
Dynamically Building Energy Proportional Data
Centers with Heterogeneous Computing Resources

Violaine Villebonnet∗†, Georges Da Costa∗, Laurent Lefevre†, Jean-Marc Pierson∗ and Patricia Stolf∗
∗IRIT, University of Toulouse, France

†Inria Avalon LIP - Ecole Normale Superieure of Lyon, University of Lyon, France

Abstract—As the number of data centers increases, it is urgent
to reduce their energy consumption. Although servers are becom-
ing more energy-efficient, their idle consumption remains high,
which is an issue as data centers are often over-provisioned. This
work proposes a novel approach for building data centers with
heterogeneous machines carefully chosen for their performance
and energy efficiency ratios. We focus on web applications whose
load varies over time, and design a scheduler that dynamically
reconfigures the infrastructure, by migrating applications and
switching machines on or off, so that the energy consumed
by the data center is proportional to the load. Experiments
evaluate the approach and show the energy savings achieved
by our heterogeneous data center design and management while
satisfying Quality of Service (QoS) constraints.

I. INTRODUCTION

IT infrastructures, especially data centers, are responsible
for a substantial amount of the global energy consumption and
greenhouse emissions. While data centers consume a lot of
energy, they are often over-provisioned and contain numerous
servers that are not fully utilized. An Uptime Institute survey
[1] suggests that close to 30% of servers in US enterprises’
data centers are comatose, meaning that they are consuming
power without doing any work. It has been shown that a typical
server, when idle, can consume up to 50% of the amount drawn
at peak utilization [2]. Therefore we need novel approaches for
conceiving and managing data centers more efficiently.

This work provides an approach for designing data centers
whose energy consumption is proportional to their load. It
focuses on services with variable load, and offers means for
adjusting the computational capacity to service requirements
by dynamically modifying the number and type of machines
hosting the service. The goal is to minimize the energy
consumed by allocating the minimum number of resources
required to meet application demands. We advocate the use
of multiple server architectures that feature heterogeneous
ranges of performance and energy consumption. Each machine
type is profiled by running the target application, and the
best resources combinations for all application performance
rates are computed. Our previous work introduced the concept
of heterogeneous energy proportional infrastructure, named
“Big,Medium,Little” (BML) [3]. The present work extends it
by providing a scheduler that handles dynamic reconfiguration
decisions, which consist in dynamic resources management
with switch on and off actions, whose time and energy over-
heads are taken into account, to achieve energy proportionality
while respecting QoS requirements.

II. RELATED WORK ON ENERGY PROPORTIONALITY

Barroso and Holzle [2] introduced the goal of energy
proportionality in 2007. They discovered that servers’ average
utilization was between 10 and 50% in a Google data center.
The issue is that a typical server is not very energy efficient
under low utilization as its idle power consumption can amount
up to 50% of its peak consumption. In [4], Varsamopoulos et

al. define two metrics to quantify energy proportionality: IPR,
for Ideal to Peak Ratio, which measures the dynamic power
range, and LDR, for Linear Deviation Ratio, to evaluate the
linearity of the consumption. They studied the evolution of
energy proportionality and found that recent servers feature
better characteristics, but most time it only concerns one
aspect: a larger dynamic power range or an improved linearity.

Attempts have been made to improve power management
of servers, such as Running Average Power Limit (RAPL)
by Intel. Via this mechanism a user can specify a power
consumption threshold that the processor will not exceed for
a given period. Energy savings achieved by RAPL have been
evaluated for data stores applications [5], and latency critical
workloads [6]. This power capping tool offers better energy
proportionality, but does not help reducing idle consumption.

An example of heterogeneity is ARM big.LITTLE [7] that
gathers on the same board two different processors:a low
power processor that delivers low level performance, and a
more powerful one, consequently consuming more, to process
intensive tasks. ARM developed this technology to extend
mobile devices’ battery life. The concept has been adapted to
server scale in [8]. Authors designed a motherboard containing
a server processor, called primary server, and a low power
processor, called the Knight, which is always on and wakes
up the primary server in case of high load.

Our work aims at achieving energy proportionality at the
data center scale by combining existing heterogeneous archi-
tectures. The strong aspect is that it does not rely on a specific
processor design. This idea has been introduced previously
[9], and its feasibility has been studied [3]. The present work
implements scheduling policies that take into account both
benefits and drawbacks of using independent machines.

III. CHARACTERIZING THE APPLICATION AND ITS LOAD

Our system considers applications with variable load and it
adapts the infrastructure to load conditions so that energy con-
sumption more closely matches resource utilization. For such,



the application performance is characterized using an applica-

tion metric that represents the amount of work performed over
a given time unit. This metric is used to assess the application
performance independent of the underlying architecture and to
determine the QoS. With respect to performance, applications
can be classified as critical, having strict performance require-
ments, and tolerant, applications with soft QoS requirements.
Critical applications can be found in banking and medical
areas where delays have serious consequences. More tolerant

applications are found in, for instance, enterprise services,
or services with flexible deadlines. Applications can lie in
between these classes, and hence intermediate classes can be
required depending on the use-case.

Applications are also classified on whether they can be mi-
grated across machines, and whether they can run on multiple
architectures. The former is determined by how the application
maintains state and on the amount of data to transfer. We
must evaluate the application’s migration overhead, both in
terms of duration and energy consumption. Another important
characteristic is the application malleability, i.e., its ability to
be distributed across several machines. If not, the minimum
and maximum number of instances should be specified. This
criterion poses a constraint when computing the possible
hosting machine combinations.

The knowledge of how load evolves, an important parameter
in our system, can be perfect, when the load can be deter-
mined with precision; partial, where certain characteristics
are known, such as weekly, diurnal, hourly patterns, but the
accuracy of variations is unknown; and unknown when no a
priori information is available, and the load must be predicted.

IV. BUILDING BML INFRASTRUCTURE IN 5 STEPS

This section lays out the steps towards selecting hard-
ware for our heterogeneous energy proportional data center.
Four illustrative architectures are used as input, however this
methodology is not dependent on the number of architectures.
Results with real hardware are presented in Section V.

A. Step 1: Characterizing Each Architecture Profile

The first step consists in building the energy and perfor-
mance profiles for all available hardware considering the target
application. The profile of an architecture i provides:
• idlePoweri: average idle power of architecture i, in Watts.
• maxPerf i: maximum performance rate, expressed with the
application metric (e.g., nb of requests processed per second).
• maxPoweri: average power consumed when it reaches
maxPerf i rate, expressed in Watts.

A function is created using this data to compute the
power consumed by architecture i for a given performance
rate perfRate. We make the assumption of linear power
consumption, even if we know it might lead to small under-
or over-estimation, as studied by Rivoire et al. [10]. Yet, this
approximation is precise enough for our solution, and eases
the profiling phase. Although acquiring more intermediate data
points, if the application allows, would enable more precision,
our methodology would not be affected.

We consider that enough machines of each type are available
to choose from when building machine combinations, which
enables creating ideal combinations. With minor changes, this
work can consider cases of existing heterogeneous infrastruc-
ture where there is limited numbers of machines of each type.

B. Step 2: Sort Architectures to Keep Only BML Candidates

Building a BML infrastructure starts by sorting machines by
decreasing maximum performance. Then we check that their
respective maximum power consumption respects this initial
ordering. We proceed by comparing sorted architectures in
pairs; if one has lower performance than another while con-
suming more energy, we remove it from the BML candidates
as it would not improve energy proportionality.

Figure 1 gathers the profiles of illustrative architectures A,
B, C, and D. Beyond the point (maxPerfi,maxPoweri) of
each architecture, its profile is repeated to picture multiple
nodes. In this case, only three architectures are kept as good
candidates for a BML infrastructure, namely A, B and C.
Architecture D is discarded because its maximum power
consumption is greater than A’s, the most powerful machine.
Once the initial filtering is done, architectures can be labeled
according to their performance as Big, Medium or Little. In
this example: A ← Big, B ←Medium, and C ← Little.

Fig. 1. Architectures A, B and C are good candidates for BML infrastructure,
but D will be removed due to its poor energy efficiency compared to A.

C. Step 3: Finding Crossing Points between Architectures

This step determines how architectures should be combined
for more power proportionality. We define the minimum uti-

lization threshold for each architecture, expressed with the
application performance metric. For two architectures, i as
Little and j as Big, the minimum threshold of architecture j
corresponds to the point from which utilization of j becomes
more relevant than i’s considering power consumption. Except
for the Little architecture whose minimum threshold is 1, a
function is needed to compute thresholds for other architec-
tures. The points where an architecture becomes preferable
over another are termed as crossing points as they represent
the points where power profiles meet.

Left part of Figure 2 illustrates this step with architectures
A, B and C, now denoted Big, Medium and Little. Utilization
threshold of Medium starts around a performance rate of 150.
Before this point, it is more efficient to use up to five Little

nodes. The minimum utilization threshold of Big corresponds



!"#$%&'(%)*+

!"#$%&'(%)*+
,-.

!/01'&2
345-63

!"#$%&'(%)*+
,-.

!/01'&2
345-63

!"#$%&'(%)*+
345-63

345-63

Fig. 2. On left: Step 3 - First step of crossing points computation between
Little and Medium, and between Medium and Big. On right: Step 4 -
Second step of crossing points computation between Little and Medium,
and between combinations of Medium− Little and Big

to the maximum performance rate of a Medium node. This
results in a substantial jump in power consumption when
switching from Medium to Big since this crossing point is
not optimal, and next step is needed to improve it.

D. Step 4: Finding Crossing Points between Architectures and

Combinations of Smaller Architectures

This step is required for more than two architectures. The
previous step computes the crossing points between homoge-
neous combinations of machines, but with three architectures
one must determine whether adding Little nodes to Medium

combinations help improve power proportionality and reduce
the gap between Medium and Big architectures. Right part of
Figure 2 pictures the re-evaluated crossing points and shows
that minimum threshold of Big has consequently increased.

E. Final step: Computing Ideal BML Combination

This step computes the ideal machine combinations and
their corresponding power consumption for a given perfor-
mance rate. Building a BML combination is similar to a
bin-packing problem where architectures and their maximum
performance represent bins of different sizes. The singularity
of our problem is that there is only one object to pack, i.e.,
target performance, but it can be divided into any pieces of
any size. Bins are now sorted by size and cost, so what is left
to perform is to divide the desired performance into pieces to
fill them. Firstly, we consider architectures sorted decreasingly
and seek to fill completely Big nodes, then Medium, and
so on. Architectures are the most energy efficient when fully
loaded. Secondly, we use minimum thresholds to choose the
right architecture to process the remaining performance.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Profiling Results

The processors we have chosen to profile are the following:
Paravance: x86 Intel Xeon E5-2630v3 (2x8 cores); Taurus: x86

Intel Xeon E5-2630 (2x6 cores); Graphene: x86 Intel Xeon X3440

(1x4 cores); Chromebook: ARM Cortex-A15 (1x2 cores); Rasp-

berry: ARM Cortex-A7 (1x4 cores). A WattsUp?Pro wattmeter
monitors power consumption of the Samsung Chromebook

and Raspberry Pi2B+. The x86 servers are available at

TABLE I
PERFORMANCE AND POWER PROFILES OF EACH ARCHITECTURE.

Architecture MaxPerf Idle-Max Power Ont OnE Offt OffE
Codename (reqs/s) (Watts) (s) (Joules) (s) (Joules)

Paravance 1331 69.9 - 200.5 189 21341 10 657

Taurus 860 95.8 - 223.7 164 20628 11 1173

Graphene 272 47.7 - 123.8 71 4940 16 760

Chromebook 33 4 - 7.6 12 49.3 21 77.6

Raspberry 9 3.1 - 3.7 16 40.5 14 36.2

Fig. 3. Power and performance profiles of web servers acquired from
experiments on 5 different architectures

Grid’5000 [11], a French experimental testbed for research,
whith power monitoring data accessible via Kwapi [12].

A stateless web server is our target application because:
• a load balancer could allow the load to be distributed among
several web server instances;
• being stateless, it can be easily migrated by stopping a server
instance and launching a new one on the destination machine,
and then updating the load balancer;
• it is a perfect example of application with variable load
over time, and its performance can be characterized with an
application metric: number of requests processed per second.

We use lighttpd as web server and Siege as web benchmark
tool. The content of the web server is a python cgi script.
Each request consists in a loop of random number generation,
while loop iterations is also chosen randomly between 1000
and 2000. The request response is a static html page containing
this later integer. We execute the benchmark with an increasing
number of concurrent clients in order to find the maximum
request rate that can be processed. Each test runs for 30
seconds and the maximum performance is the average of
5 results. We also measure On/Off durations and energy
consumption. Table I and Figure 3 present the results.

B. Results at Server-Scale

Figure 3 is the result of Step 1 described in Section IV. Step

2 results in the removal of Taurus architecture as its max-
imum power consumption is higher than Paravance’s while
delivering lower performance. Step 3 realizes that the profile
of Graphene never crosses any other architecture’s profile,
and consequently it is removed from the list of candidates.
Our final heterogeneous infrastructure comprises Raspberry

(Little), Chromebook (Medium) and Paravance (Big). Their
minimum utilization thresholds are respectively 1, 10 and 529

requests per second. The resulting ideal BML combination
is depicted in Figure 4. Big architecture’s profile is also



Fig. 4. Consumption of BML combination over an increasing performance
rate, until maxPerfBig , compared to Big and BML linear

represented to demonstrate the gains of the heterogeneous
combination. In addition, we introduce BML linear whose
idle power is equal to Little’s and maximum power and
performance is equal to Big’s. It represents an achievable goal,
and how our solution approaches it.

C. Comparison with Lower and Upper Bounds

To evaluate our approach, we developed a simulator in
Python, which takes as input the experimental machine pro-
files, and a trace file describing the application load variation
over time. We emulate a load prediction mechanism by con-
sidering a sliding look-ahead window. We use as prediction the
maximum load value over a window of 378 seconds, equiva-
lent to 2 times the longest On duration. The scheduling policy
is pro-active; at each prediction it computes the corresponding
BML combination, and if this leads to a new hardware
configuration, a decision of reconfiguration is taken. During
the reconfiguration, no other decision can be made, ensuring
the completion of On/Off actions before a new decision. The
next prediction window starts from reconfiguration completion
time, but if there is no combination changes, the window just
slides one time step forwards, a second in this case.

We compare this placement algorithm against a theoreti-
cal BML lower bound and two homogeneous upper bounds
corresponding to existing data center management. We run
the simulations for days 6 to 92 of 1998 World Cup traces
(available online). The resulting scenarios are as follows:
• UpperBound Global: a homogeneous data center with con-
stant number of servers, computed according to the maximum
request rate. Here it contains 4 Big machines always On. This
is an example of a classical over-provisioned data center.
• UpperBound PerDay: a homogeneous data center, but di-
mensioned each day according to the daily maximum rate.
This is an example of coarse grain capacity planning.
• Big-Medium-Little: our BML infrastructure and placement
algorithm. The total consumption per day contains the energy
consumed by computation and by On/Off reconfigurations.
• LowerBound Theoretical: the minimum computing energy
achievable with BML infrastructure if it is dimensioned every
second with the ideal combination. This is an unreachable
lower bound considering no On/Off latency and energy costs,
picturing the best energy proportionality we could reach.

Fig. 5. Energy consumption comparison with lower and upper bounds.

Figure 5 shows that our solution is very close to the
theoretical lower bound: on average over 86 days, it consumes
32% more energy than the lower bound, minimum 6.8% and
maximum 161.4%. This graph demonstrates the high static
costs of classical over-provisioned data center, and shows the
energy proportionality achieved by our solution.

VI. CONCLUSION AND PERSPECTIVES

We demonstrated the feasibility of BML infrastructure with
existing hardware, and evaluated its performance when hosting
stateless web servers. We showed that compared to classical
data center management, BML drastically reduces static costs
and consequently achieves energy proportionality. As future
work we will investigate the impact of load prediction errors
on reconfiguration decisions. It is also worth considering other
hardware combinations than pre-computed BML combinations
as reconfiguration possibilities, and take in account their cor-
responding overheads when taking reconfiguration decisions.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out on Grid5000
testbed, supported by a scientific interest group hosted by Inria,
including CNRS, RENATER, several Universities and organizations
(www.grid5000.fr). This research is partially supported by the French
ANR MOEBUS project.

REFERENCES

[1] Uptime Institute. 2014 Data Center Industry Survey. 2014.
[2] L.A. Barroso and U. Holzle. The Case for Energy-Proportional Com-

puting. IEEE Computer, 2007.
[3] V. Villebonnet et al. ”Big, Medium, Little”: Reaching Energy Propor-

tionality with Heterogeneous Computing Scheduler. PPL, 2015.
[4] G. Varsamopoulos et al. Trends and Effects of Energy Proportionality

on Server Provisioning in Data Centers. Int. Conf. on HPC, 2010.
[5] B. Subramaniam and W. Feng. On the Energy Proportionality of

Distributed NoSQL Data Stores. Int. Workshop in HPC Systems, 2014.
[6] D. Lo et al. Towards Energy Proportionality for Large-scale Latency-

critical Workloads. SIGARCH Comput. Archit. News, 2014.
[7] ARM big.LITTLE: The Future of Mobile. ARM White Paper, 2013.
[8] D. Wong and M. Annavaram. Scaling the Energy Proportionality Wall

with KnightShift. IEEE Micro, 2013.
[9] G. Da Costa. Heterogeneity: The Key to Achieve Power-Proportional

Computing. IEEE CCGrid, 2013.
[10] S. Rivoire et al. A Comparison of High-level Full-system Power Models.

Conference on Power Aware Computing and Systems (HotPower), 2008.
[11] R. Bolze et al. Grid’5000: A Large Scale And Highly Reconfigurable

Experimental Grid Testbed. Int. Journal of HPC Applications, 2006.
[12] F. Rossigneux et al. Generic and Extensible Framework for Monitoring

Energy Consumption of OpenStack Clouds. IEEE SustainCom, 2014.


