
Noname manuscript No.
(will be inserted by the editor)

Bare-Metal Reservation for Cloud: an Analysis of
the Trade Off between Reactivity and Energy Efficiency

Marcos Dias de Assunção · Laurent Lefèvre

Received: – / Accepted: –

Abstract In this work, we investigate factors that can

impact the elasticity of bare-metal resources. We anal-

yse data from a real bare-metal deployment system to

build a deployment time model, then use it to deter-

mine how long it takes to deliver requested resources to

cloud users. Simulation results show that reservations

can help reduce the time to deliver a provisioned cluster

to its customer, by enabling machines to be started in

advance or be kept powered on when there are impend-

ing reservations. Such an approach, when compared to

strategies that switch-off idle resources, shows that sim-

ilar energy savings can be achieved with much smaller

impact on the time to deliver the provisioned clusters.

1 Introduction

Cloud computing has become a popular model for pro-

viding IT resources and services to organisations of all

sizes [1]. The workload consolidation that clouds pro-

vide by virtualising resources and enabling customers

to share the underlying physical infrastructure brings

benefits such as energy efficiency and better system util-

isation. Most cloud providers enable their customers to

request resources on demand and pay for their use on

a per-hour basis. Such elasticity allows for adjusting

the allocated capacity dynamically to meet fluctuating

demands.

Though this consolidated model suits most of the to-

day’s use cases, certain applications such as those that

demand High Performance Computing (HPC) or spe-

cialised resources, are not fully portable to this scenario

Inria Avalon, LIP Laboratory
École Normale Supérieure de Lyon
University of Lyon, France
E-mail: {name.surname}@ens-lyon.fr

as they are generally resource intensive and sensitive to

performance variations. Many applications still demand

homogeneity among computing nodes and predictable

network performance. Moreover, certain customers pre-

fer bare-metal resources over shared ones for security

reasons. The means used by cloud providers to offer cus-

tomers with high and predictable performance mostly

consist in deploying bare-metal resources or grouping

Virtual Machines (VMs) where high network through-

put and low latency can be guaranteed. This model

contrasts with traditional cloud use cases as it is costly

and provides little flexibility regarding workload con-

solidation and resource elasticity. Using public clouds

or co-locating HPC applications on the same physical

hardware, however, have proven difficult [16,21,30,33].

Over the past, HPC users have been tolerant to the

time needed for resources to become available as they

generally share large clusters to which exclusive access

is made by submitting a job that may wait in queue

for a period often longer than the job execution itself.

Users of bare-metal services also commonly accept pro-

visioning delays that can vary from hours to several

days. We do not consider that clouds should adopt a

similar queuing model, but we believe that a compro-

mise between wait time and on-demand access could

be exploited for bare-metal resources in the cloud via

resource reservations. Reservations provide means for

reliable allocation and allow customers to plan the ex-

ecution of their applications, which is key to many use

cases that require bare-metal and specialised resources.

Current reservation models of public clouds rely on re-

questing resources in advance for a long period (i.e.

from one to three years) or bidding for virtual machine

instances in a spot market.

In this work, we analyse historical data on the pro-

vision of bare-metal resources from a real system and

2 Marcos Dias de Assunção, Laurent Lefèvre

attempt to model the time required by bare-metal de-

ployment. Results from discrete-event simulations then

demonstrate (i) the energy-saving potential of strate-

gies that switch off unused resources and (ii) how reser-

vations can help reduce the time to deliver provisioned

clusters to their customers, by enabling servers to be

started in advance or be kept powered on when there

are impending reservations. In summary, the main con-

tributions of this paper are to:

– Present an analysis on deployment of bare-metal re-

sources and model the deployment time.

– Evaluate the impact of reservations on the time to

deliver clusters of bare-metal resources to customers

and the potential energy savings.

The rest of this paper is organised as follows. Section

2 presents background on bare-metal provisioning and

the motivation for resource reservation of bare-metal

resources in the cloud. The analysis of historical data

on bare-metal deployment and the model are presented

in Section 3. Section 4 describes reservation strategies,

whereas Section 5 presents the experimental setup and

obtained results. Section 6 discusses related work on

resource reservations, whereas Section 7 concludes the

paper.

2 Background and Motivation

Grid’5000 [4] — an experimental platform comprising

several sites in France and Luxembourg — provides

users with single-tenant environments enabled by bare-

metal provisioning and reservations. To utilise the plat-

form, a user can either make a request for an advance

reservation of computing resources or submit a best-

effort request which grants the user access to required

resources whenever they become available. Reservations

take precedence over best-effort requests so that a best-

effort job can be cancelled if its resources are reserved

by another user.

We considered a simple experiment to estimate the

impact of reservations on the utilisation of a data cen-

tre. We used the advance-reservation log from the sched-

uler [5] of a Grid’5000 site (i.e. the data centre located

in Lyon) and simulated a scheduling under two sce-

narios: the current scheduling where users make reser-

vations to use resources at a time in the future; and

an extrapolation where all requests are treated as im-

mediate reservations where resources are allocated as

they arrive, hence emulating a more elastic cloud-like

scenario. Figure 1 shows the number of cores required

to handle requests over time under each scenario. Al-

though this is an extreme scenario where all requests

are treated as they arrive, we believe that if users knew

resources were available whenever they wanted, certain

users who currently reserve resources in advance would

have changed their behaviour; particularly users that

currently use the platform over weekends or at night.

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31

Day of Month (May 2013)

0

200

400

600

800

1000

1200

1400

#
C

P
U

C
or

es
R

eq
ui

re
d

With reservations
Without reservations

Fig. 1 Maximum number of CPUs needed at the Grid’5000
Lyon site.

Grid’5000 is an experimental platform, but studies

of other system logs revealed similar bursts of requests

during working hours [9]. Providing bare-metal or spe-

cialised VMs with the elasticity with which cloud cus-

tomers are familiar can be costly, and reservations may

be explored to help minimise these costs.

3 Modelling Bare-Metal Deployment

Workload traces that provide information on the time

taken to perform operations required to deploy resources,

such as switching resources on, cloning operating sys-

tem images, and partitioning physical disks are diffi-

cult to come by. To model the time required for de-

ployment, we use traces gathered from Grid’5000 which

have been generated by Kadeploy3 [14]; a disk imaging

and cloning tool that takes a file containing the operat-

ing system to deploy (i.e. an environment) and copies it

to target nodes. An environment deployment by Kade-

ploy3 consists of three phases:

1. Minimal environment setup, where nodes reboot into

a minimal environment with tools for partitioning

and disks and creating the necessary file systems.

2. Environment installation, when the environment is

broadcast and copied to all nodes, and post-copy

operations are performed.

3. Reboot of nodes using the deployed environment.

Bare-Metal Reservation for Cloud: an Analysis of the Trade Off between Reactivity and Energy Efficiency 3

We gathered several years of Kadeploy3 traces from

five clusters on three Grid’5000 sites and evaluated the

time to execute the three phases described above. Ta-

ble 1 details the considered clusters.

Table 1 Clusters whose deployment logs were considered.

Cluster
Name

#
Nodes

Install
Date

Node
Characteristics

parapluie 40 Oct. 2010 2 CPUs AMD 1.7GHz,
12 cores/CPU, 48GB
RAM, 232GB DISK

parapide 25 Nov. 2011 2 CPUs Intel 2.93GHz,
4 cores/CPU, 24GB
RAM, 465GB DISK

paradent 64 Feb. 2009 2 CPUs Intel 2.5GHz,
4 cores/CPU, 32GB
RAM, 298GB DISK

stremi 44 Jan. 2011 2 CPUs AMD 1.7GHz,
12 cores/CPU, 48GB
RAM, 232GB DISK

sagittaire 79 Jul. 2007 2 CPUs AMD 2.4GHz,
1 core/CPU, 1GB
RAM, 68GB DISK

We considered all deployments from Jan. 2010 through

Dec. 2013. The first step towards building a model con-

sisted in creating time histograms and visually examin-

ing probability distributions that were likely to fit the

data. Scott’s method was used to determine the size

of histogram bins [24]. After considering some distri-

butions, we found that log-normal, gamma and gener-

alised gamma were most likely to fit the data. Figure 2

depicts the results of fitting these distributions to the

deployment time information of each cluster. In gen-

eral, deployment presents an average completion time

with occasional failures overcome by executing other

routines and performing additional server reboots.

The goodness of fit of the distributions has also been

submitted to the Kolmogorov–Smirnov test (KS test),

whose D-statistic quantifies the distance between the

distribution function of empirical values and the cumu-

lative distribution function of the reference distribution.

Although the results summarised in Table 2 do not dif-

fer much, log-normal provides slightly better fit to most

clusters, and is hence used to model deployment time.

We also have analysed how the deployment time

changes according to the number of machines simulta-

neously configured per deployment (i.e. the deployment

size). Figure 3 summarises the information on deploy-

ment for several deployment sizes and the considered

clusters. The bubbles illustrate the distribution of de-

ployments across the intervals of required numbers of

Table 2 Kolmogorov-Smirnov test for goodness of fit.

Cluster
Name

D-Statistics

Log-normal Gamma Gen. Gamma

parapluie 0.051 0.066 0.059

parapide 0.111 0.095 0.091

paradent 0.041 0.046 0.043

stremi 0.051 0.036 0.039

sagittaire 0.067 0.076 0.070

machines, whereas Table 3 presents the number of de-

ployments in the largest and smallest groups for each

cluster.

Table 3 Number of deployments per group.

Cluster
Name

Number of Deployments

Largest Group Smallest Group

parapluie 9722 143

parapide 6654 235

paradent 10000 9

stremi 6939 21

sagittaire 9271 5

The violin graphs in Figure 3 show that, with a few

exceptions, the time taken by most deployments lies be-

tween the mean and the lower outliers, hence demon-

strating the tendency that deployment time exhibits

a lognormal behaviour. Moreover, the average deploy-

ment time increases proportionally to deployment size,

which is expected as multiple simultaneous data trans-

fers are carried out (e.g. copy of the OS image to nodes),

hence competing for network resources. The bubbles

show that most deployments require between 1 and 4

machines, while the corresponding violin graphs indi-

cate that these deployments present the largest vari-

ations in deployment time. Further investigation re-

vealed that this behaviour stems from the fact that

Grid’5000 is an experimental platform. Most users, when

creating customised environments and testing their de-

ployments, do so by experimenting with a small number

of machines (from 1 to 5). Under certain cases, some

deployment phases are retried a few times before the

request is considered successful.

Figure 4 shows the daily mean deployment time and

the number of deployments for the considered clusters.

One can notice a significant number of deployments for

a few days. Further investigation revealed that these

cases result from automated tests performed after up-

dates of the bare-metal deployment system and plat-

4 Marcos Dias de Assunção, Laurent Lefèvre

0 500 1000 1500

Deployment Time (seconds)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

D
en

si
ty

Deployment on parapluie

lognorm
gamma
gengamma

0 100 200 300 400 500 600 700

Deployment Time (seconds)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Deployment on parapide

lognorm
gamma
gengamma

0 500 1000 1500

Deployment Time (seconds)

0.000

0.001

0.002

0.003

0.004

0.005
Deployment on paradent

lognorm
gamma
gengamma

0 100 200 300 400 500 600 700 800

Deployment Time (seconds)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

D
en

si
ty

Deployment on stremi

lognorm
gamma
gengamma

0 200 400 600 800 1000 1200

Deployment Time (seconds)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
Deployment on sagittaire

lognorm
gamma
gengamma

Fig. 2 Deployment time histograms and distribution fitting.

1-
5

6-
10

11
-1

5
16

-2
0

21
-2

5
26

-3
0

31
-3

5
36

-4
0

Deployment Size (# Machines)

0

200

400

600

800

1000

1200

1400

1600

D
ep

lo
ym

en
tD

ur
at

io
n

(s
)

parapluie

1-
5

6-
10

11
-1

5
16

-2
0

21
-2

5

Deployment Size (# Machines)

0

200

400

600

800

1000

1200

1400

1600

parapide

1-
5
6-

10
11

-1
5
16

-2
0
21

-2
5
26

-3
0
31

-3
5
36

-4
0
41

-4
5
46

-5
0
51

-5
5
56

-6
0
61

-6
4

Deployment Size (# Machines)

0

200

400

600

800

1000

1200

1400

1600

paradent

1-
5

6-
10

11
-1

5
16

-2
0
21

-2
5
26

-3
0
31

-3
5
36

-4
0
41

-4
4

Deployment Size (# Machines)

0

200

400

600

800

D
ep

lo
ym

en
tD

ur
at

io
n

(s
)

stremi

1-
5
6-

10
11

-1
5
16

-2
0
21

-2
5
26

-3
0
31

-3
5
36

-4
0
41

-4
5
46

-5
0
51

-5
5
56

-6
0
61

-6
5
66

-7
0
71

-7
5
76

-7
9

Deployment Size (# Machines)

0

500

1000

1500

2000
sagittaire

Fig. 3 Deployment time under various numbers of simultaneously configured machines; the bubbles illustrate the number of
deployments in each interval.

form maintenance. Moreover, for certain clusters (e.g.

parapluie, parapide and sagittaire) the daily mean de-

ployment time decreases substantially from July 2012.

After discussions with engineers responsible for the plat-

form maintenance, we discovered that over time there

had been changes in the last phase of environment de-

ployment performed by Kadeploy. Instead of perform-

ing a full system reboot to initialise the newly deployed

environment, some machines utilise kexec1 to load the

new Linux kernel into memory and boot the new sys-

tem, hence avoiding a hardware reboot and its firmware

stage.

1 https://en.wikipedia.org/wiki/Kexec

https://en.wikipedia.org/wiki/Kexec

Bare-Metal Reservation for Cloud: an Analysis of the Trade Off between Reactivity and Energy Efficiency 5

Jun 2010

Dec 2010

Jun 2011

Dec 2011

Jun 2012

Dec 2012

Jun 2013

Dec 2013

Time

0

200

400

600

800

1000

1200

D
ai

ly
M

ea
n

D
ep

lo
ym

en
tD

ur
at

io
n

(s
)

parapluie
Mean Duration
Deployments

0

500

1000

1500

2000

2500

3000

3500

4000

Jun 2010

Dec 2010

Jun 2011

Dec 2011

Jun 2012

Dec 2012

Jun 2013

Dec 2013

Time

0

100

200

300

400

500

600

700

parapide
Mean Duration
Deployments

0

1000

2000

3000

4000

5000

Jun 2010

Dec 2010

Jun 2011

Dec 2011

Jun 2012

Dec 2012

Jun 2013

Dec 2013

Time

0

200

400

600

800

1000

paradent
Mean Duration
Deployments

0

2000

4000

6000

8000

N
um

be
ro

fD
ep

lo
ym

en
ts

Jun 2010

Dec 2010

Jun 2011

Dec 2011

Jun 2012

Dec 2012

Jun 2013

Dec 2013

Time

0

200

400

600

800

D
ai

ly
M

ea
n

D
ep

lo
ym

en
tD

ur
at

io
n

(s
)

stremi
Mean Duration
Deployments

0

1000

2000

3000

4000

5000

Jun 2010

Dec 2010

Jun 2011

Dec 2011

Jun 2012

Dec 2012

Jun 2013

Dec 2013

Time

0

500

1000

1500

2000

sagittaire
Mean Duration
Deployments

0

1000

2000

3000

4000

5000

6000

N
um

be
ro

fD
ep

lo
ym

en
ts

Fig. 4 Daily mean deployment duration and number of deployments over time for the various clusters.

The deployment time model is used in Section 5

to estimate how much time is required for initialising

resources and configuring them to serve user requests.

4 Resource Allocation Strategies

This section discusses reservation strategies that a cloud

provider can implement for reducing the energy con-

sumed by computing resources, whereas their perfor-

mance is investigated later in Section 5.

4.1 Power-Off Idle Resources

This strategy checks resources periodically, and if a re-

source remains idle during a given time (i.e. idleness in-

terval), it is powered off. As shown later, this strategy

though simple and efficient from an energy consump-

tion perspective, can lead to performance degradation

if resources are continuously switched off or on.

4.2 Reservation-Based Power-Off

This approach is similar to powering-off idle resources,

but when assessing a resource idleness, it also deter-

mines whether the resource is likely to remain unused

over a time horizon. The strategy also initialises re-

sources in advance to serve previously scheduled reser-

vations. The average deployment time and a small safety

margin are used to determine how long in advance re-

sources must be deployed. Previous work evaluated lengths

of idleness interval and the time horizon over which a

server needs to remain unused to be considered a can-

didate to be switched off [20]. These intervals must be

long enough so that frequent resource reinitialisation

does not eclipse the potential energy savings achieved

by powering idle resources off. Here idleness time and

the horizon are 5 and 30 minutes respectively.

4.3 Reservation With Minimum Capacity Estimation

In addition to delaying when resources are made avail-

able to users, frequent server initialisation and shut

down can be detrimental to energy efficiency. A typ-

ical server exhibits peaks of power consumption during

boot and shut down phases [20], which we seek to avoid

by using a technique proposed in our previous work [2]

to configure a minimum resource pool, with a capac-

ity below which decisions to switch resources off are

ignored.

Resource utilisation is used for determining when

the minimum capacity must be adjusted. Utilisation at

time t, denoted by υt, is the ratio between the number of

resource hours used to handle requests and the number

of hours resources were powered on (i.e., switched-off

resources are not considered). The provider sets param-

eters H and L, 0 ≤ L ≤ H ≤ 1, indicating utilisation

lower (L) and upper (H) thresholds according to which

additional capacity is required or powered-on resources

6 Marcos Dias de Assunção, Laurent Lefèvre

are not needed, respectively. In this work, L = 0.4,

H = 0.9.

The minimum pool capacity should ideally be mod-

ified before utilisation reaches undesired levels, which

requires a prediction on the future number of resources

required. Here this estimation is based on the measure-

ments performed over the past i measurement inter-

vals. Namely, after measuring υt at time t, weighted

exponential smoothing is used to predict the utilisa-

tion for step t + 1. If the past v ≤ i measurements

(i.e., υt−v, υt−v+1, . . . , υt) and the forecast utilisation

are below (above) the lower (upper) threshold L (H),

the minimum capacity must be adjusted. We employ

i = 5 and v = 10. We use an exponential moving aver-

age of past numbers of required resources to compute

the new minimum capacity.

4.4 Exploiting Workload Periodicity

Whereas strategies for aperiodic workloads are inher-

ently more versatile as they can be applied to any work-

load, periodicity does provide valuable insights to ad-

just the number of resources that must be made avail-

able at a given time. We employ a technique derived

from previous work [11] to explore workload periodic-

ity and leverage information to determine the minimum

number of resources required over the horizon.

The periodicity of a workload can be determined us-

ing historical data using techniques such as Fast Fourier

Transform [11], autocorrelation and Discrete Fourier

Transform [29]. The average utilisation from multiple

periods can be used for estimating the minimum num-

ber of resources required during an interval.

The technique employed here creates variable-sized

intervals instead of using fixed-length intervals. The

technique simulates the scheduling of requests and de-

termines the number of resources needed to handle the

incoming request-rate. We measure the number of re-

sources required to manage the load at fixed time steps,

which provides us with a time series with the demand

values at various time steps during a period. Then, we

use K-means++ to classify the demand data points

into groups to which they mostly resemble. We use

k = 3 considering three distinct load levels, namely

low, medium and high.

Once measurement points have been clustered into

demand-level groups, we walk through the demand time

series and divide it into intervals in a manner that

most measurements within an interval are in the same

demand group. Whenever we find a sequence of mea-

surements in a demand group followed by another se-

quence in a different group, we put the two sequences

into distinct intervals. The minimum resource capacity

required during each interval is the average of demand

points obtained during the interval. More detailed in-

formation on the technique can be found in the litera-

ture [11].

This strategy hence uses a hybrid approach to con-

figure a minimum pool of resources. It employs the load

level intervals described above to set the minimum pool

and at every time step t, adjusts the minimum capacity

based on historical load and resource utilisation method

described in Section 4.3.

5 Performance Evaluation

We evaluate the impact of reservations on the potential

for energy savings and time to deliver servers to users.

5.1 Experimental Setup

A discrete-event simulator is used to model and sim-

ulate resource allocation and request scheduling2. As

traces of cloud workloads with reservations are very

difficult to come by, two sets of request traces were

adapted to model cloud users’ resource demands; one

set extracted from Grid’5000’s scheduler and another

based on Google workload logs [22].

Despite using workloads from clusters, which may at

first more related to private clouds, we believe that pub-

lic clouds may present similar usage patterns. Systems

with global presence when deployed on public clouds,

use techniques such as redirection via DNS, content de-

livery optimisations, among others, to redirect clients

to the nearest region/zone and hence minimise delays

and improve response time. By doing so, each region

may, in fact, be serving customers who are more geo-

graphically close and hence exhibit some of the diurnal

patterns considered here.

5.1.1 Grid’5000 Reservation Trace

Request traces were collected from two Grid’5000 sites,

Lyon and Reims, spanning six months, from Jan. 2014

to Jun. 2014. There are essentially two types of requests

that users of Grid’5000 can make, namely reservations

and best-effort ; the latter is ignored in this work. Under

normal operation, resource reservations are conditioned

to available resources. For instance, a user willing to al-

locate resources for an experiment will often check a

site’s agenda, see what resources are available and will

eventually make a reservation during a suitable time

2 https://github.com/assuncaomarcos/servsim

https://github.com/assuncaomarcos/servsim

Bare-Metal Reservation for Cloud: an Analysis of the Trade Off between Reactivity and Energy Efficiency 7

frame. If the user cannot find enough resources, she will

either relax her requirements — e.g. change the number

of required resources, and reservation start or/and fin-

ish time — or choose another site with available capac-

ity. The request traces, however, do not capture what

the users’ initial requirements were before they made

their requests. For each site we consider the original

trace, referred to as reservation, and another version

termed as cloud where the original trace is modified as

follows:

1. Requests whose original submission time is within

working hours and start time lies outside these hours

are considered on-demand requests starting at their

original submission time.

2. Remaining requests are considered on-demand, both

submitted and starting at their original start time.

3. The resource capacity of a site is modified to the

maximum number of CPU cores required to honour

all requests, plus a safety factor.

Change (1) adapts the behaviour of users who cur-

rently exploit resources during off-peak periods, whereas

(2) alters the current practice of planning experiments

in advance and reserving resources before they are taken

by other users. Although the changes may seem extreme

at first, they allow us to evaluate what we consider

to be our worst case scenario where reservations are

not possible. Moreover, as mentioned earlier, we believe

that under the model adopted by existing clouds, where

short-term reservations are not allowed, and prices of

on-demand instances do not vary over time, users would

have little incentives to exploit off-peak periods or plan

their demand in advance. Change (3) reflects the indus-

try practice of provisioning resources to handle peak

demand including a safety margin.

5.1.2 Google Workload Trace

The original Google workload trace provides data over a

month-long period in May 2011 from a 12k-machine set

used by the Exploratory Testing Architecture [22]. The

trace contains a log of job submissions, their schedule,

and execution, where each job comprises one or mul-

tiple tasks that are executed on containers deployed

on one or multiple machines. The original resource de-

mands (e.g. memory, CPU, disk) are normalised by the

configuration of the largest machine. To determine the

number of physical machines mj that a job j requires,

we obtain the maximum set of simultaneous tasks in ex-

ecution Tj over the duration of job j. Then we compute

mj = min{a, c ∗
∑

t∈Tj
t/macmem

t }, where macmem
t is

the normalised capacity of the machine that executed

task t; c is a constant representing the available host’s

memory capacity allocated to containers, set to 0.85;

and a is a constant that specifies the maximum num-

ber of machines per request. The constant a is set to 50

to prevent creating workloads that are extremely bursty

and can hinder strategy comparison.

Certain jobs are very short and probably part of

submission bursts for which we consider a user would

make a single reservation. Hence jobs are grouped using

a technique proposed for bag-of-tasks applications [12].

The continued submission grouping scheme is applied

with ∆ = 180 seconds as longer running jobs would

more closely represent bare-metal deployment. From

the original trace that contains jobs submitted by a to-

tal of 933 services, we crafted five different workloads,

each comprising job submissions from 250 randomly se-

lected services; these traces, depicted in Figure 5, are

taken as the cloud workloads. As the original trace does

not contain reservations, we create reservation work-

loads by randomly selecting requests that require reser-

vations, where the reservation ratio varies as described

later. Original job start time is used as the reservation

start time and how long in advance the reservation is

made is uniformly drawn from an interval of 0 to 24h.

5.1.3 User Behaviour

We believe that users of a cloud would plan their re-

source demands in advance and use reservations if enough

incentives were provided. These incentives could mate-

rialise in the form of discount prices for resource allo-

cation or information on how their behavioural changes

affect resource allocation and maximise energy savings

[20]. In this work, we do not focus on devising the

proper incentives for users to adhere to reservations.

The experiments consider that at least some users find

enough incentives to change their allocation decisions

and reserve resources in advance. A more detailed study

on incentives is left for future work.

5.1.4 Modelled Scenarios

Two scenarios were modelled, where infrastructure ca-

pacity and resource requests are expressed in number

of machines. The maximum number of machines avail-

able at each site is computed by simulating the request

scheduling of their corresponding cloud workloads un-

der a large number of machines, so that each request

is treated as it arrives and no request is rejected. The

maximum number of machines used during this evalua-

tion is taken as the site capacity. Based on the deploy-

ment information from Kadeploy, we model the time

in seconds required to boot powered-off machines re-

quested by a reservation using a log-normal distribution

8 Marcos Dias de Assunção, Laurent Lefèvre

0 5 11 17 23
Time (Days)

0

50

100

150

N
um

be
ro

fM
ac

hi
ne

s

Google 1

0 5 11 17 23
Time (Days)

0

50

100

150

N
um

be
ro

fM
ac

hi
ne

s

Google 2

0 5 11 17 23
Time (Days)

0

50

100

150

N
um

be
ro

fM
ac

hi
ne

s

Google 3

0 5 11 17 23
Time (Days)

0

50

100

150

N
um

be
ro

fM
ac

hi
ne

s

Google 4

0 5 11 17 23
Time (Days)

0

50

100

150

N
um

be
ro

fM
ac

hi
ne

s

Google 5

Fig. 5 Overview of Google cloud workloads.

whose scale is 6 and shape is 0.4. We take 25 minutes as

the time a machine must remain idle to be a candidate

for switch off and 30 minutes as the future horizon to

check whether it is committed to reservations. The eval-

uation of candidates for switch off is performed every 5

minutes.

To evaluate the potential energy savings resulting

from including reservations, we considered the following

schemes for resource provisioning:

– Cloud Always On: baseline scenario that uses

the cloud workloads and maintains all servers con-

stantly on. It is also used to determine the resource

capacity to handle requests in an on-demand, cloud-

like manner.

– Cloud Switch Off: does not consider reservations,

employs the cloud workloads and the policy that

switches servers off if they remain idle for a given

interval.

– Reservation Switch Off: uses the reservation traces

and the reservation policy that switches off servers

that remain idle for an interval and that are not

committed to requests over a time horizon. It also

boots servers in advance to fulfil previously sched-

uled reservations.

– Reservation Minimum Pool: similar to the reser-

vation with switch off but maintains a minimum

resource pool available using the historic resource

utilisation mechanism described in Section 4.3.

– Reservation Periodic: this strategy configures the

minimum resource pool using the hybrid approach

presented in Section 4.4. The first week of the work-

load traces is employed to compute the periodic load

levels used to calculate the minimum resource pool.

5.2 Performance Metrics

Two metrics are considered, namely energy saving po-

tential and request aggregate delay, which respectively

measure how much of the total server idleness is used

for server switch-off and how powering off resources af-

fects the time to deliver requested servers to users.

5.2.1 Energy Saving Potential

The total server idleness si under the Cloud Always

On scenario corresponds to the maximum time during

which servers could potentially be switched off, and it

is therefore considered the upper bound on potential

energy savings. The si of a site is given by:

si =

∫ tlast

t0

stotal − sused dt (1)

where t0 is the start of the evaluation, tlast is when the

last request is submitted, stotal is the total number of

servers available at any time, and sused is the number

of machines in use at time t. The potential for energy

saving is the percentage of si during which servers are

switched off.

5.2.2 Request Aggregate Delay

This metric quantifies the impact that switching servers

off has on the QoS users perceive; it measures the time

users have to wait to have their requests serviced. The

aggregate delay ad of requests whose Quality of Service

(QoS) has been impacted (Rdelay) is given by:

ad =
∑

r∈Rdelay

rdeploy end − rstart time (2)

Bare-Metal Reservation for Cloud: an Analysis of the Trade Off between Reactivity and Energy Efficiency 9

where rdeploy end is when the last server became ready

to use, and rstart time is the time when the request

was supposed to start; that is, when the user expected

the servers to be available. The distributions of deploy-

ment time obtained while inspecting Kadeploy traces

give a conservative estimate to evaluate ad. Certain

public cloud providers publicise provisioning times of

bare-metal resources much higher than those found in

Grid’5000.

5.3 Evaluation Results

Figures 6 and Figure 7 summarise the results on poten-

tial energy savings and request aggregate delay. Here

40% of requests of each Google workload are randomly

selected to require reservations. As the Cloud Switch

Off scheduling strategy switches servers off almost im-

mediately once it determines that they have remained

idle, it is able to achieve higher energy saving poten-

tial. This simple policy, however, does not consider the

cost of powering off/on resources and hence presents the

largest request aggregate delay. The Reservation Switch

Off scenario, on the other hand, exploits less idle time,

but as shown in Figure 7 leads to smaller QoS degrada-

tion. In addition, reservation provides some advantages

with respect to peak capacity planning. For instance,

when handling requests in a cloud manner, Lyon and

Reims Grid’5000 sites require peak capacities of respec-

tively 194 and 136 machines; when accepting reserva-

tions, the peak capacities are respectively 89 and 78

servers, which is over 45% less servers than the Cloud

scenario.

Lyon Reims
Google 1

Google 2
Google 3

Google 4
Google 5

60

70

80

90

100

E
ne

rg
y

S
av

in
g

Po
te

nt
ia

l(
%

)

Cloud Switch Off
Reserv. Switch Off

Reserv. Min. Pool
Reserv. Period.

Fig. 6 Energy saving potential for the various scenarios.

As shown in Figure 6, reservation with a minimum

resource pool presents smaller energy savings compared

to the simple reservation strategy, but it reduces the

request aggregate delay. In the case of Google work-

loads, although reservation reduces the aggregate re-

quest delay as shown in Figure 7, this reduction results

in smaller energy saving potential. Further investiga-

tion of this issue revealed that the exponential smooth-

ing applied to forecast required server capacity leads to

a minimum number of resources being kept on during

longer periods than under other strategies. Although at

first one may assume that other strategies can always

better exploit the bursty behaviour of the Google work-

loads, it is important to note that we use conservative

bare-metal deployment times. We believe that when

considering the times reported by the industry – where

servers take several hours to be provisioned or recycled

– the smoother behaviour of reservation with minimum

pool is preferable. When compared to Reservation Min-

imum Pool, the Reservation Periodic strategy achieves

very minor gains in potential energy savings under cer-

tain workloads, but it worsens the aggregate request

delay. The reason for the greater request delay is that

under certain cases the minimum resource pool is set to

a larger number than what is in fact used, thus resulting

in lower resource utilisation. This lower utilisation af-

fects the size of the minimum pool over subsequent peri-

ods when the periodic approach demands a low number

of resources and sudden request bursts arise.

In order to evaluate the impact of using reserva-

tion on the request aggregate delay, we performed an-

other experiment with the Google workloads by varying

the reservation ratio from 0.1 to 0.9 (i.e. from 10% to

90% of requests are selected to require reservations).

Figure 8 shows that in general the aggregate delay is

inversely proportional to the reservation ratio. It is im-

portant to highlight that the impact of reservations

on the aggregate request delay could have been higher

if grouped jobs from the original trace had not been

grouped to build what we believe is a more realistic

scenario of bare-metal deployment.

6 Related Work

The benefits and drawbacks of resource reservations

have been extensively studied for various systems, such

as clusters of computers [13,15,17,23,25], meta-schedulers

[26], computational grids [7, 8, 10], virtual clusters and

virtual infrastructure [6]; and have been applied under

multiple scenarios including co-allocation of resources

[19], and improving performance predictability of cer-

tain applications [32].

Smith et al. [25] evaluated the impact of including

support for advance reservations on scheduling systems.

They concluded that the mean wait time of submitted

10 Marcos Dias de Assunção, Laurent Lefèvre

Lyon Reims
Google 1

Google 2
Google 3

Google 4
Google 5

0

100

200

300

400

500

R
eq

ue
st

A
gg

re
ga

te
D

el
ay

(h
)

Cloud Switch Off
Reserv. Switch Off
Reserv. Min. Pool
Reserv. Period.

Fig. 7 Request aggregate delay in resource/hour.

Reservation Ratio

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

Google 1

Google 2

Google 3

Google 4

Google 5

R
eq

ue
st

A
gg

re
ga

te
D

el
ay

(h
)

0

50

100

150

200

250

Fig. 8 Request delay in resource/hour for Google workloads.

applications might increase when supporting reserva-

tions and that the increase depends on how reservations

are supported (i.e. whether queued requests have pri-

ority or not). They also identify that reservations may

lead to fragmentation of system resources.

Margo et al. [17] also confirm that wait times can in-

crease, but highlight the needs for reservations when co-

allocating resources from multiple sites for applications

such as workflows [32]. They also describe techniques to

mitigate the impact of reservations on traditional man-

agement. The need for reservations as a means to en-

able jobs that require resource co-allocation is also high-

lighted by Snell et al. [26] who describe algorithms for

scheduling meta-jobs. A brokering service also capable

of performing meta-scheduling and supporting reserva-

tions is described by Elmroth and Tordsson [7].

Lawson and Smirni [15] aim at reducing fragmen-

tation by providing a non-FCFS policy that schedules

jobs using multiple queues. Farooq et al. [8] attempt to

reduce the performance cost of reservations by adding

laxity to the reservation window and hence giving more

flexibility to the scheduling system. Flexible or lax reser-

vations is a concept also explored by Netto et al. to

support resource co-allocation [19].

Previous work also provided techniques for placing

reservations into a schedule. Approaches such as those

provided by Röblitz and Rzadca [23] attempt to decide

on the placement of a reservation by executing what-if

schedules in case the reservation is accepted. The what-

if scenarios often simulate backfilling scheduling sched-

ules trying to (re)accommodate the already accepted

jobs.

Most previous work, however, has either ignored the

time to provision reserved resources or employed pro-

visioning models that not always reflect reality. Shi-

rako [13] is a system that considers the setup and tear-

down phases of resource provisioning. Reservation users

often bear the costs of resource setup leaving teardown

costs to successors (i.e. the next users to use the re-

sources). The work, however, does not attempt to model

the time required to deploy bare-metal resources.

Amazon Web Services (AWS)3 offers cloud services

that suit several of today’s use cases and provides the

richest set of reservation options for VM instances. AWS

offers four models for allocating VM instances, namely

on-demand, reserved instances, spot instances and ded-

icated; the latter are allocated within a Virtual Private

Cloud (VPC). Under all models AWS allows users to

request HPC instances, optimised for processing, mem-

ory use, I/O, and instances with Graphical Processing

Units (GPUs). Reserved instances can be requested at

a discount price under the establishment of long-term

contracts. Dedicated instances, provided at a premium,

are those that most closely resemble bare-metal provi-

sioning, as two instances requested by a given service

do not share a physical host.

Wang et al. [31] have exploited the use of reserva-

tions in the cloud by considering a cloud brokerage ser-

vice that reserves a large set of VM instances from cloud

providers and the serves user requests at discount price.

While considering a cloud provider’s revenue maximi-

sation, Toosi et al. [28] present a stochastic dynamic

programming technique for determining the maximum

number of reservations that the provider can accept.

The present work evaluates the energy savings that

could be achieved if short-term reservations were ac-

cepted, and how the time required to configure the re-

sources affect how long it takes for the resources to

become available to reservation users.

OpenNebula [18] and Haizea [27] support multiple

types of reservations (e.g. immediate, advanced and

3 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

Bare-Metal Reservation for Cloud: an Analysis of the Trade Off between Reactivity and Energy Efficiency 11

best-effort) and consider the time required to prepare

and configure the resources used by VMs (e.g. time

to transfer VM images). Climate, a reservation system

conceived during the FSN XLCloud4 project, and later

renamed Blazar when incorporated into OpenStack5

enables reserving and deploying bare-metal resources

whilst taking into account their energy efficiency [3].

7 Conclusion and Future Work

This article discussed the impact of reservation sup-

port in the provision of bare-metal resources in Clouds.

The work analysed historical information on the deploy-

ment of bare-metal resources and evaluated strategies

for switching off servers in a cloud data centre. Results

show the impact of adding resource reservations on the

number of machines required to handle peak load and

the time used to deploy environments such as operating

system and software stack required by customers. Un-

der the evaluated environments and workloads, reserva-

tions can reduce the time to deliver resources to users

when compared to allocation strategies that naively

switch off idle servers. Moreover, when using reserva-

tions, the maximum number of machines required to

handle peak load at the examined Grid’5000 sites was

over 45% smaller compared to handling requests in an

on-demand, cloud-like fashion.

In future work, we would like to gain more insights

on user behaviour on how they would exploit reserva-

tion of bare-metal resource in the cloud. We would like

to obtain request traces that can tell us more about

users’ habits and the patterns of resource requests. We

also intend to conduct user surveys to understand how
users would utilise short-term reservations.

Acknowledgements

This research is partially supported by the CHIST-ERA

STAR project. Some experiments presented in this pa-

per were carried out using the Grid’5000 experimental

testbed, being developed under the Inria ALADDIN de-

velopment action with support from CNRS, RENATER

and several Universities as well as other funding bodies

(see https://www.grid5000.fr).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin,

4 http://xlcloud.org
5 https://wiki.openstack.org/wiki/Blazar

A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley

view of Cloud computing. Tech. Report UCB/EECS-
2009-28, Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, USA
(2009)

2. Assuncao, M.D., Cardonha, C.H., Netto, M.A., Cunha,
R.L.F.: Impact of user patience on auto-scaling resource
capacity for cloud services. Future Generation Computer
Systems 55, 41–50 (2016). DOI http://dx.doi.org/10.
1016/j.future.2015.09.001

3. Assuncao, M.D., Lefevre, L., Rossigneux, F.: On the im-
pact of advance reservations for energy-aware provision-
ing of bare-metal cloud resources. In: 12th International
Conference on Network and Service Management (CNSM
2016) (2016)

4. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez,
F., Jeannot, E., Jégou, Y., Lantéri, S., Leduc, J., Melab,
N., Mornet, G., Namyst, R., Primet, P., Quetier, B.,
Richard, O., Talbi, E.G., Iréa, T.: Grid’5000: a large scale
and highly reconfigurable experimental Grid testbed. Int.
J. of High Perf. Comp. Applications 20(4), 481–494
(2006)

5. Capit, N., Costa, G.D., Georgiou, Y., Huard, G., Martin,
C., Mounié, G., Neyron, P., Richard, O.: A batch sched-
uler with high level components. In: CCGrid’05, vol. 2,
pp. 776–783. Washington, USA (2005)

6. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Spren-
kle, S.E.: Dynamic virtual clusters in a Grid site manager.
In: HPDC 2003, p. 90. Washington, USA (2003)

7. Elmroth, E., Tordsson, J.: A standards-based Grid re-
source brokering service supporting advance reservations,
coallocation, and cross-Grid interoperability. CCPE
21(18), 2298–2335 (2009)

8. Farooq, U., Majumdar, S., Parsons, E.W.: Impact of lax-
ity on scheduling with advance reservations in Grids. In:
MASCOTS 2005, pp. 319–322 (2005)

9. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with
the parallel workloads archive. JPDC To appear

10. Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrst-
edt, K., Roy, A.: A distributed resource management
architecture that supports advance reservations and co-
allocation. In: IWQoS’99, pp. 27–36. London, UK (1999)

11. Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., Marwah,
M.: Hybrid resource provisioning for minimizing data
center SLA violations and power consumption. Sustain-
able Comp.: Informatics and Systems 2(2), 91–104 (2012)

12. Iosup, A., Jan, M., Sonmez, O., Epema, D.: The char-
acteristics and performance of groups of jobs in grids.
In: A.M. Kermarrec, L. Bouge, T. Priol (eds.) Euro-Par
2007 Parallel Processing, LNCS, vol. 4641, pp. 382–393.
Springer (2007)

13. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker,
D., Yocum, K.G.: Sharing networked resources with bro-
kered leases. In: USENIX Annual Technical Conf., pp.
199–212. Berkeley, USA (2006)

14. Jeanvoine, E., Sarzyniec, L., Nussbaum, L.: Kadeploy3:
Efficient and Scalable Operating System Provisioning.
USENIX ;login: 38(1), 38–44 (2013)

15. Lawson, B.G., Smirni, E.: Multiple-queue backfilling
scheduling with priorities and reservations for parallel
systems. In: JSSPP 2002, LNCS, pp. 72–87. Springer,
London, UK (2002)

16. Marathe, A., Harris, R., Lowenthal, D.K., de Supinski,
B.R., Rountree, B., Schulz, M., Yuan, X.: A comparative
study of high-performance computing on the cloud. In:
HPDC 2013, pp. 239–250. ACM, New York, USA (2013)

https://www.grid5000.fr
http://xlcloud.org
https://wiki.openstack.org/wiki/Blazar

12 Marcos Dias de Assunção, Laurent Lefèvre

17. Margo, M.W., Yoshimoto, K., Kovatch, P., Andrews, P.:
Impact of reservations on production job scheduling. In:
JSSPP 2007, LNCS, vol. 4942, pp. 116–131. Springer,
Berlin/Heidelberg, Germany (2007)

18. Milojicic, D., Llorente, I.M., Montero, R.S.: OpenNebula:
A cloud management tool. IEEE Internet Comp. 15(2),
11–14 (2011)

19. Netto, M.A.S., Bubendorfer, K., Buyya, R.: SLA-Based
advance reservations with flexible and adaptive time QoS
parameters. In: 5th Int. Conf. on Service-Oriented Comp.
(ICSOC 2007), pp. 119–131. Springer, Berlin, Heidelberg,
Germany (2007)

20. Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Save watts in
your Grid: Green strategies for energy-aware framework
in large scale distributed systems. In: ICPADS’08, pp.
171–178. Melbourne, Australia (2008)

21. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R.,
Fahringer, T., Epema, D.: A performance analysis of
EC2 cloud computing services for scientific computing.
In: Cloud Comp., LNCS, vol. 34, pp. 115–131. Springer
(2010)

22. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-
usage traces: Format + schema. Tech. report, Google
Inc., Mountain View, USA (2011)

23. Röblitz, T., Rzadca, K.: On the placement of reservations
into job schedules. In: Euro-Par 2006 Parallel Processing,
LNCS, vol. 4128, pp. 198–210. Springer (2006)

24. Scott, D.W.: On optimal and data-based histograms.
Biometrika 66(3), 605–610 (1979)

25. Smith, W., Foster, I., Taylor, V.: Scheduling with ad-
vanced reservations. In: 14th Int. Parallel and Dist. Pro-
cessing Symp. (IPDPS 2000), pp. 127–132. Cancun, Mex-
ico (2000)

26. Snell, Q., Clement, M., Jackson, D., Gregory, C.: The per-
formance impact of advance reservation meta-scheduling.

In: JSSPP 2000, LNCS, vol. 1911, pp. 137–153. Springer
(2000)

27. Sotomayor, B., Keahey, K., Foster, I.: Combining batch
execution and leasing using virtual machines. In: HPDC
2008, pp. 87–96. New York, USA (2008)

28. Toosi, A.N., Vanmechelen, K., Ramamohanarao, K.,
Buyya, R.: Revenue maximization with optimal capac-
ity control in infrastructure as a service cloud markets.
IEEE Transactions on Cloud Computing 3(3), 261–274
(2015). DOI 10.1109/TCC.2014.2382119

29. Verma, A., Dasgupta, G., Nayak, T.K., De, P., Kothari,
R.: Server workload analysis for power minimization us-
ing consolidation. In: USENIX Annual Technical Confer-
ence, p. 28. USENIX Association (2009)

30. Wang, G., Ng, T.S.E.: The impact of virtualization
on network performance of Amazon EC2 data center.
In: 29th Conf. on Information Communications (INFO-
COM’10), pp. 1163–1171. IEEE Press, Piscataway, USA
(2010)

31. Wang, W., Niu, D., Liang, B., Li, B.: Dynamic cloud in-
stance acquisition via iaas cloud brokerage. IEEE Trans-
actions on Parallel and Distributed Systems 26(6), 1580–
1593 (2015). DOI 10.1109/TPDS.2014.2326409

32. Wieczorek, M., Siddiqui, M., Villazon, A., Prodan, R.,
Fahringer, T.: Applying advance reservation to increase
predictability of workflow execution on the Grid. In: 2nd
IEEE Int. Conf. on e-Science and Grid Comp. (E-Science
2006), p. 82. Washington, USA (2006)

33. Younge, A.J., Henschel, R., Brown, J.T., von Laszewski,
G., Qiu, J., Fox, G.C.: Analysis of virtualization tech-
nologies for high performance computing environments.
In: IEEE Int. Conf. Cloud Comp. (CLOUD 2011), pp.
9–16 (2011)

	Introduction
	Background and Motivation
	Modelling Bare-Metal Deployment
	Resource Allocation Strategies
	Power-Off Idle Resources
	Reservation-Based Power-Off
	Reservation With Minimum Capacity Estimation
	Exploiting Workload Periodicity

	Performance Evaluation
	Experimental Setup
	Grid'5000 Reservation Trace
	Google Workload Trace
	User Behaviour
	Modelled Scenarios

	Performance Metrics
	Energy Saving Potential
	Request Aggregate Delay

	Evaluation Results

	Related Work
	Conclusion and Future Work

