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Abstract—Data centers have major environmental impacts

due to their energy consumption and the manufacturing of

equipment. They emit greenhouse gases and consume energy

and resources, such as rare earth and water. Efficient computing

resource management is therefore a key challenge for Cloud

service providers today as they need to meet a growing demand

while limiting the oversizing of their infrastructures. Mechanisms

derived from virtualization, such as Virtual Machines (VMs)

consolidation, are used to optimize resource management and

infrastructure sizing, but economic and technical constraints

can hinder their adoption. They require prior infrastructure

knowledge and usage study to evaluate their potential, involve

complex placement algorithms, and are sometimes difficult to

implement in hypervisors. In this paper, we propose ORCA (OuR

Consolidation Algorithm), a complete consolidation methodology

designed to facilitate the production implementation of such

mechanisms. This methodology includes the study of VM usage,

the use of prediction models, and a VM placement algorithm

that takes advantage of resource oversubscription. The choice of

relevant oversubscription ratios is also addressed, with a focus on

memory overcommitment through the study of memory overcom-

mitment mechanisms:ballooning, page sharing, and swapping.

Results from a detailed simulation process and deployment on a

production infrastructure are presented. The methodology is also

tested in simulation on two production infrastructure datasets,

with power consumption reduction as high as 29.8% and without

consolidation error. The production deployment using VMWare

vSphere and considering fault tolerance requirements reduces the

energy consumption by 6.12% without causing any performance

degradation.

Index Terms—Cloud, Consolidation, Energy, Virtualization,

Memory overcommitment

I. INTRODUCTION

Since 2010, we observe an important growth in Cloud
services. This led to an increasing number of data centers (DC)
of different topologies: from small company DCs to hyperscale
cloud DCs. Despite the rise of cloud users and infrastructures,

different optimizations allowed to limit the total DCs energy
demand between 220 and 320TWh in 2021. This represents
an increase of 10-60% between 2015 and 2021 [28, 37]. In
2021, DCs consumed around 1% of the total energy demand,
but numbers vary and studies estimate this number to be as
high as 4% [18].

This limit to the growth of DCs electricity consumption
can be attributed to improvements at the hardware level,
with more efficient cooling systems or computing nodes.
Koomey’s Law [33] depicts well these optimisations in CPUs,
stating that the number of computations per joule of energy
dissipated doubled every 1.5 years. Moreover, the last two
decades have been marked by the emergence of the cloud,
with the democratization of virtualization [11]. Virtualization
with a good level of isolation helped containing the growing
use of energy by allowing multiple Operating Systems (OS),
applications, or workloads to run on a single Physical Machine
(PM). It increases resource utilisation on a single server, allows
a better resource management and energy efficiency when
combined with techniques such as Dynamic Voltage Frequency
Scaling (DVFS) [22].

However, the increased utilization of Information and Com-
munication Technologies (ICT) was facilitated by the op-
timizations made in recent years. The perception of users
having unlimited access to resources led to a surge in their
usage and resulted in a rebound effect and a backlash. Users
often do not consider their resource consumption, leading to
infrastructures being oversized to meet peak demands, even
though the demand is significantly lower for the majority of
the time. This results in a waste of resources that translates
into an overconsumption of energy.

To tackle this issue of resource wastage, efforts have been
made to find new techniques such as elastic management [1] to



help meeting the resource requirements, or consolidation [21]
to improve energy efficiency. On one side, elasticity helps
to reduce resource wastage by allocating them only when
needed. On the other side, consolidation ensures that resources
are allocated efficiently. This subject has been extensively
studied by the community [17], with approaches varying in
complexity. Despite their benefits, these two approaches can
be limited because of technical and economic barriers in their
implementation, the performance degradation that they can
produce, or the complexity to maintain them.

The aim of this work is to revisit consolidation, using simple
algorithms but activating other technical levers to extend the
potential energy gains. By accurately evaluating and predicting
the usage of VMs [12], a barrier to the implementation of elas-
ticity and consolidation approaches can be removed. Proper
evaluation of the usage of the machines or their applications
makes it possible to condition the implementation of these
techniques only to periods when the Virtual Machines (VMs)
are idle. By ensuring that the application is available in a
degraded mode during periods of inactivity, while maintaining
the ability to react quickly to sudden or unforeseen usage, we
can guarantee service continuity and performance levels that
meet Service-Level Agreement (SLA) requirements.

In this paper, we examine a consolidation approach that
considers the historical usage of a VM to assess the utilization
of the application it hosts. Unused VMs are consolidated
with oversubscription in order to decrease the number of
physical servers needed for placement, while used VMs are
consolidated onto servers to meet SLAs. In the long term, it
will create a double benefit with i) the ability to reduce the
DC energy consumption and ii) modify the capacity planning.
With an efficient consolidation algorithm, the absolute number
of PMs can be reduced and therefore the DC carbon footprint
both on Scope 2 (energy consumption) and Scope 3 (upstream,
purchases). It limits on one side the GHG emissions and on
the other the need for rare earth in order to manufacture the
servers [19].

The main contributions of our work are:
• a complete consolidation methodology containing VMs

usage evaluation, the use of prediction models and the
study of overcommitment mechanisms such as balloon-
ing, swapping and transparent page sharing;

• a VM placement algorithm using consistent CPU and
memory oversubscription ratios to reduce the energy
consumption of a virtualization infrastructure;

• a detailed simulation process and a production deploy-
ment of the consolidation methodology (ORCA) on a
Closed-Source hypervisor: VMWare vSphere;

Section II presents the state of the art and related works.
Section III reminds key challenges of implementing consolida-
tion on a virtualization infrastructure. Section IV depicts the
proposed methodology and how it addresses the challenges.
Simulation and experimental results that validate the relevance
of the approach are presented in Section V. Finally, we add
further discussions on this work in Section VI and conclude
in Section VII.

II. RELATED WORK

A. Virtualization and resource management

Through the possibility to run multiple workloads and OS
on a single server, virtualization has played a crucial role
during the last 20 years to improve the energy efficiency of
cloud data centers [31, 32]. Though it appears that no hypervi-
sor outperforms the others in terms of energy efficiency [30],
several methods were used to in different hypervisors to im-
prove this energy efficiency [3, 43]. Among these techniques,
elasticity [23, 29], dynamic resource management [14, 36] and
consolidation [2, 5, 6, 8, 27, 38] are essential. In [43], Wald-
spurger introduces different mechanisms to manage memory
in VMWare ESXi, including content-based page sharing and
memory ballooning, later implemented in other hypervisors.
Memory ballooning is a technique used by a host under
memory pressure to retrieve memory. It inflates a balloon
of inactive memory on one or multiple VMs to be able to
allocate it to other VMs. Liu et al. [36] compare it with
memory hotplug and highlight the complementarity of the two
techniques to effectively manage memory. Chashoo et al. [9]
study the different techniques to reduce the cost of live VM
migration. The paper shows that the use of ballooning allows
quicker migration as the amount of memory allocated by the
host is reduced when using ballooning. Additionally, Hines
et Gopalan [25] show that the use of ballooning reduces the
number of page faults when migrating a VM. In our work,
we use ballooning to increase the number of VMs on a single
PM, and we will leverage these performance gains during VM
migration.

Further than memory, overcommitment or oversubscription
can be performed on other resources. Jacquet et al. introduce
SweetspotVM, a CPU oversubscription approach that consid-
ers per-vCPU performance rather than the conventional per-
VM granularity. Their approach demonstrate that oversubscrip-
tion can perform as well as a non-oversubscribed environment
at the scale of an Infrastructure as a Service (IaaS) platform.
CPU oversubscription is a feature that is now handled by many
hypervisors [40, 42] and even recommended by constructors
to densify infrastructures.

B. Consolidation and prediction

VM consolidation consists in optimizing the allocation of
VMs on physical servers. One of its goals is to reduce
the number of unused or idle PMs in an infrastructure by
consolidating VMs onto fewer physical hosts. Many research
has been conducted about consolidation [15, 20] as it was and
still is a key challenge to reduce DCs energy consumption [13].
Most research about consolidation formalizes the problem in 3
parts: (1) detection of over or under-loaded hosts, (2) selection
of VMs to migrate, (3) selection of destination host. Most of
the work seeks to optimize one or multiple steps of the process.

The first step of the consolidation process consists in
evaluating PM load status based on their resource usage and
selecting PMs for which VM migration is needed. Migrating
VMs from overloaded PMs will improve quality of service



Fig. 1: ORCA methodology characteristics in Helali et al. taxonomy [21]

and limit SLA violations. On the other hand, when a PM
is underloaded, all the VMs it hosts should be migrated to
shut it down, thus enabling energy savings. This consolidation
process step can be conducted using both static and dynamic
thresholds. Beloglazov et al. [7] introduce a Markov chain
model for the host overload detection problem in the context
of VM consolidation while considering Quality of Service
constraints. Minarolli et al. [39] uses long-term predictions
of resource demand from VMs and performs time series
forecasting using machine learning. The authors consider
prediction uncertainty and VM live migration overhead which
results in enhanced stability, decision-making, and overall
performance. Some VMs on underloaded or overloaded hosts
will then be selected for migration. Selecting the appropriate
VMs to migrate is an important step to reduce the load on
PMs, minimizing SLA violations risks and optimizing quality
of service. Zeng et al. [46] discuss the importance of VM
selection and VM placement in the consolidation problem.

The authors propose a multiple resource Influence Coefficient
(ICVMS) to identify VMs causing host overload in this VM
selection process, resulting in the migration of VMs with the
greatest impact. Chen et al. [10] select VMs to migrate using
a combination of historical and future trends, called combined
trend, of past used resources and future requested resources
by PMs or VMs. VMs with the highest combined trend are
selected to be migrated until overloaded hosts are stabilized.
The last step of the consolidation process is VM placement,
where the selection of destination PMs for the previously
selected VMs occurs. This step of the consolidation is a non-
deterministic polynomial time-hard (NP-hard) problem usually
defined as a bin packing problem. Many different heuristics
have been studied to handle this problem, such as classical
heuristics like First-Fit decreasing (FFD), Best-Fit decreasing
(BFD) or Worst-Fit decreasing (WFD) [17, 44]. Other ap-
proaches called meta-heuristics are also studied to solve the
consolidation problem. They include genetic algorithms and



evolutionary approaches like Swarm intelligence algorithms
such as Particle Swarm Optimization (PSO) [41] or Ant
Colony Optimization (ACO) [16, 26], usually used in multi-
objective consolidation approaches. Linear Programming (LP),
Constraint Programming (CP), and the use of machine learning
and deep learning are also possibilities to solve the consolida-
tion problem. While some papers focus only on specific steps
of the consolidation problem, others tackle multiple steps and
include other dimensions and parameters in their studies, such
as the consolidation level, the considered resources, or the
evaluated parameters and methods. Considering the Helali et
al. taxonomy [21], we identified the different characteristics
of our approach in Fig. 1.

Beloglazov et al. [6] study both VM selection and placement
with several VM selection approaches: Minimization of Mi-
grations (MM), Highest Potential Growth (HPG) or Random
Choice (RC) and a modification of Best Fit Decreasing (BFD)
for VM placement. Bharanidharan et Jayalakshmi [8] propose
a Learning Automata that uses the environment and previous
actions to solve the VM placement problem. Using CloudSim
and data from the CoMon project, they demonstrate that their
approach provides better results in terms of number of mi-
grations, number of SLA violations, and energy performance
than [6]. Mashhadi Moghaddam et al. [38] highlights the
relevance of using prediction for consolidation by training
individual Machine Learning (ML) models to enhance the VM
placement algorithms. These works use simulation and generic
data to evaluate their results, while our work is based on a
private cloud DC with heterogeneous applications and VMs.
Hsieh et al. [27] forecast CPU utilization using a Markov
model to minimize unnecessary VM migrations. Many papers
focus on CPU utilization when tackling a consolidation prob-
lem as it has the greatest impact on PM power consumption.
Our work uses both CPU utilization and network bandwidth to
evaluate the idleness of a VM, as well as memory management
mechanisms to increase the number of VMs per PM and
migration performances. Hieu et al. [24] use a multi-usage
prediction model based on CPU, memory and disk usage
to improve consolidation. We do not consider disk usage
in our work as the storage is provided on external storage
arrays. Rather, we use network usage, considering that most
applications or services rely on a network connection. Wood
et al. [45] rely on a similar infrastructure with external storage
and propose a black-box consolidation method based on CPU,
memory and network bandwidth. However, they do not address
the issue of energy consumption. Bacou et al. [2] propose
Drowsy-DC : a management system that predicts an idleness
probability for each VM of the infrastructure and places it on
PMs accordingly. The idleness probability is calculated with
CPU usage and they implement their solution on OpenStack
modifying the scheduler. We propose an evaluation of the VM
usage based on both CPU usage and network bandwidth and
our solution acts as an external plugin because we cannot
modify the VMWare scheduler source code.

III. MAIN CHALLENGES

This section aims to underline multiple challenges faced by
data center operators to implement consolidation methodolo-
gies. Parallels are drawn to bring these challenges into the
context of our study.

A. Infrastructures usage and consolidation potential

Consolidation may have one or multiple objectives when
applied on a virtualization infrastructure. In our context, which
aims to reduce the infrastructures energy consumption, the
initial infrastructure resource usage plays a major role in
the result potential. An initially low-used infrastructure will
eventually result in higher power consumption reduction, as
(1) the power consumption of PMs is not proportional to their
load usage [4] and (2) there is more room for improvement if
the consolidation aims to use PMs at a certain load.

The resource allocation rate on physical machines is also
linked to the consolidation potential, as it influences the
load usage on these same PMs. Resources oversubscription
(overcommitment), both in terms of CPU and memory, can
increase the overall infrastructure usage, and therefore save
more energy when applying the consolidation. However, Cloud
Service Providers are not keen to use resources oversubscrip-
tion as it has a direct impact on performances and can result
in QoS degradation. Finding accurate oversubscription ratios
is then a key challenge to ensure a good quality of service
while maximizing energy savings.

Individual PM load usage as well as clusters overall usage
are therefore dependent on the resources allocation ratio
used by data centers operators. But VM individual usage
also impacts PMs or clusters load usage. A PM with an
aggressive oversubscription ratio hosting solely idle VMs will
theoretically itself be underused in terms of load, and therefore
will be considered as not energy efficient. Assessing VM usage
on infrastructure appears then as another challenge to quantify
the consolidation potential on an infrastructure.

Evaluating all these indicators requires an automated, in-
dustrial data collection process that can be complex to set
up. As the quality of the analysis is highly dependent on
the granularity of the data collection and its retention time,
implementing this may require the acquisition of specific hard-
ware and software for the collection and storage of these large
volumes of information. This represents extra cost for cloud
operators and technical knowledge to set up and maintain such
systems.

B. Proactive consolidation and prediction models

As VM consolidation is intended to improve the use made
of computing resources, it can be used to balance the load
between multiple PMs in a single virtualization cluster. This
can be done by following the key steps generally used in
consolidation approaches: (1) detection of over/under-used
PMs, (2) selection of VMs to migrate and (3) selection of
destination PMs. These consolidation steps can be applied
based on measured values at time t to improve short-term PM



load usage. Conducting this kind of consolidation approach
can be defined as reactive consolidation.

However, applying consolidation with oversubscription in-
troduces another challenge. If the usage rate of VMs in an
infrastructure varies over time, the use of overcommitment can
actually lead to performance degradation on oversubscribed
VMs. To mitigate these QoS degradations and potential SLA
violations that may result in financial penalties, it appears
essential to limit the use of overcommitment to underused or
idle VMs and to anticipate these periods of inactivity. The use
of prediction models is a good response to this challenge, but
it also brings its own difficulties.

The use of prediction models require gathering metrics
regarding VM usage over a certain period of time. This can
represent extra costs in terms of storage for cloud providers
depending on the amount of data to collect. Moreover, the
training of prediction models may require data pre-processing,
the study of different heuristics for the training as well as
hyper-parameter tuning to enhance prediction models accu-
racy, as well as specific hardware for model training. Using
prediction models therefore brings extra complexity to the
consolidation approach but it also appears as a prerequisite
in our context.

C. Consolidation algorithm and parameters

The consolidation problem, and especially the VM place-
ment step, is a NP-complex problem which can therefore
be handled with constraint and linear programming solvers.
However, the use of such solvers, especially in the case of
multiple objective bin packing, is complex and there is no
guarantee of finding an optimal solution.

Our context reinforces the difficulties of using such a solver,
as various parameters impact or can be impacted by them.
The consolidation period, i.e. the frequency at which VM
placement is refreshed and VMs are migrated, is crucial here.
If too short, the solver may not be able to compile an optimal
solution in the given time. This consolidation period also
impacts the training of our prediction models, as they may
require more data points considering that the sampling rate of
our collected metrics will be shorter.

As mentioned, proper oversubscription ratios are also cru-
cial to maximize the energy savings while maintaining optimal
performance on the VMs. Combined with VM usage analysis,
a combination of oversubscription ratio per VM usage can be
studied to achieve the same goal.

D. Production deployment strategies

Implementing a production deployment of a consolidation
algorithm or methodology is also challenging for DC opera-
tors. First, the multiple parameters discussed above must be
carefully studied. Depending on the size, architecture, and
criticality of the infrastructure, it is possible to design a system
where a limited scope of VMs is migrated to reduce energy
consumption. For example, one can choose to only migrate
VMs that are considered as idle to ensure a good quality of

service on the most used VMs. This will, however, limit the
power consumption reduction obtained through consolidation.

Interfacing the algorithm with the infrastructure hypervisor
can also be challenging. The developed consolidation algo-
rithm may act as the orchestrator and be responsible for
VM migration. The hypervisor orchestrator must therefore be
disabled, but the consolidation solver will have to minimize the
number of migrations to avoid additional power consumption
due to VM migrations. VM migration can also be handled by
the hypervisor orchestrator itself, using embedded features of
the hypervisor for the consolidation implementation.

Fault tolerance must also be included or anticipated when
deploying consolidation in production. Production infrastruc-
tures must be able to handle one or multiple PM crashes
without service interruption, meaning that resources must be
available to host VMs when a crash occurs on a PM. The
fault tolerance rate is chosen by the infrastructure operator
and depends on the cluster size and the SLAs. A high fault-
tolerance rate will guarantee better service availability, but will
also reduce the reduction in consumption achieved through
consolidation.

All these implementation choices, combined with other dis-
cussed parameters, can represent extra costs for DC operators,
both in terms of software and hardware.

IV. METHODOLOGY

This section presents the proposed consolidation method-
ology with a modeling of a virtualization cluster and the
presentation of the targeted infrastructure. It also presents
responses to the key consolidation challenges identified in
Section III. The consolidation algorithm is presented as well
as its implementation in simulation and experiment.

A. Design of the system
In the current context, as for in many virtualization in-

frastructures, resources can be divided into various clusters.
This allows to meet the challenges of segmentation, license
management or resource management.

TABLE I enables us to model a system corresponding to an
individual virtualization cluster. It contains several PMs and
VMs, with their own configurations. The system also includes
variables to help solving the consolidation problem: memory
related values as well as 2 matrices containing measured or
predicted usage of the VMs of the cluster.

Many equations can model the memory consumption of a
VM or PM, and its potential impact on an application per-
formances. We will focus here on memory overcommitment,
both at PM and cluster scale:

O(t) =

P|V |
j=0 v

m

j
(t)

P|P |
i=0 p

m

i

, Opi
(t) =

PMpi

j=0 v
m

j
(t)

pm
i

, with v
m

0 = 0

(1)
Memory overcommitment is here defined as the ratio be-

tween the configured memory on VMs within a cluster/host
and the available physical memory on that cluster/host. By def-
inition, memory is overcommitted when the combined working



Fig. 2: Example of virtualization cluster before and after the
execution of ORCAS

TABLE I: Variables - Elements of a cluster

Variable Description

P Set of PMs
V Set of VMs
p
V
i Number of VMs on PM pi

p
c
i Number of cores on PM pi

p
m
i Amount of physical RAM on PM pi

v
c
j Number of vCPUs on VM vj

v
m
j Configured RAM on VM vj

O(t) Memory overcommitment on the system
Opi(t) Memory overcommitment on PM pi

Ovj (t) Memory overcommitment of VM vj

U VMs usage matrix
F Forecasting matrix

memory footprint of all VMs exceeds the size of the host mem-
ory, i.e. the ratio is greater than 1. The term overcommitment
is used here regardless it is less than or greater than 1 for
simplicity.

Our main objective is to increase the value of O(t), as it
correlates with a cluster’s energy consumption. The higher the
value, the fewer PMs there will be for a given number of VMs.
The fewer PMs in a cluster, the lower its energy consumption.
Increasing O(t) can be done by decreasing the number of
PMs (|P |) while keeping the number of VMs (|V |) constant,
or conversely by increasing |V | with constant |P |.

However, these solutions do not consider side effects.
Increasing O(t) through these mechanisms will cause per-
formance degradation across the entire cluster. Therefore,
the algorithm will split P into multiple PM subsets with a
specific overcommitment value. Each VM will be allocated
an overcommitment rate Ovj

(t) according to its usage, given
by Algorithm 1 for each sample t. Given an initial overcom-
mitment Os, VM and PM groups will be constructed such that,
on an iteration t, O(t) � Os.

Fig. 2 shows an example of a virtualization cluster with
PMs and VMs on which ORCA is applied. VMs considered

as used (blue) are migrated together onto 2 PMs, and idle VMs
(orange) are consolidated with memory overcommitment onto
a single PM. This enables reducing the number of used PMs
to 3, increasing the value of O(t) in this cluster.

B. Infrastructure

There are today many data centers types, with their own
characteristics that can help classify them. Their size, location
and the services they offer can vary a lot, and the imple-
mentation of a consolidation methodology can be impacted
by these factors. For example, a data center offering services
based on virtualization will logically use a hypervisor, which
will inevitably influence the implementation of consolidation
algorithms.

This study is conducted within a data center called
SynAApS, operated by Ciril GROUP. The infrastructure con-
tains multiple virtualization clusters for both internal and
customer needs. The simulations and experiments are realized
on the internal virtualization cluster composed of 600 VMs
with 400 daily active VMs and 7 heterogeneous PMs. This
virtualization cluster runs on the VMWare vSphere hypervisor.
VM storage is handled by a centralized storage array, which
has an impact on consolidation: when VMs are migrated, only
the RAM is transferred from one PM to another. This drasti-
cally minimizes migration times to the order of milliseconds
or seconds.

Metrics to evaluate the usage and load of the infrastructure
VMs and PMs such as CPU, memory and network usage
are collected. All the metrics are gathered using a Telegraf1

agent using the vSphere input plugin. PM and VM usage
related metrics are gathered every 30 seconds and stored in
a VictoriaMetrics2 database with a retention period of 1 year.
These collection parameters enable a good usage analysis, as
specified in Section III-A.

C. VM Usage and consolidation potential

Our methodology will rely on memory overcommitment to
enhance power consumption reduction. However, this cannot
be done arbitrarily on all the VMs of the infrastructure as it
may cause performance degradation. Therefore, we need to
evaluate VM usage to identify under-utilized or idle VMs on
which the use of memory overcommitment is not considered
an issue, as explained in Section III-A.

We can for example evaluate the use or not of a standard
web application VM with different conditions:

1) The application must not be consulted at a given time.
2) There must be no current queries to the database.
3) There must be no background tasks running on the VM

(cronjobs, backups, etc).
These criteria can be monitored by observing i) the commu-

nications at the network interfaces of the machine, and ii) the
CPU utilization rate of the VM. Application metrics and access
to the VM OS are not mandatory a priori, as these metrics

1https://www.influxdata.com/time-series-platform/telegraf/
2https://victoriametrics.com/

https://www.influxdata.com/time-series-platform/telegraf/
https://victoriametrics.com/


are provided by the hypervisor. Algorithm 1 is proposed to
evaluate whether or not a VM is used.

Algorithm 1 VM Usage evaluation algorithm

function IS_USED(vm, t, cpuRate = 1%, netRate = 0)
if cpu_usage(vm, t)  cpuRate and

net_usage(vm, t) < netRate then

return 0
else

return 1
end if

end function

With this algorithm, the state of an idle VM will return 0
and a used VM will return 1. From this, a matrix containing
the evaluation of our VM usage with a sampling interval of
time t can be constructed. This allows to calculate the mean
usage of each VM over a certain period T and the mean usage
of all VMs for a given sample t. It is then possible to evaluate
the mean usage of one or multiple VMs over a given period of
time. The considered thresholds make the evaluation algorithm
strict but applicable to many other servers. Considering a 3-
tier web application architecture, all the elements usage can be
evaluated using Algorithm 1. This algorithm can be extended
to other CPU-intensive applications like HPC or network-
intensive like video conferences. It does not require prior
knowledge of the application hosted on the VM a priori.

D. Memory overcommitment mechanisms and allocation ra-
tios

As the methodology uses memory overcommitment, se-
lecting proper allocation ratios is crucial to find the correct
balance between energy savings and quality of service on
the VMs. This is a key challenge when it comes to enhance
infrastructure usage as explained in Section III-A. This study
does not focus on CPU overcommitment as it is already used
in all the SynAApS clusters. TABLE II gives the configuration
limits on VMWare vSphere3. This sets a theoretical maximum
value of 32 vCPUs per core.

TABLE II: Limits - VMWare vSphere

Limitation Value

Number of VMs 1024
Number of vCPUs 4096
Number of vCPUS per core 32
Amount of memory 24 TB

On the memory side, multiple techniques are used to handle
memory overcommitment. When a PM does not have enough
memory to respond to the demand of one or more VMs, it
can retrieve memory using different mechanisms, including
ballooning, swapping and Transparent Page Sharing (TPS).

Ballooninghappens when a PM has a RAM shortage and it asks
VMs, through a specific driver named the memory

3https://configmax.broadcom.com/guest?vmwareproduct=vSphere&
release=vSphere%207.0&categories=2-0

Fig. 3: Measured ballooned, swapped, shared memory and
CPU usage on the PM

controller, to free inactive or unused memory to
provide it to other VMs.

Swappingoccurs in the same context, but this time the PM will
write the memory pages allocated to the VMs on an
external storage (i.e. its physical disks or a storage
controller).

TPS allows the host to scan the memory of the running
VMs and identify identical memory pages. For each
similar memory page on a specific VM, TPS creates
a single copy and shares it with the others. As it may
be a security concern, inter-VM TPS is disabled by
default and this mechanism occurs within individual
VMs.

Both ballooning and swapping enable dealing with erratic
memory shortage, but they may create performance degrada-
tion on the VMs. TPS runs continuously on the hypervisor
and gradually releases memory on PMs.

To identify a consistent memory oversubscription ratio, we
select a set of idle VMs and manually migrate duplicates of
these VMs onto a single PM. We collect CPU and memory
usage metrics of the physical machine. TABLE III shows the
gathered metrics of the experiment.

TABLE III: RAM and CPUs observed metrics on a PM after
VMs manual consolidation

Physical RAM

PM (GB)

RAM Usage

PM (GB)

Sum of VMs

configured

RAM (GB)

Sum of VMs

configured

CPUs

Total 384 322.79 1168 382

After the migration of 50 VMs to the PM, the assignable
number of vCPU per PM core limit is reached. This physical
constraint enables us to evaluate an upper bound for memory
overcommitment Omax, where Omax = 1168

384 = 3.04, given
the VMs configuration. The high vCPU per PM core ratio is
not considered an issue here, given that the VMs consume
less than 1% of their CPU capacity according to the usage
evaluation algorithm.

Fig. 3 shows the amount of RAM retrieved by the bal-
looning, swapping and TPS mechanisms, which are a direct
response to the memory shortage observed on the server. The

https://configmax.broadcom.com/guest?vmwareproduct=vSphere&release=vSphere%207.0&categories=2-0
https://configmax.broadcom.com/guest?vmwareproduct=vSphere&release=vSphere%207.0&categories=2-0


mean CPU usage is also displayed, and the figure shows that
the high memory overcommitment does not lead to CPU over-
consumption. The CPU consumption of the PM even stabilizes
around 15% with solely idle VMs.

E. Prediction Models

To respond to the challenge highlighted in Section III-B,
our methodology uses prediction models to conduct our ex-
perimentation and deploy it in production on the
SynAApS clusters.

When forecasting a timeseries, different approaches are con-
sidered in the literature: linear regression, ARIMA, SARIMA
or deep learning methods such as Long Short-Term Memory
(LSTM) Neural Networks (NN) [34, 47]. Logistic regression
can also be used to forecast binary timeseries. To assess the
simplicity of forecasting a timeseries, an Augmented Dickey-
Fuller (ADF) test can be conducted to determine if it is
stationary. A stationary timeseries is easier to forecast, as
its statistical metrics (mean, variance or covariance) do not
change over time. Linear regression is often used to forecast
stationary timeseries, whereas LSTM models provide better
results with non-stationary timeseries. The heterogeneity of
timeseries and VM usage also plays a role in the methodology
used: model training and update times can be a key parameter.
The amount of resources required to train and store models can
be identified as a bottleneck for Cloud operators as identified in
Section III-B. A compromise must therefore be found between
performance, resource usage, training and inference times.

An ADF test is performed on the VM usage timeseries
to assess their stationary condition. Among all the evaluated
timeseries, 94.7 % are stationary. Since every VM has different
usage data over a year, one model will be trained per VM for
better results. In order to reduce training time and the size
of prediction models, and given the large number of VMs for
which the time series is stationary, machine learning appears
as the best method. The prediction models accuracy will also
be improved using gradient-boosting decision trees with the
XGBoost library4. XGBoost enables the use similar objective
functions as regular regression, while providing the ability to
take advantage of specific features of the timeseries which may
require prior knowledge.

The predicted timeseries will ultimately contain the mean
usage of each VM per 15-minute period over one week. This
15-minute sampling rate was chosen to both preserve the
variation in VM usage and to limit the consolidation algorithm
execution frequency. The timeseries values are by definition
always positive and smaller than 1. The evaluation metric used
to assess the performance of our models is the Mean Absolute
Error (MAE), given by Equation (2), where yi is the prediction
and xi is the true value.

MAE =

P
n

i=1 |yi � xi|
n

=

P
n

i=1 |ei|
n

(2)

4https://xgboost.readthedocs.io/en/stable

TABLE IV: Features and average MAE of the models during
training

Features MAE

1 Day of year, hour 0.160

2 Features 1
+ Day of week, month, year, weekend 0.062

3
Features 2

+ Previous 12 hours
+ Value 24 hours before

0.032

Multiple model trainings were carried out to evaluate the
relevance of using varying features, as well as their impact
on the models performance. Different feature combinations
were evaluated, as depicted in TABLE IV. The sole use of
the day of the year and the timestamp hour results in a MAE
of 0.16. This value is reduced when adding the corresponding
day of the week, month of the year, year and an indication
of whether the timestamp falls on a weekend. One can further
reduce the MAE to 0.032, i.e. a 3% average difference over all
the prediction by using lag features, which are previous values
in the timeseries. Using lag features is however only possible
when training the models, as it makes inference recursive and
therefore more complex. Therefore, temporal features are used
and offer an average prediction error of 6.2%.

To obtain consistent consolidation results, the prediction
models do not need to forecast the exact usage of the VM over
the next 15 minutes but rather a value that places the VM in
the correct consolidation group. To evaluate the performance
of the prediction models, we compare the result of the group
allocation between the measured usage for week n and the
predicted values for the same week n, using the measured data
up to n � 1. It is also possible to individually measure VM
allocations within their group. Fig. 4 shows the distribution
of the average allocation error rate per VM over one week.
For 294 VMs, the allocation error rate is between 0 and 10%,
meaning they are placed in the correct consolidation group
more than 90% of the time. The overall mean error is 12.9%
over one week.

From this, it is possible to create a filter for which VMs
whose average allocation error exceeds a threshold are not
considered in the consolidation. As mentioned above, no VM
is literally removed from the consolidation: unconsidered VMs
are always consolidated in the minimal memory overcommit-
ment group. This will ultimately minimize the error rate of the
consolidation, as well as the potential performance degradation
on one side and the energy savings on the other side. The
relevance of the threshold use can be verified by a simple
calculation. The solving algorithm provided in Algorithm 2
being deterministic, the resulting consolidation for a set of
identical consolidation groups will always be similar. Using
the threshold, it is possible to calculate the divergence between
consolidation groups at a given value. For a threshold set
to 0.1, and using the number of VMs given by Fig. 4, the
maximum allocation error rate will be set to 6.8%:

https://xgboost.readthedocs.io/en/stable


Fig. 4: Histogram of mean false allocation

(294⇥ 0.1) + (136⇥ 0)

430
= 0.068 (3)

With a threshold set to 0, there will be no consolidation
difference between the U and F matrices, as the consolidation
groups will always be similar. This value of threshold enables
us to calculate the minimal average power consumption re-
duction, also called the reduction baseline in the rest of the
article. This reduction baseline is used to quantify the benefits
in terms of consumption that can be achieved solely through
the use of consolidation with a new base memory allocation
rate, without the use of overcommitment.

F. Consolidation algorithm

To solve the consolidation problem from an algorithmic
perspective, two extra variables must be defined: VMGroups
and PMGroups which respectively contain the VM groups and
the associated PM groups. A single VM group is defined as
follows:

< vms, S
m

v
(t), Sc

v
(t), Ov >

with vms the subset of VMs in the group, S
m
v
(t) the sum

of the configured RAM of vms, S
c
v
(t) the sum of the

configured vCPUs of vms at time t, and Ov the associated
overcommitment value. A PM group is defined as <pms,
S
m
p
(t), Sc

p
(t), Op>, where pms is the PM subset of the group,

S
m
p
(t) the amount of memory on all the PMs of the group,

S
c
p
(t) the amount of cores on all PMs and Op the associated

overcommitment value. VM and PM groups are associated
when Ov = Op.

Algorithm 2 presents ORCAS , the proposed solver for the
consolidation placement problem. It first sets the PMGroups
as an empty dictionary, which will ultimately contain the
consolidated PM groups with their sets of pms. The VM
groups as well as the set of PMs P according to a specific
policy. VM groups can be sorted in multiple ways such as
by number of VMs (|vms|), total size of RAM (Sm

v
(t)) or

overcommitment value (Ov). PMs can also be sorted with

Algorithm 2 Solving Algorithm - ORCAS (Part.1)
1: Input: VMGroups, P, groupMigration
2: Output: groupedPMs
3: procedure ORCAS (VMGroups, P, groupMigration)
4: Initialize PMGroups as an empty dictionary
5: Sort VMGroups according to the proper policy
6: Sort P according to the proper policy
7: for each groupname, VMGroup in VMGroups do

8: Get availablePMs from P
9: if VMGroup[’vms’] is empty then

10: for each pm in availablePMs do

11: if pm tag is groupname then

12: Untag pm

13: end if

14: end for

15: groupedPMs[’pms’]  []
16: Skip to next iteration
17: end if

18: if vmBuffer is not empty then

19: VMGroup[’vms’]  vmBuffer[’vms]
20: end if

21: Get Sm

v
(t) and S

c

v
(t)

22: NumRam  CALCPMRAM(Sm

v
(t), Ov , availablePMs)

23: NumCpu  CALCPMCPU(Sc

v
(t), availablePMs)

24: numPms max(NumRam, NumCpu)
25: if numPms == 0 then

26: vmBuffer  VMGroup
27: for each pm in availablePMs do

28: if pm tag is groupname then

29: Untag pm

30: end if

31: end for

32: groupedPMs[’pms’]  []
33: Skip to next iteration
34: end if

35: groupedPMs[’pms’]  availablePMs[:numPms]
36: for each pm in availablePMs do

37: if pm 2 availablePMs[:numPms] then

38: Tag pm with groupname

39: else

40: Untag pm

41: end if

42: end for

43: end for

44: if groupMigration is True then

45: MIGRATEGROUPS(VMGroups, PMGroups)
46: end if

47: end procedure

different possibilities like the physical amount of RAM (pm
i

)
or the number of cores (pc

i
).

For both groups, items can be sorted in either increasing or
decreasing order. Different sorting of VM groups or PMs can
result in different consolidation, with varying consumption re-
duction or error rate. The algorithm then loops through all the
considered consolidation group and processes different steps.
First, the availablePMs is retrieved from the set P (line 6)
: this corresponds to PMs already used for this consolidation
group during the previous iteration (tagged with the group
name) or PMs not used at previous iteration. This ultimately
allows us to reduce the number of migrations provoked by the
consolidation. Through lines 7 to 14: if the consolidation group
contains no VMs, it does not need to be processed. PMs tagged
with the corresponding group name will be freed, and therefore
usable to consolidate other groups of VMs. For uniformity,
the PMGroup dictionary is populated with an empty set of
PMs. From line 16, a buffer mechanism is also implemented
to handle potential PM shortage when consolidating a group
of VMs. If the buffer is not empty, buffered VMs are added to
consolidated VMs. At line 19, the amount of CPU and RAM



is then retrieved, and the required number of PMs is calculated
with two functions. One function calculates the number of PMs
based on the memory requirements (line 20), as in Equation (4)
(on page 10). The other function calculates this number based
on CPU requirements (line 21), taking into account the limits
imposed by vSphere. Equation (5) on page 10 details this,
with X being the average number of cores per PM here. As
different PM configurations are used, the two functions iterate
through the list of servers rather than using an average value
to provide a better result. The final number of PMs selected
is the maximum value obtained from these two functions.

Lines 23 to 32: if no PM is available to host VMs of the
group, VMs are placed in the buffer, the PM set is populated
with an empty list and the next VM group is consolidated.
Otherwise, from line 33, the PM set is populated with the
predefined available PMs and the number of PMs calculated
before. For every used PM, the groupname is tagged (lines 35,
36). Remaining PMs are untagged because not used (line 38).

A final function is then conditionally run using the group-
Migration parameter (lines 42-44), causing the migration of
consolidation groups. Consolidation groups are sorted by
decreasing order of overcommitment value, i.e. quality of
service. The function loops through the first n�1 consolidation
groups. For each processed consolidation group, the measured
memory overcommitment rate is calculated and compared to
the theoretical overcommitment rate of the next consolidation
group. If it is lower than this theoretical overcommitment rate,
VMs and PMs can be migrated to the next consolidation group
without compromising the quality of service. This standardizes
the consolidation at the macro level and can even enhance the
quality of service.

|pms| =
⇠
S

m

v
(t)

Ov⇥Y

⇡
(4)

|pms| = S
c
v

X ⇥ 32
(5)

G. Energy savings and Error rate calculation
This section presents the result computation process, both

in terms of energy savings and performance degradation.
1) Energy savings: The energy savings obtained thanks

to the consolidation methodology are calculated based on
measured power consumption of the evaluated cluster PMs.
The PM power consumption is retrieved by the hypervisor
from internal sensors embedded in the power supply through
the Intelligent Platform Management Interface (IPMI) driver.

For simulations, the power consumption reduction is com-
puted by comparing the initial infrastructure power consump-
tion over the simulation period and the sum of the power
consumption of every used PM over the simulation period.
For the experimentation, the consolidated power consumption
is retrieved by measuring the power consumption of all the
PMs hosting at least one VM. During the experimentation,
the unused PMs are placed in maintenance mode and no VM
is able to migrate to theses PMs.

2) Error rate calculation:

Algorithm 3 Solving Algorithm - ORCAS (Part.2)
1: Input: amountCpus, PMS
2: Output: numPms
3: procedure CALCPMCPU(amountCpus, PMS)
4: numPms  0
5: remainingCpus  amountCpus
6: for each p in PMS do

7: if remainingCpus  0 then

8: break

9: end if

10: numPms  numPms +1
11: remainingCpus  remainingCpus �32⇥ p

c

12: end for

13: numPms  min(numPms, |PMS|)
14: end procedure

15: Input: amountRam, aimedOc, PMS
16: Output: numPms
17: procedure CALCPMRAM(amountRam, aimedOc, PMS)
18: numPms  0
19: remainingMem  amountRam

aimedOc

20: for each p in PMS do

21: if remainingMem  0 then

22: break

23: end if

24: numPms  numPms+1
25: remainingMem  remainingMem �pm

26: end for

27: numPms  min(numPms, |PMS|)
28: end procedure

29: Input: VMGroups, PMGroups
30: Output: VMGroups, PMGroups
31: procedure MIGRATEGROUPS(VMGroups, PMGroups)
32: Sort consolidation groups by decreasing order of overcommitment
33: for each groupname, VMGroup in VMGroups[:-1] do

34: Get corresponding PMGroup
35: Get consolidation index of VMGroup i

36: Calculate O
i =

S
m
v

(t)

Sm
p

(t)

37: Get Oi+1
v

38: if O
i  O

i+1
v

then

39: Migrate vms to VMGroup i + 1
40: Migrate pms to PMGroup i + 1
41: end if

42: end for

43: end procedure

a) Macro scale: Cluster.: Despite the black-box nature
of the proposed methodology, the latter must still take into
account undesirable performance degradation on VMs. When
uncontrolled, these degradations in QoS can lead to SLAs
violations and penalties for cloud service providers.

It is assumed that the initial overcommitment rate Os

measured in a cluster does not lead to any QoS degradation.
However, the proposed methodology expressly aims to build
consolidation groups for which the overcommitment rate is
higher than Os, which by definition means undersized con-
solidation groups. It is therefore necessary here to separate
voluntary performance degradation (applied to barely used or
unused VMs) from undesirable, or uncontrolled, performance
degradation. The methodology, based on VM usage evaluation
and the creation of consolidation groups adapted to different
VM usage rates, does not cause undesirable performance
degradation. In the following, we therefore only refer to
performance degradation when these are not anticipated.

To assess performance degradation, and potential errors, a
comparison must be made between the consolidation applied
to measured and predicted data. Thus, a consolidation error



occurs if one these two conditions is verified at an iteration t:
• The number of PMs of a group is lower for predicted

data than for measured data.
• The total amount of RAM of the PMs of a group is lower

for predicted data than for measured data.
As specified above, a consolidation error can result in

performance degradation at VMs scale. The overcommitment
value of a specific group must however be considered when
calculating these performance degradation. Considering two
consolidation groups, G1 and G2, poor predictive model
performance can impact the number of VMs in each group.
If 70% of VMs considered in group G2 by the measured
data are positioned in group G1 with the predicted data, the
consolidation is likely to result in an undersizing of group
G2. However, if the overcommitment rate of G1 is lower
than that of G2, these same VMs will be assigned a lower
overcommitment rate, and will therefore benefit from better
performance. This issue can be addressed by weighting each
group by its overcommitment rate, and calculating an overall
consolidation score Q(t) and a similar score based on memory
Qm(t).

Q(t) =

|PMGroups|X

j=0

|pms|⇥Op (6)

Qm(t) =

|PMGroups|X

j=0

|Sm

p
|⇥Oj (7)

With this approach, the methodology allows to quantify the
performance degradation considering QoS at the macro scale.
For both measured and predicted values, the consolidation
score Q(t) or memory consolidation score Qm(t) can be
calculated at each iteration. An undersizing occurs if Q(t) is
lower for predicted values than for measured values. Memory
undersizing occurs if the same condition is verified for Qm(t).

b) Micro scale: VMs.: To assess the performance degra-
dation more in depth, it is also possible to calculate it at the
scale of each VM. Considering the usage evaluation algorithm
to be robust, and by carefully allocating the overcommitment
rate of each group according to the associated usage, one
can guarantee a good QoS when applying the consolidation
on the U matrix, i.e. the measured data. At iteration t,
after consolidation on matrices U and F , comparison of the
theoretical overcommitment rate applied using the U matrix
(OU

vj
(t) for VM j) and the overcommitment rate measured

using the F matrix (OF
vj
(t)) gives an indicator of whether or

not performance has deteriorated for each VM.
The difference between O

F
vj
(t) and O

U
vj
(t) indicates an

individual performance degradation at time t when O
F
vj
(t) >

O
U
vj
(t). Considering an evenly distributed degradation across

all VMs of a consolidation group, this provides the memory
stress percentage of VM j at time t. When computing this
indicator for each VM at each iteration during the whole
simulation, it is possible to quantify the overall performance
degradation rate at micro-scale. To test different scenarios,

the methodology takes into account different tolerance rates
(5, 10, 15, 30 and 50%) when calculating the overall rate of
performance degradation. A higher tolerance rate will result
in a lower overall rate of performance degradation, as a
degradation will only be considered if the difference between
O

F
vj
(t) and O

U
vj
(t) exceeds this tolerance rate.

H. Algorithm implementation
1) Simulation process: Fig. 5 shows the process used in

simulations to assess both power consumption reduction and
potential performance degradation over periods of one week.
First the PMs and powered-on VMs are gathered to set the
scope of the simulation. Then, measured data is extracted
from the usage matrix U for the specific simulation period T ,
and the forecasting matrix F is computed with the prediction
models, using the same period T and sampling rate. 10
threshold values, introduced in Section IV-E, are then tested:
from 0.1 to 1 by 0.1 steps. Using both matrices U and F ,
the error allocation rate is calculated for each VM, and the
consolidation process can be applied using every predefined
threshold. For each threshold, we apply the consolidation for
each timestamp t of the consolidation period T . For each iter-
ation period t, VMs are placed into their consolidation group
and Algorithm 2 is executed. The average power consumption
reduction as well as the performance degradation indicators are
calculated after the execution for the last iteration. Note that
Fig. 5 describes the simulation process using the F matrix.
To compute performance degradation Q(t) or Qm(t), the
consolidation process must be computed both on F and U

matrices simultaneously.

Algorithm 4 ORCAC : ORCA Controller
1: Input: U
2: U,V  vCenter inventory
3: while True do

4: F  createForecastMatrix(U, V)
5: t  F.index[0]
6: while t != F.index[-1] do

7: VMGroups  evaluateUsage(V, F, t)
8: PMGroups  ORCAS (VMGroups, P)
9: Buffers  {VMGroups, PMGroups}

10: Apply consolidation
11: st  t
12: for i = 0; i < 4; i = i + 1 do

13: Increase st by 15 min
14: VMGroupsSim  evaluateUsage(V, F, st)
15: if i is 0 then

16: Pon  ORCAS (VMGroupsSim, P)
17: end if

18: Poff  Poff + ORCAS (VMGroupsSim, P)
19: end for

20: Shutdown PMs not in Poff

21: Power on PMs in Pon

22: Wait 15 min
23: Increase t by 15 min
24: end while

25: U = updateUsageMatrix()
26: end while

2) Experimental setup: To assess the feasibility of the
proposed solution, we need to develop and implement it on the
experimental infrastructure. To implement the consolidation
on the hypervisor, we use embedded features of VMWare
vSphere. As we cannot modify the source code of the hy-
pervisor, we propose an implementation using an additional



Fig. 5: Simulation process

layer based on PowerCli5. The consolidation relies on a feature
called VM Host Affinity rules, which enables us to map groups
of VMs to groups of PMs. Each rule takes for parameter a VM
group, a PM group and one of the following specification6 :

• Must run on hosts in group. VMs in VM Group 1 must
run on PMs in PM Group 1.

• Should run on hosts in group. VMs in VM Group 1
should, but are not required, to run on PMs in PM Group
1.

• Must not run on hosts in group. VMs in VM Group 1
must never run on PMs in PM Group 1.

• Should not run on hosts in group. VMs in VM Group 1
should not, but might, run on PM in PM Group 1.

Using this feature presents multiple advantages. First of
all, this greatly simplifies VM migration management. By
using the Distributed Resource Scheduler (DRS) rules, we
transfer the VM migration operations to hypervisor scheduler,
assuming it is already configured to limit the number of
migrations. We use the Should Run specification for our rules,
enabling us to be reactive to potential breakdowns on our PMs.
This specification level allows us to achieve high allocation
rates while remaining flexible in VM management. If a VM

5https://developer.broadcom.com/powercli
6https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/

vsphere-resource-management-7-0/using-drs-clusters-to-manage-resources/
using-affinity-rules-with-vsphere-drs/vm-host-affinity-rules-with-vsphere-drs.
html

experiences significant performance degradation visible from
the hypervisor, the scheduler can place it on another PM.

We propose a simple software implementation representing
the ORCA Controller, showed in Fig. 6. ORCAC is a Python
implementation of Algorithm 4, which takes as input the Usage
matrix. It gets the list of VMs and PMs of the cluster from
the vCenter on line 1. From this, it creates the Forecasting
matrix over one week, sampled every 15 minutes, using
the prediction models previously trained. The consolidation
process starts at the first index of matrix F . At each iteration,
the VM consolidation groups are populated using the data in
F . The solver depicted in Algorithm 2 then computes the
corresponding PM groups. Once done, the implementation
populates the text buffers with the consolidation groups (line
9). A PowerShell script using PowerCli creates or updates the
vCenter VM and Host groups, as well as the VM Host Affinity
Rules to apply the consolidation in the vCenter (line 10). After
applying the consolidation, the algorithm will simulate the next
four iterations (lines 11 to 19) to determine PMs to shutdown.
In the current context, this corresponds to PMs unused for the
following hour. The first simulated iteration also enables us to
determine which PMs to power on. ORCAC then handles PM
power on lines 20 and 21. This process is executed every 15
minutes.

A production implementation of the methodology needs
to take into account fault tolerance to ensure continuous
service on every VM. A fault tolerance rate can therefore
be implemented, which defines the number of servers that

https://developer.broadcom.com/powercli
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/using-drs-clusters-to-manage-resources/using-affinity-rules-with-vsphere-drs/vm-host-affinity-rules-with-vsphere-drs.html
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/using-drs-clusters-to-manage-resources/using-affinity-rules-with-vsphere-drs/vm-host-affinity-rules-with-vsphere-drs.html
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/using-drs-clusters-to-manage-resources/using-affinity-rules-with-vsphere-drs/vm-host-affinity-rules-with-vsphere-drs.html
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/using-drs-clusters-to-manage-resources/using-affinity-rules-with-vsphere-drs/vm-host-affinity-rules-with-vsphere-drs.html


Fig. 6: Software implementation of the ORCA Controller

can fail without compromising service continuity. As there
are heterogeneous server configurations in the experimental
infrastructure, this fault tolerance rate is set to 2N , N being
the configuration of the biggest server in the infrastructure. At
iteration t, the amount of resource available on all servers
except the biggest must be greater than or equal to 2N .
This will ultimately reduce the power consumption benefits of
consolidation, as some servers initially unused for a specific
iteration could end up being used to ensure fault tolerance.
In the implementation, PMs in this case are consolidated
into the highest QoS consolidation group. Our methodology
here addresses the multiple challenges raised in Section III-D.
Considering the size and architecture of the infrastructure, we
choose to migrate all the VMs in our consolidation strategy.
VM migration cost is not considered an issue here, as we
use centralized storage arrays. The VM migration process is
handled by the hypervisor orchestrator using VM/Host Affinity
rules. To prevent a high number of migrations, our solver keeps
track of the PMs used in the different consolidation groups at
each consolidation step. Finally, fault tolerance is considered
to ensure service continuity.

V. RESULTS

This section presents the results obtained thanks to our con-
solidation methodology. The complete methodology is tested
in simulation based on measured and predicted values in the
infrastructure, and compared to an optimal Bin Packing Solver.
We also test the methodology using the same simulation
process on another bigger cluster to evaluate its scalability. We
finally conduct a production deployment in the infrastructure
to validate the methodology and the hypotheses.

A. Simulation with real usage values
We now analyze the performance of the methodology on

the Section IV-B infrastructure using the simulation protocol
presented in Section IV-H1.

The ORCAS algorithm is applied over measured and pre-
dicted values, and compared to the initial cluster power

TABLE V: Simulation parameters for 3 groups resolution

Group name S M L

Usage rate (r) r20% 20%<r<80% r�80%
Commitment ratio 3 1.5 1

consumption over a period of one week. The consolidation is
applied at each iteration (every 15 minutes). VMs are separated
into 3 groups using the parameters in Table V. ORCA is
applied both on predicted and measured values to evaluate
the accuracy of the algorithm. As in Section IV-E, the results
are compared between measured usage for a week n and the
predicted values for the same week n.

Fig. 7: ORCAS resulting power consumption using predicted
(orange) and measured (blue) values

Fig. 7 shows the power consumption of the cluster PMs after
applying the ORCA consolidation on both predicted (orange)
and measured (blue) values. The power consumption after
consolidation is always lower than the initial power consump-
tion (red), with an average 36.1% consumption reduction on
predicted values. Nevertheless, our 2 consolidated power con-
sumption differs, meaning there are differences between the
predicted and measured values and the resulting consolidation
groups. The calculated error rate is 59.8%, focusing solely
on PM group undersizing without weighting. This behavior is
already underlined in Section IV-E. To mitigate these errors,
we can apply the previously identified filter: the threshold. By
using the 0.2 value for the threshold, we obtain the results of
Fig. 8. Using our filter, we are able to lower our error rate to
0%, as the consumption graphs for predicted and measured
values merge. We observe a drawback in terms of power
consumption reduction as it falls to 29.8%.

To validate the proposed error rate mitigation, simulations
are run using ten values of threshold over multiple weeks.
Fig. 9 shows how ORCA performs for a specific week using
multiple values of threshold in terms of power consumption
reduction and errors, using all the macro error rate ratios
presented in Section IV-G2a. Q(t) and Qm(t) correspond
respectively to the Undersizing and RAM Undersizing graphs,
which coincide on the figure. Increasing the threshold value
naturally increases the error rate of the consolidation, without
proportionally reducing the power consumption. The figure



Fig. 8: ORCAS resulting power consumption using predicted
(orange) and measured (blue) values after allocation filter

presents the base power consumption, as well as the con-
solidated consumption and a reduction baseline. The reduc-
tion baseline corresponds to the minimal power consumption
reduction obtained with the sole use of consolidation: it is
calculated by using a threshold of 0, meaning that all VMs
are consolidated into the highest QoS consolidation group.
In every scenario, the ORCA solver produces an additional
power consumption reduction, enabled by the use of memory
overcommitment. A reduction baseline of 0% here means
that the cluster is originally well-sized in terms of memory
requirements.

Fig. 9: Consolidation results using multiple thresholds values

Fig. 10: Micro scale degradation - Performance degradation
rate

Fig. 10 shows that threshold increases have an impact
on the global performance degradation, especially when it
is set to 1. As the value of the threshold increases, the

micro scale degradation rate also increases, no matter the
tolerance rate. This tolerance rate also influences the results,
mitigating degradation as it increases. The simulation produces
encouraging results here, particularly for the first two threshold
values, for which the performance degradation rate is less than
1%.

Numerous versions of the ORCA solver have been tested
and analyzed, varying the consolidation group and PM set
sorting algorithms, as well as enabling and disabling buffer
and migration mechanisms. This enabled us to validate the
methodology and extract a high-performance approach for
the experimental cluster. Once done, this specific version of
ORCAS was tested over multiple weeks, allowing us to get a
threshold value that both reduces the power consumption over
the reduction baseline and mitigates the error rates.

B. Comparison with existing algorithm
To measure the performance of ORCAS against another op-

timization algorithm, we implemented an optimal Bin Packing
Solver and compared the resulting power consumption. Our
Bin Packing Solver objective is to minimize the number of
used PMs and uses multiple constraints:

• VMs must fit onto the PMs in terms of vCPUs.
• VMs must fit onto the PMs in terms of memory.
• VMs with different overcommitment values cannot be on

a similar PM.
The results are presented in Fig. 11. Both ORCAS (orange)

and the optimal Bin Packing Solver (blue) offer lower power
consumption than the initial measured consumption of the
cluster (red). Over one week, ORCAS provides better results
than the Bin Packing Solver.

Fig. 11: ORCAS (orange) and Bin Packing (Green) power
consumption after consolidation

During simulations, the average execution time of both
solvers is measured. ORCAS outperforms the Bin Packing
Solver as it executes in 1.1ms on average, compared to 1.01s
for the Bin Packing Solver. ORCAS offers an average 29%
power consumption reduction with an error of less than 0%
on our experimental cluster, meaning it provides better results
than an optimal Bin Packing Solver.

Our methodology does not aim to solely evaluate the
performance of a VM placement heuristic. It tackles all steps
of the consolidation process and delegates management of final



VM positioning to the hypervisor orchestrator. The selection
of VMs to migrate at each consolidation step is directly
dependent on the predicted usage value of the VM. All the
VMs are considered at each step of the consolidation, and
the selection of VMs to migrate is not dependent on an
algorithm that can be compared to the state of the art. Then,
the number of hosts to be used is reduced by computing
the fewest number of required PMs for each consolidation
group. Other consolidation solver approaches, such as meta-
heuristic or genetic algorithms, might be used to find the
best VM placement for each consolidation group. This will
not reduce, in our case, the number of PMs used, as it
is computed based on the amount of resources (CPU and
RAM) needed by each consolidation group. VM placement is
therefore delegated to the hypervisor, which will ensure that
VMs are placed on a host of the same consolidation group.
This results in better completion times for solver execution,
which can be a limitation when scaling, without compromising
power consumption reductions.

C. Scalability of the algorithm

To perform a first evaluation of the scalability of the
methodology, the simulation process defined in Section IV-H1
is tested on another SynAApS cluster composed of more
than 1000 VMs and 16 PMs. This cluster uses the same
hypervisor and a centralized storage array, meaning it presents
similarities with the targeted infrastructure. Usage metrics are
gathered with the same collection rate and retention periods,
and prediction models are trained using the same combination
of parameters and features.

Fig. 12: Consolidation results using multiple thresholds values
on a different cluster

Fig. 12 shows how ORCA performs on this other cluster
for a specific week using multiple values of threshold. Here,
the reduction baseline is significantly lower than the cluster
base power consumption, meaning that this infrastructure is
oversized. The threshold has less impact on the potential
performance degradation at the macro scale : all threshold
values keep the degradation rate below 3.5%. This means
that our prediction models perform even better on this in-
frastructure. The micro scale performance degradations do not
exceed 1.6% and are below 1% for most threshold/tolerance
rate combinations.

Fig. 13: Consolidation results at scale with and without fault
tolerance

Further simulations were conducted based on usage values
of this cluster. We simulated an infrastructure with 5520 VMs
and 85 PMs, on which we also implemented fault tolerance.
Fig. 13 The execution of ORCA without fault tolerance leads
to a 20.2% power consumption reduction at scale. A fault
tolerance rate of 4N is experimented here, meaning that
the equivalent of 4 PMs can crash without causing service
interruption. With this fault tolerance rate, we obtain a 16.68%
power consumption reduction. Last, we conducted similar sim-
ulations on a simulated cluster of 11040 VMs and 170 PMs.
Without fault tolerance, the power consumption is reduced by
20.97% over one week. With a 4N fault tolerance rate, we can
reduce power consumption by 19.16%. This validates the use
of the proposed methodology on a bigger virtualization cluster
with heterogeneous VMs having different applications and
usage. This also highlights the impact of using fault tolerance
in the results of the consolidation. At scale, it has less impact
as the base power consumption is significantly higher.

D. Deployment on the production infrastructure
A deployment of the ORCAS algorithm through the ORCA

Controller is conducted in the targeted production infrastruc-
ture over a one-week period, using a threshold of 0.2.

Fig. 14: Base and consolidated consumption during deploy-
ment

Fig. 14 shows the base and consolidated average power
consumption of all the PMs of the infrastructure. Thanks to
the consolidation, the power consumption is reduced here by



6.12%. This result, which is lower than simulation estimates,
can be explained by 2 reasons. First, the cluster base power
consumption is significantly lower than in simulation. This is
due to a better cluster sizing that can be partially explained
by exchanges with the infrastructure team after demonstrations
of the simulation results. Second, a fault tolerance of 2N is
used to prevent service interruption if 2 PMs crash during the
deployment. As shown in Section V-C, this has an impact on
the power consumption reduction, especially with an infras-
tructure of 7 PMs.

Fig. 15: Sum of ballooning, swapping and page sharing on
each PM during deployment

To validate the hypothesis that memory overcommitment
enables these consumption reductions, ballooning, swapping,
and page sharing are also measured on PMs. Fig. 15 highlights
a significant use of memory overcommitment mechanisms on
one of the PMs of the infrastructure. PM names correspond to
the anonymized names of the production cluster PMs. These
mechanisms take place over the same periods as the power
consumption reduction shown in Fig. 14, which are periods of
inactivity: at night and during weekends. By comparing these
observations with the deployment execution logs, we were able
to validate the use of a PM for VMs not in use during these
periods.

Thanks to the simulations, the methodology was tested,
demonstrating that it is possible to achieve significant re-
ductions in power consumption without causing undesirable
performance degradation. The deployment also validated a
production implementation of the methodology, with smaller
reductions in terms of power consumption as it must consider
fault tolerance. The deployment finally validated the hypoth-
esis of memory overcommitment mechanisms utility, and
did not cause performance degradation on the infrastructure.
During the deployment, no incidents were reported affecting
VM performance.

VI. DISCUSSIONS

The methodology aims to be adapted to different infras-
tructure topologies, especially by using different sorting tech-
niques for groups of VMs and PMs. Of course, varying the
number of consolidation groups, the allocated overcommit-
ment values, or deciding whether or not to use the group
migration function may lead to completely different results.

All these parameters need to be studied and selected carefully
as we proposed in the methodology.

The relatively small number of PMs in the experimental
infrastructure encouraged us to use a small number of con-
solidation groups. However, given that this infrastructure is
used for internal Ciril GROUP needs, it is relatively easy to
include users to enhance consolidation results. Works derived
from ORCA that include and analyze user behavior were con-
ducted in the infrastructure, enhancing the power consumption
reduction from 6.12 to 12.58% [35].

The production deployment was not conducted on the
second SynAApS cluster as it hosts Ciril GROUP customer’s
applications and VMs. Performance degradation on such VMs
may result in SLA violation and financial penalties for the
cloud operator as mentioned in Section I. More experimental
validations of the methodology on non-critical infrastructure
may help promote its adoption. Scalability represents multiple
challenges for the consolidation implementation. First, the
number of metrics to gather may increase proportionally to
the infrastructure size, which may cause storage difficulties.
The number of prediction models to train as well as the
consolidation solver completion time are also directly affected
by the size of the infrastructures. While some parameters in
our implementation can be revised for larger infrastructures,
many of the choices made already answer these challenges:
small prediction models without the use of Deep Learning,
a consolidation Solver that does not rely on an Optimal Bin
Packing Solver and gives similar results in lower completion
time.

During the various simulations and the preparation of the ex-
periments, discussions were held with the team responsible for
managing the experimental infrastructure. The first simulation
results led the infrastructure team to naturally reduce the sizing
of the experimental infrastructure. Coupled with the fault
tolerance mechanisms, this explains the difference between the
first simulation results and the obtained experimental results.
However, this reinforces the idea that having a comprehensive
methodology with preliminary studies of the use of VMs for
example, or other mechanisms presented in the paper, can
include different stakeholders and be beneficial in reducing
DCs power consumption. It may increase users and operators
awareness to further reduce other data centers environmental
impacts such as Abiotic Depletion Potential (ADP), Global
Warming Potential (GWP) or Primary Energy (PE) usage.

VII. CONCLUSION AND FUTURE WORKS

Efficient resource management is today a challenge for
many Cloud service providers, as it is a lever to reduce a data
center environmental impacts. The growing usage of digital
solutions, associated with rebound effects, generates a percep-
tion of infinite resources among users and results in oversized
infrastructures. To meet these challenges, DC operators can use
methods such as elasticity or VM consolidation, but financial
and technical restrictions can hinder their adoption.

This paper proposes a complete consolidation methodology
based on black-box observations of VM resources consump-



tion to evaluate the mean utilization of VMs over time. We
separate VMs into different subsets based on their usage and
consolidate them on PMs with a defined overcommitment
ratio. The least-used VMs are grouped together on PMs with a
high overcommitment ratio and a high VM density. Contrarily,
the most-used VMs are consolidated to avoid performance
degradation and offer the best quality of service. The use of a
high memory overcommitment ratio for idle VMs is enabled
by mechanisms like ballooning, swapping, or TPS. The con-
solidation methodology was tested in simulations based both
on predictions and observations made from two virtualization
clusters and provides power consumption reduction as high as
29.8% without errors. Simulations enabled us to test multiple
consolidation methods, using different sorting techniques for
VMs and PMs groups. With a good combination of pa-
rameters experimented on over multiple weeks, a threshold
parameter was identified for a production implementation,
whose purpose is to limit consolidation errors or undersizing
while guaranteeing power consumption reduction attributable
to memory overcommitment mechanisms. Lastly, a production
implementation was carried out to validate a proof of work
of our methodology, providing a 6.12% power consumption
reduction when considering a fault tolerance factor of 2N .
For future work, we aim to test and deploy our methodology
on other bigger virtualization clusters with more than 100
PMs, and use projections to estimate not only the power
consumption reductions but other DCs environmental impacts
reduction using a Life Cycle Assessment (LCA) approach.
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