
Energy Estimation for MPI Broadcasting Algorithms in
Large Scale HPC Systems

M.E.M. Diouri
INRIA Avalon - ENS Lyon

mehdi.diouri@ens-lyon.fr

O. Glück
INRIA Avalon - UCBL
olivier.gluck@ens-lyon.fr

L. Lefèvre
INRIA Avalon - ENS Lyon

laurent.lefevre@inria.fr

J.-C. Mignot
INRIA Avalon - CNRS

jean-christophe.mignot@ens-lyon.fr

ABSTRACT
Future supercomputers will gather hundreds of millions of
communicating cores. The movement of data in such sys-
tems will be very energy consuming. We address in this
paper the issue of energy consumption of data broadcast-
ing in such large scale systems. To this end, we propose
a framework to estimate the energy consumed by different
MPI broadcasting algorithms for various execution settings.
Validation results show that our estimations are highly ac-
curate and allow to select the least consuming broadcasting
algorithm.

Categories and Subject Descriptors
C.4 [Computer-Communication Networks]: (Performance
of Systems)[measurement techniques, modeling techniques]

Keywords
Power and Energy consumption, MPI Broadcasting, Hybrid
Programming, HPC Applications.

1. INTRODUCTION
Energy consumption by large-scale HPC systems is a rec-

ognized concern which will grow in importance as systems
get larger. Indeed, the currently fastest supercomputer ac-
cording to the TOP5001 list published in November 2012,
is able to perform 17 PFlop/s. Its energy efficiency is 2
GFlop/W while the Defense Advanced Research Projects
Agency (DARPA) has set to 50 GFlop/W the energy effi-
ciency of yet to come exascale systems [8].

Exascale applications will also involve large volumes of
data: hundreds of exabytes of data are expected by 2018 [1].
Programmability of exascale systems is still under debate.
MPI and its combination with OpenMP is recognized as a
possible candidate for programming applications in exascale

1Titan machine: http://www.top500.org/system/177975

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroMPI ’13 September 15 - 18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

systems. Therefore, we choose to examine their broadcasting
algorithms closely, especially as they are not optimized with
energy-efficiency foremost in mind.

Currently, in order to evaluate the power consumption of
a data broadcasting algorithm for any particular execution,
the only approach is to pre-execute the application and mon-
itor the energy consumption. This approach is not practical
for algorithm selection since it does not allow to evaluate
energy consumption before the execution. To address this
problem, this paper proposes an accurate estimator of the
energy consumption for data broadcasting algorithms. This
estimator can be used to estimate the power consumption
of a particular broadcasting algorithm for a large variety of
execution configurations. It can also be used to compare
data broadcasting algorithms from given execution configu-
rations. Four broadcasting algorithms are considered in this
paper: two pure MPI broadcasting and two hybrid (MPI +
OpenMP) broadcasting.

This paper is organized as follows. Section 2 describes
related works. The design of the energy estimation frame-
work is detailed in Section 3. Section 4 presents validation
results. Section 5 concludes the paper and presents some
future works.

2. RELATED WORKS
Evaluating power consumption of one node or one process

is not new and generates numerous researches and publica-
tions. In this section, we describe a small selected set of
existing methods for measuring the energy consumption of
computing systems. The PowerPac [5] framework allows a
precise energy monitoring of one HPC node. Software sys-
tems like SoftPower [11] estimate the energy consumption
by observing the usage of internal resources.

Some studies [3,7] have evaluated the performance of broad-
cast algorithms. Parallelization of applications with a hybrid
approach uses OpenMP2 to distribute the computing por-
tion of each MPI process between threads [2]. Recent re-
sults [13] have shown that hybrid programming can improve
performance on clusters of SMP. However, none of these
studies have evaluated the power or the energy consump-
tion of data broadcasting algorithms. In [10], we presented
an energy estimator for fault tolerance protocols. In this
paper, our goal is to apply an analogous approach to build
a framework for estimating the energy consumption of data
broadcasting algorithms.

2http://www.openmp.org

3. DESIGN OF THE ESTIMATION TOOL
In this section, we propose the a tool that estimates the

energy consumption of four MPI broadcasting algorithms.
In Section 3.1, we identify the high-level operations found
in these four algorithms. In Section 3.2, we explain how we
perform the calibration according to the hardware used. We
describe our estimation methodology in Section 3.3.

3.1 Broadcasting algorithms and high-level op-
erations

We consider the broadcast of Vdata among N nodes with
p processes per node. Our study focuses on four different
broadcasting algorithms: two pure MPI broadcasting and
two hybrid broadcasting: MPI + OpenMP. For the two MPI
versions, we consider the Scatter & AllGather algorithm [14]
provided in MPICH23 1.3.3 and the Pipelining algorithm
provided in OpenMPI4 1.4.4. For convenience, we choose
to respectively call them MPI/SAG and MPI/Pipeline. In
a hybrid broadcasting, the root process uses MPI to broad-
cast the data to one master MPI process per node. Then,
each master MPI process uses OpenMP to share the broad-
casted data with all the other threads within the same node:
the clause used in OpenMP is CopyPrivate. We call Hy-
brid/SAG the hybrid broadcasting using MPI/SAG com-
bined with OpenMP. Analogously, Hybrid/Pipeline com-
bines MPI/Pipeline with OpenMP.

Figure 1 presents the four broadcasting algorithms that
we consider and shows the sizes of the messages exchanged
between the different processes. In these four algorithms,
we identify the following high-level operations:

• Scatter : It consists of dividing a data into a number
of smaller parts equal to the number of processes and
sending a piece of data to each process using a bino-
mial tree topology. It is used in MPI/SAG and Hy-
brid/SAG.

• AllGather : Given a set of elements distributed across
all processes, AllGather will gather all of the elements
to all the processes using a ring topology. It is used in
MPI/SAG and Hybrid/SAG.

• Pipeline: It consists of splitting the source message
into an arbitrary number of packets (called chunks)
which are routed in a pipelined fashion. In Figure 1,
the number of chunks is denoted by C. It is used in
MPI/Pipeline and Hybrid/Pipeline.

• CopyPrivate: It consists of copying a data stored in a
variable from one thread to the corresponding variables
of all other threads within the same node. It is used
in Hybrid/SAG and Hybrid/Pipeline.

Estimating the energy consumption of a given high-level
operation op (Scatter, AllGather, Pipeline, or CopyPrivate)
is really complex as it depends on a large set of parame-
ters. These high-level operations are associated to parame-
ters that depend not only on the context execution but also
on the hardware used. Thus, in order to estimate accurately
the energy consumption due to a specific implementation of
a broadcasting algorithm, the estimation tool needs to take

3http://www.mcs.anl.gov/research/projects/mpich2/
4http://www.open-mpi.org/

into consideration all the parameters of the execution con-
text (size of data broadcasted, number of processes, source
and destination storage medium of the data broadcasted)
and all the hardware parameters (number of cores per node,
memory architecture, type of disks, network topology, etc.).

In order to take into consideration all the parameters, the
estimation tool integrates an automated calibration compo-
nent.

3.2 Calibration approach
Energy consumption depends strongly on the hardware

used in the execution platform. The calibration process con-
sists of gathering energy knowledge of all the identified op-
erations according to the server nodes and the network used
in the supercomputer. To this end, we developed a set of
simple benchmarks that extracts the power consumption ρop
and the execution time top of each high-level operation en-
countered in the broadcasting algorithms. The goal of our
calibration approach is to take into account the specific fea-
tures of the hardware used in the supercomputer in order to
provide realistic energy estimations. Although this knowl-
edge base has a significant size, it needs to be done only
occasionally.

In our calibrator component, the energy consumption of
a node i performing a high-level operation op is:

ξNodei
op (p,N) = ρNodei

op (p) · top(p,N)

Analogously, the energy consumption of a switch j during

op is: ξ
Switchj
op = ρ

Switchj
op · top(p,N)

top(p,N) is the time required to perform op over the Np
processes. Within the node i, p is the number of processes
involved in op. ρNodei

op (p) is the power consumption of the

node i during top. ρ
Switchj
op is the power consumption of

the switch j during top. Thus, we need to get the power

consumption ρNodei
op for each node i, ρ

Switchj
op for each switch

j, and the execution time top of each operation. Therefore,
our energy calibrator integrates a power calibrator described
in 3.2.1 and an execution time calibrator described in 3.2.2.

3.2.1 Power consumption ρNodei
op and ρ

Switchj
op

In our power calibrator, the power consumption of a node i
during an operation op is: ρNodei

op (p) = ρNodei
idle +∆ρNodei

op (p).
Analogously, the power consumption of a switch j during op

is: ρ
Switchj
op = ρ

Switchj

idle + ∆ρ
Switchj
op .

ρNodei
idle (or ρ

Switchj

idle) is the power consumption when the
node i (or the switch j) is idle (i.e. switched on but running
only the operating system) and ∆ρNodei

op (or ∆ρSwitchi
op) is

the mean extra power cost due to the high-level operation
execution. We showed in [10] that ρNodei

idle may be differ-

ent even for identical nodes. Thus, we calibrate ρNodei
idle and

ρ
Switchj

idle by measuring the power consumption of each node
and each switch while they are idle.

In order to measure ∆ρNodei
op and ∆ρ

Switchj
op experimen-

tally, we isolate each high-level operation by instrumenting
the implementation of each broadcasting algorithm that we
consider, and we use OmegaWatt5, an external power meter
on each node [9]. This external power meter provides one
measurement each second with a precision of 0.125W. Like

in [10], we measured ∆ρNodei
op (and ∆ρ

Switchj
op) and we found

5http://www.omegawatt.fr/gb/index.php

Figure 1: Broadcasting algorithms and the associated high-level operations

that for a given operation, ∆ρNodei
op (and ∆ρ

Switchj
op) is the

same on identical nodes (or switches). Indeed, ∆ρNodei
op and

∆ρ
Switchj
op depend only on the hardware used on the node or

the switch. Thus, we measure ∆ρNodei
op and ∆ρ

Switchj
op dur-

ing each high-level operation op, for each type of nodes/switches
only.

3.2.2 Execution time top
In this section, we describe the execution time model that

we consider for each high-level operation of each broadcast-
ing algorithm. For each operation op, top depends on differ-
ent parameters.

According to [3], the time required for scattering, all-
gathering or for pipelining a volume of data Vdata among
N nodes with p processes per node is:

tScatter(p,N) = tAllGather(p,N)

= (TSnet(p,N) +
Vdata

Rnet(p,N)
) · Np− 1

Np

tPipeline(p,N) = (TSnet(p,N) +
Vdata

Rnet(p,N)
) · C +Np− 2

C

TSnet(p,N) is the time to start up the network link and
Rnet(p,N) is the transfer rate for transmitting the volume
of data Vdata. C is the number of (equal-sized) pieces into
which the data is split by the MPI/Pipeline. It is equal to
the total volume of data divided by the size of each piece of
data. Thus, the size of each piece of data and consequently
C depend on the chosen implementation of pipelining.

For a fixed number of nodes N and a fixed number of pro-

cesses per node p, tScatter, tAllGather or tPipeline are linear
functions of Vdata. Therefore, to calibrate top, the estimation
tool automatically runs a simple benchmark that measures
top for different values of N , p and Vdata.

The time required to copy a data to the threads of the
same node is a function of the number of threads p per node
and the volume of data to copy Vdata:

tNodei
CopyPrivate(p) = TNodei

access (p) + Vdata

R
Nodei
transfer

(p)

TNodei
access is the time needed to access the RAM where Vdata

has been AllGathered or Pipelined. RNodei
transfer is the trans-

mission rate for copying a data into the RAM.

3.3 Estimation methodology
We described previously how we perform the calibration

process in the estimator. This calibration needs to be done
by the administrator each time that a change occurs in the
hardware used in the supercomputer. Once this calibration
is completed, our energy estimator framework is able to pro-
vide estimations of the energy consumption due to a data
broadcasting.

Figure 2 shows the components of the estimator and their
interactions. The user provides some information related to
the execution context in which the data broadcasting will
occur. This information is taken as an input by the esti-
mator component. As an output, the calibrator component
provides the calibration data on which the estimation tool
relies on to estimate the energy consumption of data broad-
casting algorithms. In the following subsections, we detail

for each algorithm, the information collected from the user
and the corresponding calibration data transmitted to our
estimator component. We also detail how the energy con-
sumption is computed thanks to this calibration output and
to the information provided by the user.

Algorithm and Execution Context
parameters

C
alibration
output

Estimated energy consumption
of broadcasting algorithms

Calibrator

Platform
parameters

EstimatorUser

Administrator

Microbenchmarks
executions

Figure 2: Design of the estimator

3.3.1 MPI/SAG and Hybrid/SAG
To estimate the energy consumption of MPI/SAG and Hy-

brid/SAG, the estimator component collects from the user
the number of nodes N , the number of processes per node
p, the number of switches M and the size of data to broad-
cast Vdata. From this information, the estimator collects
from the calibrator tScatter(p,N), tAllGather(p,N) accord-
ing to p, N and Vdata. Similarly, for each node i, it collects
tCopyPrivate(p) according to p and Vdata.

If Vdata is not a size recorded by the calibrator, the estima-
tor computes top(p,N) by adjusting the equation of top(p,N)
using the least squares method.

The estimated energy consumption of MPI/SAG is:

EMPI/SAG =
∑N

i=1 ξ
Nodei
MPI/SAG +

∑M
j=1 ξ

Switchj

MPI/SAG

= tScatter(p,N) · (
∑N

i=1 ρ
Nodei
Scatter(p) +

∑M
j=1 ρ

Switchj

Scatter)

+ tAllGather(p,N) · (
∑N

i=1 ρ
Nodei
AllGather(p) +

∑M
j=1 ρ

Switchj

AllGather)

The estimated energy consumption of Hybrid/SAG is:

EHybrid/SAG =
∑N

i=1 ξ
Nodei
Hybrid/SAG +

∑M
j=1 ξ

Switchj

Hybrid/SAG

= tScatter(1, N) · (
∑N

i=1 ρ
Nodei
Scatter(1) +

∑M
j=1 ρ

Switchj

Scatter)

+ tAllGather(1, N) · (
∑N

i=1 ρ
Nodei
AllGather(1) +

∑M
j=1 ρ

Switchj

AllGather)

+
∑N

i=1(tNodei
CopyPrivate(p) · ρNodei

CopyPrivate(p))

where ρNodei
op (p) and ρ

Switchj
op are outputs of the calibrator,

and top(p,N) is computed by the estimator.

3.3.2 MPI/Pipeline and Hybrid/Pipeline
Compared to the estimation of MPI/SAG and Hybrid/SAG,

the estimator component collects from the user an additional
parameter that is the size of each data piece, in order to
estimate the energy consumption of MPI/Pipeline and Hy-
brid/Pipeline. From the calibrator, it collects tPipeline(p,N)
according to p, N and Vdata. The estimated energy con-
sumption for MPI/Pipeline (respectively for Hybrid/Pipeline)
is analogous to the estimated energy for MPI/SAG (respec-
tively for Hybrid/SAG). The only difference is that the Scat-
ter and AllGather operations are replaced by an unique op-
eration: the Pipeline operation.

4. VALIDATION OF THE ESTIMATOR
To apply the energy estimation approach, we calibrate

and run HPC applications on a homogeneous cluster of the
large scale experimental platform Grid5000, a French sci-
entific platform designed to support experiment-driven re-
search in large scale parallel and distributed systems [4]. We
run the different data broadcasting algorithms and compare
the measured energy consumption to the one we estimate
thanks to the energy estimating framework.

4.1 Experimental infrastructure
We use a cluster of 16 identical nodes Dell R720 (2 Intel

Xeon CPU 2.3 GHz, with 6 cores each; 32 GB of mem-
ory; a 10 Gigabit Ethernet NIC; a SCSI hard disk of 598
GB). The 16 nodes are interconnected with one 10 Gigabit
Ethernet switch. We monitor this cluster with an energy-
sensing infrastructure of external Omegawatt wattmeters.
This energy-sensing infrastructure, which was also used in
[10], enables to get the instantaneous consumption in Watts,
at each second for each monitored node. We ran each ex-
periment 50 times and computed the mean value over the
50 values.

4.2 Calibration results for our platform
In this section, we calibrate our platform according to the

process described in 3.2. Since each node has 12 cores, we
consider different number of processes per node.

4.2.1 Power calibration
First, we measure the idle power consumption ρNodei

idle of
each node i. Then, we calibrate the extra power consump-
tion ∆ρNodei

op of all the high-level operations found in the
broadcasting algorithms (Figure 3). As each node has 12
cores each, we calibrated the extra power cost for 1,4,8, and
12 processes per node involved in a given operation.

Feuille1

Page 1

1 core

36,31 60,12 106,45 127,29
Pipeline 34,2 67,8 100 124,2

36 71,5 105,7 129,1

32,1 64,6 96,3 118,9
20,5 20,7 20,6 20,6

4 cores 8 cores 12 cores

CopyPrivate

AllGather

Scatter
Swapping

CopyPrivate

Pipeline

AllGather

Scatter

0 20 40 60 80 100 120 140

1 core 4 cores 8 cores 12 cores

Mean Extra Power Consumption (W)

 O
p
er

a
ti

o
n
s

Figure 3: Extra power cost of high-level operations

We notice in Figure 3 that the mean extra power consump-
tion varies with the number of cores per node that perform
the same operation. Contrary to what one may think, the
mean extra power consumption of these operations does not
increase linearly with a growing number of cores per node.

Besides, we measure the idle power consumption of our 10
Gigabit Ethernet switch during 300 seconds and its power
consumption during the peak network traffic during 300 sec-
onds. The power consumption of the switch remained almost
constant during the whole experiment. In other words, the

power consumption of the switch is not varying according
to the network traffic. Some recent studies [6,12] confirmed
this fact by evaluating and showing the power consumption
of different network equipments is not influenced by the net-
work traffic.

4.2.2 Execution time calibration
To calibrate the execution time, the estimator automati-

cally runs the corresponding benchmark in order to measure
top for the different operations: tScatter(p,N), tAllGather(p,N),
tPipeline(p,N) and tCopyPrivate(p).

For different number of nodes N and different number of
processes per node p, we measure tScatter(N, p), tAllGather(N, p)
and tPipeline(N, p) with a varying volume of data. We present
part of the calibration results for these operations in Figure
4. for a volume of data ranging from 200 MBytes to 2000
MBytes, for 1 process per node, and for a varying number of
nodes (4, 8, 12, 16). Figure 4 shows that tScatter, tAllGather

and tPipeline evolve in a linear fashion for a fixed N and
p. This confirms the linear approach for estimating tScatter,
tAllGather and tPipeline. In other words, TSnet(p,N) and
Rnet(p,N) are constant when we consider a fixed number of
nodes and a fixed number of processes per node. With N
and p fixed, we can deduce TSnet(p,N) and Rnet(p,N) and
then estimate tScatter(p,N), tAllGather and tPipeline(p,N).

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Volume of data (MBytes)

 S
c
a

tt
e

r,
 A

llG
a

th
e

r
o

r
P

ip
e

lin
e

 t
im

e
 (

s
)

4 nodes 8 nodes 12 nodes 16 nodes

Scatter or AllGather

Pipeline

Figure 4: Calibration of tScatter(N, 1), tAllGather(N, 1)
and tPipeline(N, 1)

We present the calibration results for tNodei
CopyPrivate(p) in

Figure 5. As shown in [10], tNodei
CopyPrivate(p) may vary from

one node to another even if we consider identical nodes.
That is why we calibrate them for each node of our cluster.
For different number of processes (4, 8, 12) within a same

node, we measure tNodei
CopyPrivate(p) with a varying volume of

data in a similar fashion as we already did for logging in
RAM [10].

Figure 5 confirms the linear approach for estimating
tNodei
CopyPrivate(p). Thus, we need to take it into account when

considering several processes per node. In addition, for a
fixed volume of data, we notice that tNodei

CopyPrivate(p) almost
remains unchanged when considering a growing number of
processes per node. This is due to the fact that the shared
data is simultaneously logged in the memory of the different
processes without contention.

4.3 Evaluation of the estimation accuracy
In this section, we want to compare the estimated energy

consumption computed by the estimation tool once the cal-
ibration done (but before running the application) to the
real energy consumption measured by our energy sensors

200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

Volume of data (MBytes)

C
o

p
y
P

ri
v
a

te
 t

im
e

 (
s
)

4 processes 8 processes 12 processes

Figure 5: Calibration of tNodei
CopyPrivate(p)

during the application execution. We consider 4 classes of
broadcasting applications running over different execution
contexts as follows:

Name Number of Size of each Number Processes
messages message of nodes per node

A 2000 1 MBytes 14 8
B 80 25 MBytes 16 1
C 4 500 MBytes 10 4
D 1 1.75 GBytes 6 12

For each application (A, B, C, D) and or each broad-
casting algorithm (MPI/SAG, MPI/Pipeline, Hybrid/SAG,
Hybrid/Pipeline), on the one hand, we estimate the energy
consumption by summing the estimated energy of the opera-
tions involved in the given algorithm. On the other hand, we
measure the total energy consumption. In our experiments,
pipelining is performed with a fixed chunk size of 128 KB.
Each energy measurement is done 30 times and we compute
the average value.

A B C D
0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

Applications

E
s
ti
m

a
te

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

MPI/Sag MPI/Pipeline Hybrid/Sag Hybrid/Pipeline

+0.91%

+0.99%

−2.63% −2,53%

+0.60%

−3.54%

+3.69%−4.84%
+1.79%

+3.87%

−0.97%

+4.97%

−1.75%

+1.99%

+0.75%
−6.82%

Figure 6: Estimated energy consumption (in J) of
the four broadcasting algorithms compared to real
energy measurements

In Figure 6, we plot the estimated energy consumption
computed by our estimator for each broadcasting algorithm
and for each application. We also represented the rela-
tive deviation (in percentage) between the estimated and
the measured energy consumption. Figure 6 shows that the
energy estimations are accurate: the relative differences be-
tween the estimated and the measured energy consumptions
are low. The worst estimation is -6.82 % for Hybrid/SAG
algorithm with application D.

Figure 6 shows that from one application to another the
less energy consuming algorithm is not always the same.
First, we notice that the hybrid algorithms are less energy
consuming than the MPI algorithms, especially when con-
sidering many processes per node (applications A, C and
D). In general, determining the less consuming algorithm
depends on the trade-off between the volume of broadcasted
data and the number of nodes involved. For A, the less en-
ergy consuming algorithm is Hybrid/SAG since the number
of pipelined chunks is relatively low as the volume of data
to broadcast is small. Oppositely, the less energy consuming
broadcasting algorithm for B, C and D is Hybrid/Pipeline
since the number of pipelined chunks starts to be high enough
compared to the number of processes involved. Thus, by
providing such energy estimations before executing an ap-
plication, we can select the best data broadcasting algorithm
in terms of energy consumption.

One may think that energy consumption of an algorithm
is completely linked to its execution time. Our study shows
that it is not true. Indeed, although Figure 6 shows that
the energy consumption of hybrid algorithms are lower to
the energy consumption of MPI algorithms in applications
A, C and D, the corresponding estimated execution time of
the hybrid algorithms are slightly higher to the execution
time of the MPI algorithms. Indeed, the power consump-
tion of hybrid algorithms during MPI operations (Scatter,
AllGather and Pipeline) is much lower than the one of MPI
broadcasting algorithms (see Figure 3). This is because in
hybrid broadcasting, only one process is active while in pure
MPI broadcasting algorithms, all the processes are active
during MPI operations.

5. CONCLUSIONS AND FUTURE WORKS
This paper presents a tool that estimates the energy con-

sumption of four broadcasting algorithms: MPI/Pipeline,
MPI/SAG, Hybrid/Pipeline and Hybrid/SAG. To provide
accurate estimations, this tool relies on an energy calibra-
tion of the execution platform and a description of the ex-
ecution settings. Thanks to our approach based on a cali-
bration process, this framework can be used in any energy
monitored supercomputer. We showed in this paper that the
energy estimations provided by the estimation tool are accu-
rate: the relative difference between energy measurements
and estimations do not exceed 6.82% for the four consid-
ered applications. By estimating the energy consumption
of broadcasting algorithms, this tool allows selecting the
best broadcasting algorithm in terms of energy consump-
tion before running the application. As a future work, we
will propose energy efficient improvements for broadcasting
algorithms.

6. ACKNOWLEDGMENTS
Experiments presented in this paper were carried out us-

ing the Grid’5000 experimental testbed, being developed un-
der the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr)

7. REFERENCES
[1] G. Aloisio and S. Fiore. Towards Exascale Distributed

Data Management. IJHPCA, 23(4):398–400, 2009.

[2] F. Cappello and D. Etiemble. MPI versus
MPI+OpenMP on IBM SP for the NAS benchmarks.
In ACM/IEEE SC’00, Dallas, Texas, USA, November
2000.

[3] Daniel M. Wadsworth and Zizhong Chen. Performance
of MPI broadcast algorithms. In IEEE IPDPS 2008,
Miami, Florida USA, April 14-18, 2008, pages 1–7.

[4] Franck Cappello et al. Grid’5000: a large scale and
highly reconfigurable grid experimental testbed. In
IEEE/ACM GRID 2005, November 13-14, 2005,
Seattle, Washington, USA, pages 99–106, 2005.

[5] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and
K. W. Cameron. Powerpack: Energy profiling and
analysis of high-performance systems and applications.
IEEE Transactions on Parallel and Distributed
Systems, 99:658–671, 2009.

[6] H. Hlavacs, G. Da Costa, and J.-M. Pierson. Energy
consumption of residential and professional switches.
In IEEE CSE, 2009.

[7] Jelena Pjesivac-Grbovic, Thara Angskun, George
Bosilca, Graham E. Fagg, Edgar Gabriel and Jack
Dongarra. Performance Analysis of MPI Collective
Operations. In IEEE IPDPS 2005, 4-8 April 2005,
Denver, CO, USA, 2005.

[8] P. M. Kogge and et al. ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems.
In DARPA Information Processing Techniques Office,
page pp. 278, Washington, DC, September 28 2008.

[9] M. E. M. Diouri, M. F. Dolz, O. Glück, L. Lefèvre, P.
Alonso, S. Catalán, R. Mayo, and E. S. Quintana-Ort́ı.
Solving some mysteries in power monitoring of servers:
Take care of your wattmeters! In EE-LSDS 2013,
Vienna, Austria, April, 22-24 2013.

[10] M.E.M. Diouri, O. Glück and L. Lefèvre and F.
Cappello. ECOFIT: A Framework to Estimate Energy
Consumption of Fault Tolerance protocols during
HPC executions. In IEEE/ACM CCGrid 2013, Delft,
Netherlands, May 13-16, 2013.

[11] Min Yeol Lim, Allan Porterfield and Robert Fowler.
SoftPower: Fine-Grain Power Estimations Using
Performance Counters. In ACM HPDC, July 2010.

[12] Priya Mahadevan, Puneet Sharma, Sujata Banerjee
and Parthasarathy Ranganathan. A power
benchmarking framework for network devices. In
NETWORKING 2009 Conference, Aachen, Germany,
May 11-15, 2009., pages 795–808, 2009.

[13] R. Rabenseifner, G. Hager, and G. Jost. Hybrid
MPI/OpenMP Parallel Programming on Clusters of
Multi-Core SMP Nodes. In 17th Euromicro
International Conference on Parallel, Distributed and
Network-based Processing, February 2009, pages 427
–436.

[14] R. Thakur and W. Gropp. Improving the Performance
of Collective Operations in MPICH. In European
PVM/MPI Users’ Group Meeting, Venice, Italy,
September 29 - October 2, 2003, pages 257–267, 2003.

