specific VM can be recognized,
regardless of other VMs currently running on the same server,
and show false negative/positive rates. To cross-validate our
results, we have used a Kolmogorov-Smirnov test, resulting in
comparable quality of recognition within shorter time. In order
to clarify whether our approach is generalizable and yields
reproducible results, we have set up a second experimental
infrastructure in Lyon, using a different hardware platform and
power measurement device. We have obtained similar results
and have experimented with different CPU frequency scaling
governors, yielding comparable quality of recognition. As a result,
energy consumption data of servers must be protected carefully,
as it is potentially valuable information for an attacker trying to
track down a VM to mount further attack steps.

I. INTRODUCTION

Virtualized data centers where several virtual machines
(VMs) are hosted per server are state of the art and are
expected to become even more popular in the future with new
computing paradigms as Cloud Computing. As a consequence
of energy efficiency or load balancing concerns within Cloud
Computing infrastructures, the exact combination of VMs
running on a specific server will most likely change over
time by using live migration [2], [3] . Using virtualization
often comes with the illusion of perfect isolation and therefore
high privacy and security. There are many examples that such
claims are in fact mostly illusionary. In contrast to direct
attacks aiming at the software stack (e.g., the virtualization
layer), we concentrate on indirect attacks, in this case using
energy consumption logs. Such data is likely to exist in
Cloud Computing infrastructures to be able to monitor the
infrastructure state and to compute energy efficient workload

mappings. In the future, it could be also used for accounting,
as energy becomes a precious and expensive resource.

The aim of this work is to investigate the potential of
extracting valuable information from raw energy consumption
logs with impact on user privacy and security. We present
experimental results, showing that it is indeed possible to track
down the server hosting a VM in question, by using the servers
power footprint. We regard our work as an additional, indirect
attack vector, to gain more information about a most probably
complex computing infrastructure, usable in a preparation
stage before launching actual attack steps. E.g., even if the
VM an attacker is aiming at is highly secured with a packet
filter, intrusion detection system etc., all of such protection
measures are defending the VM against attacks from the
network or Internet uplink. Nevertheless, the VM is still
completely dependent on the hypervisor’s integrity and users
have to put trust into the hypervisor not being malicious or
compromised. Technologies like vTPM [9] are still in its early
days, and just encrypting the VM’s file systems will most
probably not be a reliable remedy, as the data have to be
decrypted at some point in time for computational tasks, unless
of course the VM is exclusively used as a storage server for
encrypted data. Then, the decrypted data will reside at least
temporarily in the server’s main memory, accessible by the
hypervisor.

As a consequence, if the VM in question is not an adequate
or convenient target for direct attacks because of whatever
reason, there is still the hypervisor. Once compromised, it
would allow privileged and yet, for the VM’s owner, hardly
detectable access to the VM. The most dangerous attackers are
those trying to leave no traces at all and stay undetected. So, if
attacking a VM would cause too much attention (e.g., because
of an IDS) and the hypervisors in a Cloud infrastructure are
insufficiently secured or have known vulnerabilities, they will
be a convenient prey. Nevertheless, the fact that there will
be at least dozens of hypervisors and only one of them is
hosting the VM in question is still an open issue. The more
hypervisors are required to be cracked to gain access to the
VM, the more likely it is that the attack is detected even before
fully carried out. However, if the attacker can retrieve power

2

consumption data, e.g., because of an insufficiently secured
SNMP access to a metered rack PDU, it could be possible to
extract information about which server the VM is running on.
The attacker would then concentrate on this single machine to
cause only a minimum of attention.

The rest of the paper is structured as follows: in Sec-
tion II, we compare our work to related efforts and give
examples for possible combination of approaches in the future.
In Section III, we describe our experimental platforms and
methodology. For reasons of clarity, there are subsections for
each of the two platforms we have carried out our experiments.
In Section IV, we explain the methodology of the different
evaluations we have conducted. In Section V, we show and
interpret the results we have obtained in our experiments. In
order to be clear, Section V is organized in subsections to
resemble the respective experimental platforms. Finally, we
draw conclusions from our results in Section VI and state
plans for extending the status quo in Section VII.

II. RELATED WORK

With the new paradigm of Cloud Computing becoming
more popular, an increasing number of new vulnerabilities are
discovered, bugs that could not be exploited in the past are
suddenly exploitable, and whole classes of attacks (e.g., timing
attacks, power consumption attacks, etc.) find new scenarios
of application [1] . Indeed, the addition of the hypervisor
layer increases the range of possible attacks compared to non-
virtualized environments [4] .

Kortchinsky [7] attacks the virtualization layer and describes
how a vulnerability in a graphics driver makes it possible to
break out of a VMware guest and become root at the hypervi-
sor level. The exploit only works on virtualized systems and
in way that may become familiar in the future: The bug allows
to access memory beyond the graphic memory boundary. In a
non-virtualized system, this is clearly a bug, but most probable
no vulnerability as physically non-existent memory can not be
read or written. In a virtualized system, graphic memory is
just a region of main memory, so access beyond the graphic
memory boundary becomes meaningful and dangerous. Such
a kind of attack is a possible step after a malicious user has
found the server a specific VM is hosted on.

Cloud environments should guarantee the security of both
user data and application processing [11] . As physical re-
sources are shared between the guest virtual machines, flaws
in the isolation of VMs lead attackers to have access to data
and applications belonging to other users. This kind of threat
is based on a two-step attack: targeted VM localization and
then the attack itself. The localization phase has been proved
to be feasible by Ristenpart et al. [10] . They carry out an
attack on an infrastructure level. They are able to get enough
information about the internals of Amazon EC2 to deliberately
place a VM on the same host as a target VM. Additionally,
they discuss how this ability can be used to start cross-VM
side-channel attacks. We think our work is complementary in
a way that the approaches may be combined to a faster or
more accurate attack.

Once the targeted VM is localized, attacks relying on flaws
and vulnerabilities are possible. For example, Ormandy [8]

found a bug in the hypervisor code concerning the emulated
I/O ports that allow a malicious user to write to an arbitrary
out-of-bounds memory location. Another vulnerability in the
guest virtual device driver allowed a guest VM to crash the
host computer and the VMs hosted by it1. Numerous similar
vulnerabilities have been found [4], [8].

This paper present an approach where attackers can use
monitoring data such as power consumption of physical re-
sources to locate a given VM. To the best of our knowledge,
no research work deals with the privacy of power monitoring
data in Cloud environments. But, this issue has been studied
in the research fields concerning smart grid [12] and home
metering [5]. Customers are indeed aware of what frequent
data collected by home smart meters can reveal about their
appliance usage.

III. EXPERIMENTAL DETAILS

In the following, we describe our experimental setups
and methodology of measurements. In a first step, we have
examined the feasibility of our approach in Vienna. In order
to clarify whether our approach is generalizable and yields
reproducible results, we have set up a second experimental
infrastructure in Lyon, using a different hardware platform and
power measurement device.

In both of our experimental infrastructures, we have used
four different qemu-kvm/Linux VMs in our experiments:

• A MySQL database VM, denoted by sql, hosting a dump
of the Latin Wikipedia for the following wp VM

• an Apache web server VM with PHP5 and
MediaWiki, denoted by wp

• an FTP server VM, denoted by ftp
• and a VM doing I/O operations using bonnie++, de-

noted by bonnie.
E.g., the string sql_ftp_bonnie denotes that all VMs

except the Apache VM were running. The string wp denotes
that only the Apache VM was running. During the training
phase, we have measured the energy consumption of a server
for all 15 possible combinations (one combination of four
VMs, four combinations of three VMs, six combinations of
two VMs, and four combinations of a single VM running) of
VMs running while a client sent a fixed trace of workload.
The traces for wp and ftp were changing in concurrency of
client requests, sql was acting as a database tier for wp. For
bonnie, the number of benchmark runs within an interval
was changed to simulate a varying I/O load.

A. Vienna

In our setup in Vienna, we have run the VMs on an AMD
Phenom II X4 955 (3.2 GHz) CPU with 8 GB RAM. The VM
disk images where hosted on an additional node with two
SSDs in software-RAID0, connected over Gbit Ethernet.

To measure the power consumption, we have used a Hioki
3334 wattmeter device that allows several thousands measure-
ments per second and integrates them to deliver active power
consumption (W) and respectively energy consumption (Wh)

1http://www.vmware.com/security/advisories/VMSA-2009-0006.html

3

results. Based on the energy consumption, we have calculated
the average power consumption within an interval of 6 s.

Each combination was traced for 40 minutes of workload,
so we have approximately 400 data samples for each combina-
tion. During the whole experiment, the ondemand governor
of the Linux CPU frequency system (for AMD platforms,
powernow_k8 driver) was activated to scale the frequency
of all cores to the actual demand. The PhenomII X4 CPU is
able to scale the frequency on a per-core level, so all of its four
cores can be set to a different frequency. Available frequencies
are 800 MHz, 2.1 GHz, 2.5 GHz and of course 3.2 GHz.

B. Lyon

In order to clarify whether our approach is generalizable
and yields reproducible results, we have set up a second
experimental infrastructure in Lyon. The hardware platform
was comprised of six identical servers with Dual-Socket
Quadcore Intel Xeon E5506 (2.13 GHz) and 12 GB RAM. On
one of these servers, the VM disk images where hosted with
five SSDs in hardware-RAID0, connected over Gbit Ethernet.
The remaining five servers, all of them were identical, were
used to run the VM combinations in parallel to speed up
measurements.

To measure the power consumption, we have used a
OmegaWatt multi-channel energy consumption logger which
was able to measure all of the servers simultaneously and
independently. The OmegaWatt device has no ability to in-
tegrate values, so its precision is not comparable to the Hioki
3334 used in Vienna. On the other hand, devices similar to the
OmegaWatt logger are much more likely to be found in data
centers than high precision devices intended for lab use, so we
consider this as a more realistic attack ground. We have polled
the OmegaWatt device every second, so for approximately 40
minutes of workload, we have obtained approximately 2400
power consumption samples.

In contrast to the PhenomII X4 CPU that was used in Vi-
enna, the Xeon E5506 CPUs are not able to scale frequencies
on a per-core level. Here, all cores of a CPU (socket) are
set to the same frequency by the driver (acpi_cpufreq).
E.g., if the server is only slightly loaded and only one core is
required to run at a higher frequency than the minimum, all
of the socket’s CPU cores (here, four) will be automatically
set to the same frequency by the ondemand governor.

We have carried out our experiments with three different
scaling governors:

1) ondemand, to be able to compare the results to those
obtained in Vienna,

2) performance, where all cores are fixed to the default
frequency and scaling is in effect deactivated, and

3) powersave, where all cores are fixed to the minimum
frequency.

With the powersave and performance governors, the
range of possible power consumption should be smaller, which
could make a difference for our evaluations. The available fre-
quencies when using a Xeon E5506 CPU with the ondemand
governor are: 2128 MHz, 1995 MHz, 1862 MHz, 1729 MHz
and 1596 MHz. Additional to the lack of per-core scaling

support, the Xeon CPU has a much smaller scaling range
(fmin

fmax
= 0.75) compared to the PhenomII (fmin

fmax
= 0.25). The

total power consumption of a CPU is the sum of dynamic and
static power [6], and typically denoted by the approximation

P = ACV 2f + V Ileak,

where A is the fraction of gates actively switching and C
the capacitance of all gates. A smaller range of frequency will
therefore possibly lead to smaller range of power consumption.
As there are other metrics influencing the power consumption
(especially V 2 is contributing heavily) and the CPU is not the
only device causing power consumption, we were interested if
a different CPU frequency scaling governor makes a significant
difference in our scenario.

IV. EVALUATION

For evaluation, all consumption traces were split into train-
ing and test sample sets, for different test sample set sizes
ranging from 5 to 50 in steps of 5. To minimize the effect of
outlier results, the training/test sample set split was random-
ized and repeated 1000 times for each test sample set size. For
each of these runs, we had to compute the probability density
functions from scratch for each VM combination. To recognize
the origin of a test sample set and therefore the combination
of VMs, we used a maximum log-likelihood approach. For
a given test sample set, we computed the log-likelihood for
each possible origin to identify the most probable origin.
To consider different perspectives, we have evaluated four
different match conditions:

1) Exact match: The recognized combination is exactly
matching the true combination, so the state of all VMs
was correctly recognized.

2) Subset match: The true combination is subset of the
recognized combination, so all running VMs were cor-
rectly recognized, but there are false positives (VMs
falsely recognized as running).

3) Set match: This evaluation mode gives the degree of
correctness of the classification. As we have four VMs
and each of them can be running or not, we can interpret
both the true and the recognized state as a quadruplet
of {yes, no}. The degree of correctness is then the
intersection of both quadruplets and possible values
range from (0 of 4) to (4 of 4). For plotting purposes,
we have scaled the range to [0;1].
Based on the set match evaluation, we have calculated
the false positive/negative recognition rates. A false
positive in this context is that a VM was recognized
running but is in fact not, and a false negative that a
VM that was in fact running was not recognized so.

4) VM match: The last evaluation mode resembles the
perspective of an attacker trying to track down a specific
VM. In such a case, false positives/negatives are not
important as long as the true state of a specific VM
is recognized correctly to identify the server a VM is
running on quickly. Once this server is found, further
attack steps could be mounted.

4

V. RESULTS

A. Vienna
Figure 1 and Figure 2 show the power consumption density

for each VM combination, split into two plots for better
visibility. We can see in Figure 2 that the power consumption
of all combinations containing the Apache VM (wp) is very
similar, and that they differ heavily from all combinations that
do not contain the Apache VM.

Watt

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

0.30

60 70 80 90 100 110

sql_ftp_bonnie
sql_ftp
sql_bonnie

ftp_bonnie
sql_single
ftp_single

bonnie_single

Fig. 1. Vienna, Probability density of power consumption, combinations not
containing the Apache VM

Watt

D
en

si
ty

0.00

0.01

0.02

0.03

60 80 100 120 140

all
sql_wp_ftp
sql_wp_bonnie

wp_ftp_bonnie
sql_wp
wp_ftp

wp_bonnie
wp_single

Fig. 2. Vienna, Probability density of power consumption, combinations
containing the Apache VM

We can see in Figure 3 that for comparably small training
and test set sizes, a lot of exact combinations can be rec-
ognized correctly to a high degree using the described log-
likelihood approach. Most of the combinations yielding lower
values of recognition rates have a running wp VM (Apache,
PHP) in common.

We could see in Figure 2 that all combinations with wp

1) have a very similar power consumption trace and
2) have a higher average power consumption than all

combinations without wp.
The consequences of these facts are that
1) it is hard to recognize which VMs are running in

combination with wp, but

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

D
e

te
c
ti
o

n
 R

a
te

Test Sample Size

Exact Match (LogLikeli)

sql_wp_ftp_bonnie
sql_wp_ftp

sql_wp_bonnie
sql_ftp_bonnie
wp_ftp_bonnie

sql_wp
sql_ftp

sql_bonnie
wp_ftp

wp_bonnie
ftp_bonnie

sql
wp
ftp

bonnie

Fig. 3. Vienna, Exact Match Condition: Recognition Rates are very high for
combinations not containing wp

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

D
e

te
c
ti
o

n
 R

a
te

Test Sample Size

Incl. Subset Match (LogLikeli)

sql_wp_ftp_bonnie
sql_wp_ftp

sql_wp_bonnie
sql_ftp_bonnie
wp_ftp_bonnie

sql_wp
sql_ftp

sql_bonnie
wp_ftp

wp_bonnie
ftp_bonnie

sql
wp
ftp

bonnie

Fig. 4. Vienna, Subset Match Condition: Recognition Rates are generally
increased

2) it is easy to recognize the state of wp correctly, which
is clearly visible in Figure 6.

In Figure 4, we can see that if we relax the match condition
from an exact match to a subset match, the match rate is
increased, as false positives do not decrease the recognition
rate, but only false negatives. For, e.g., the combinations
ftp_bonnie and wp_ftp, the increase is clearly visible.

In Figure 5, the average degree of classification correctness
is shown. Please note that the y-axis is scaled differently for
better visibility. We see even higher recognition rates and that
on average, the combinations with wp are classified falsely by
a single VM that is not recognized correctly (3 of 4 correct).

Figure 6 shows the degree to which our approach is able to
recognize the state of a specific VM correctly, regardless of
the combination of VMs it is running with. This is perhaps
the most interesting evaluation mode considering our scenario
of privacy risks in a Cloud Computing infrastructure. Even for
small numbers of test sample sizes, we can recognize whether
a VM is running or not to a high degree.

In Figure 7, false positive and negative rates are visible and
show how the respective gaps to a recognition rate of 1 in
Figure 6 are composed by false positives and negatives. E.g.,

5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

D
e

te
c
ti
o

n
 R

a
te

Test Sample Size

Set detection (LogLikeli)

sql_wp_ftp_bonnie
sql_wp_ftp

sql_wp_bonnie
sql_ftp_bonnie
wp_ftp_bonnie

sql_wp
sql_ftp

sql_bonnie
wp_ftp

wp_bonnie
ftp_bonnie

sql
wp
ftp

bonnie

Fig. 5. Vienna, Set Match Condition: Average degree of combination
recognition

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 5 10 15 20 25 30 35 40 45 50

D
e

te
c
ti
o

n
 R

a
te

Test Sample Size

Per VM Detection Rates (LogLikeli)

sql
wp
ftp

bonnie

Fig. 6. Vienna, Per VM Recognition Rates: wp is extremely well recognizable

we can see both high false positive and negative rates for
sql, which is expectable due to the fact that sql has a very
narrow density peak in a low region of power consumption.
As a consequence, the weak sql signal will be hidden easily
by additional, stronger signals, and it is hard to recognize
the presence or absence of sql correctly. On the other
hand, wp, the strongest of all signals, yields almost no false
positives/negatives at all, but as mentioned above, the strong
wp signal is hiding the weaker ones and makes it hard to
recognize other VMs running in combination with wp.

Finally, we wanted to verify the described log-likelihood
approach by using a Kolmogorov-Smirnov test for classifi-
cation. Figure 8 shows the results for recognizing the state
of a specific VM correctly, regardless of the combination
of VMs it is running with. If we compare the results to
Figure 6, we can see that the Kolmogorov-Smirnov test yields
recognition rates approximately 5-10% lower than the log-
likelihood approach. If we take into account that the log-
likelihood approach requires frequent generation of density
functions, which is a computationally highly intensive task
and can easily take dozens of minutes for a fixed test sample
set size and a sufficient number of repetitions, the quality of
results obtained by using a much faster Kolmogorov-Smirnov

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35 40 45 50

D
e

te
c
ti
o

n
 R

a
te

Test Sample Size

False positive/negative VM Detection Rates (LogLikeli)

neg_sql
neg_wp
neg_ftp

neg_bonnie
pos_sql
pos_wp
pos_ftp

pos_bonnie

Fig. 7. Vienna, False Positive/Negative Recognition Rates

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 5 10 15 20 25 30 35 40 45 50

D
e

te
c
ti
o

n
 R

a
te

Test Sample Size

Per VM Detection Rates (KS-Test)

sql
wp
ftp

bonnie

Fig. 8. Vienna, Per VM Recognition Rates using a Kolmogorov-Smirnov
test for validation purposes, results are of comparable quality to Figure 6

test for classification could be acceptable too. Especially, if
VMs are frequently live-migrated to other servers due to, e.g.,
load balancing or energy efficiency concerns, obtained results
could be obsolete if the computation involved takes too long.

B. Lyon

In order to clarify whether our approach is generalizable
and yields reproducible results, we have repeated and extended
our experiments on a second infrastructure in Lyon, using a
different hardware platform and power measurement device
described in Section III.

In Figure 9, we can see the VM recognition rate when using
the ondemand governor. The result should be compared to
Figure 6, where the ondemand governor was used too, but
on a different hardware platform etc., as described above. We
can see that wp is achieving similarly high recognition rates.
Interestingly, ftp is yielding slightly worse rates, but sql and
bonnie significantly higher rates. If we compare the false
positive and negative rates (Figure 7 and Figure 12), we can
see that

• ftp has similar false negative rates, but much higher
false positive rates,

6

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 5 10 15 20 25 30 35 40 45 50

R
e

c
o

g
n

it
io

n
 R

a
te

Test Sample Size

Per VM Detection Rates (LogLikeli)

sql
wp
ftp

bonnie

Fig. 9. Lyon, VM recognition rates for the ondemand governor scenario

Watt

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

100 110 120 130

sql_ftp_bonnie
sql_ftp
sql_bonnie

ftp_bonnie
sql
ftp

bonnie

Fig. 10. Lyon, ondemand governor: Probability density of power consump-
tion, combinations not containing the Apache VM

Watt

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

100 110 120 130 140 150

sql_wp_ftp_bonnie
sql_wp_ftp
sql_wp_bonnie

wp_ftp_bonnie
sql_wp
wp_ftp

wp_bonnie
wp

Fig. 11. Lyon, ondemand governor: Probability density of power consump-
tion, combinations containing the Apache VM

• sql has similar false negative rates, but much lower false
positive rates, and

• bonnie has much lower both false negative and positive
rates.

Looking at the power consumption probability densities

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35 40 45 50

R
e

c
o

g
n

it
io

n
 R

a
te

Test Sample Size

False positive/negative VM Detection Rates (LogLikeli)

neg_sql
neg_wp
neg_ftp

neg_bonnie
pos_sql
pos_wp
pos_ftp

pos_bonnie

Fig. 12. Lyon, ondemand governor: False Positive/Negative Recognition
Rates

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 5 10 15 20 25 30 35 40 45 50

R
e

c
o

g
n

it
io

n
 R

a
te

Test Sample Size

Per VM Detection Rates (LogLikeli)

sql
wp
ftp

bonnie

Fig. 13. Lyon, VM recognition rates for the performance governor
scenario

when these VMs run alone (cf. Figure 10 and Figure 1)
reveals that ftp is now the VM with the lowest and most
narrow power footprint, and therefore the weakest signal,
easily hidden by stronger ones if running in combination. The
much higher false positive rate of ftp is a direct consequence.
Vice versa, sql is not the weakest signal anymore, resulting in
lower false positive rates. Finally, bonnie has a much more
characteristic probability density when running alone, with two
unique peaks. In consequence, all combinations containing
bonnie are highly distinctive from all combinations not
containing bonnie.

After we had empirical proof that our approach is generally
working on a different hardware platforms too, we have inves-
tigated the potential impact of different CPU frequency scaling
governors. In Figure 13, which should only be compared to
Figure 9 and Figure 14, the results for the performance
governor, where the frequency is fixed to the default frequency
and scaling is in effect deactivated, are visible. The sql VM is
yielding slightly worse rates compared to Figure 9, but despite
that, no significant difference can be extracted.

Finally, in Figure 14, the results for a powersave gov-
ernor scenario, where the frequency is fixed to the minimum

7

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 5 10 15 20 25 30 35 40 45 50

R
e

c
o

g
n

it
io

n
 R

a
te

Test Sample Size

Per VM Detection Rates (LogLikeli)

sql
wp
ftp

bonnie

Fig. 14. Lyon, VM recognition rates for the powersave governor scenario

frequency, are shown and are not significantly differing from
the performance scenario.

As a consequence, we can conclude that using the men-
tioned CPU frequency scaling governors the Linux kernel
provides does not significantly influence the VM recognition
rates and our approach is generalizable, including infrastruc-
tures using CPU frequency scaling due to energy efficiency
concerns.

VI. CONCLUSION

We have presented experimental research on how to use
the energy/power consumption logs of a power monitored
server as a side-channel that allows us: a) to recognize the
exact combination of VMs it currently hosts to a high degree,
and b) to track down the server hosting a specific VM.
The discussed results show that our approach is suitable to
reduce the complexity of attacking a Cloud infrastructure when
aiming at a specific VM, allowing the attacker to avoid being
too conspicuous by having knowledge about the hypervisor a
VM is running on.

Using the described maximum log-likelihood approach, a
lot of exact combinations can be recognized correctly. If the
match condition is relaxed to a subset match, the recognition
rate is increased. To track down a specific VM, the state of
the respective VM needs to be recognizable regardless of com-
bination of VMs it may run in. Having similar consumption
densities leads to a situation where it is hard to recognize the
exact combination, but it is easy to recognize the VM that is
causing the similarity.

We have compared the maximum log-likelihood approach
against Kolmogorov-Smirnov method, yielding recognition
rates approximately 5-10% lower than the maximum log-
likelihood approach. Taking into account the much faster
runtime of Kolmogorov-Smirnov and the fact that results can
become obsolete due to live migration of VMs, we think
that the quality of results obtained from using Kolmogorov-
Smirnov could be acceptable too.

In order to clarify whether our approach is generalizable
and yields reproducible results, we repeated and extended
our experiments on a second infrastructure in Lyon, using a

different hardware platform and a power measurement device
likely to be found in data centers. We have obtained similar
results and have experimented with different CPU frequency
scaling governors, yielding comparable quality of recognition.

As a we have shown, power and energy consumption data
of servers must be protected carefully, as it is possible to
extract valuable information that an attacker could use to track
down a VM before starting further attack steps. It is especially
astonishing how few samples are required in our scenario for
correct classification.

VII. FUTURE WORK

We plan to extend our work by adding random noise activity
and therefore power consumption to investigate at which level
of noise the recognition rate is suffering significantly. We also
want to add more types of VMs and use different workload
patterns too see if there is a level of complexity which is
decreasing the recognition rate and respectively increasing
the time required for computing reliable results. Additionally,
there could be a point of complexity where Kolmogorov-
Smirnov should be favored due to its lower runtime.

Finally, we plan to put effort into a more sophisticated
attack scenario that does not require a training phase based
on knowledge of the true combination of VMs running, but
only information about the network address and kind of service
(e.g., HTTP) of a VM, and access to an insufficiently secured
metered rack PDU (e.g., by SNMP). Then, an attacker could
send workload in varying intensities to the VM to cause
changes in the power consumption of the server the VM is
running on, trying to find the highest correlation between his
actions and the consumption reactions. The assumption is that
after removing noise, the server with the highest correlation
in power consumption is, with high probability, the server
hosting the VM in question. In such a scenario, the intensity
and duration of injecting workload required to get reliable
results is of high relevance, as a brute force approach would
most probably rise suspicion.

VIII. ACKNOWLEDGEMENTS

The research leading to the results presented in this paper
has been partly funded by EuroNF SJRP.44 SPEC project.

REFERENCES

[1] Y. Chen, V. Paxson, and R. H. Katz. Whats new about cloud computing
security? Technical Report UCB/EECS-2010-5, EECS Department,
University of California, Berkeley, Jan 2010.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI’05:
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation, pages 273–286, Berkeley, CA, USA, 2005.
USENIX Association.

[3] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall.
Entropy: a consolidation manager for clusters. In VEE ’09: Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 41–50, New York, NY, USA, 2009. ACM.

[4] W. Jansen and T. Grance. Guidelines on Security and Privacy in Public
Cloud Computing. Draft from the National Institute of Standards and
Technology, USA, 2011.

[5] G. Kalogridis, Z. Fan, and S. Basutkar. Affordable Privacy for Home
Smart Meters. In Workshop on Smart Grid Security and Communications
(in conjunction with ISPA), pages 77–84, 2011.

8

[6] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, 2003.

[7] K. Kortchinsky. Cloudburst: Hacking 3d (and breaking out of vmware).
In Black Hat Technical Security Conference, 2009.

[8] T. Ormandy. An Empirical Study into the Security Exposure to Hosts
of Hostile Virtualized Environments. White Paper, 2008.

[9] R. Perez, R. Sailer, and L. van Doorn. vTPM: virtualizing the trusted
platform module. In Conference on USENIX Security Symposium, 2006.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference on Computer and
communications security, CCS ’09, pages 199–212, New York, NY,
USA, 2009. ACM.

[11] N. Santos, K. Gummadi, and R. Rodrigues. Towards trusted cloud
computing. In Conference on Hot topics in cloud computing (HotCloud),
Berkeley, CA, USA, 2009. USENIX Association.

[12] D. Seo, H. Lee, and A. Perrig. Secure and Efficient Capability-Based
Power Management in the Smart Grid. In Workshop on Smart Grid
Security and Communications (in conjunction with ISPA), pages 119–
126, 2011.

