
A DSM�based structural programming environnment

for distributed and parallel processing

Lionel Brunie and Laurent Lef�evre

Laboratoire de l�Informatique du Parallelisme

Ecole Normale Sup�erieure de Lyon

����� LYON Cedex ��

France

Tel 	 �
 �
 �� �� Fax 	 �
 �
 �� ��

�lbrunie llefevre��lip�ens�lyon�fr

Person who will present the work 	 Laurent LEFEVRE

Abstract

The paper describes an original programming environnment based on the DOSMOS� system�

Its implementation is built on a structural approach of parallel programming� By combining this

structural model with weak consistencies schemes and protocols� we improve the performances

of DSM system and provide an original programming model that mixes message�passing and

shared distributed objects� Morevoer by integrating an easy development platform and mon�

toring facilities� the DOSMOS system has been designed to provide a performant user�friendly

programming environment�

�

� Introduction

If distributed memory MIMD machines allow very high performances� their programming remains

�esoteric� for most of end�users accustomed to classical mono�processor programming� Oppositely�

shared memory parallel computers are easier to program but badly adapted to applications gener�

ating many memory accesses� In this context� the purpose of Distributed Shared Memory systems

�DSM� is to implement� above a distributed memory architecture� a programming model allowing a

transparent manipulation of virtually shared data� Thus� in practice� a DSM system has to handle

all the communications and to maintain the coherence of the shared data�

In that framework� this paper describes an original programming environment� called DOSMOS�

system� This system is based on a structural approach of parallel programming� In other words�

DOSMOS proposes to the user to hierarchically structure the processes into groups and sub�groups

of processes sharing a same set of variables� This feature� combined with optimized weak consistency

protocols allows to reduce the amount of communications required for the management of the shared

data� and� as a consequence� to ensure e�ciency and scalability to the applications�

However� it would be unrealistic to argue that DOSMOS� or any other DSM system� e�ciently

deals with any kind of applications� That is why DOSMOS allows the programmer to mix both

message�passing �PVM� and DOSMOS code� To complete the programming environment� DOS�

MOS integrates a devoted monitoring tool �called DOSMOS�Trace� which has been added to the

system to allow the user to understand the behavior of his applications�

At last� this programming environment has been designed to run both on distributed systems

and on parallel machines� Thus� to ensure the portability of both the system and the applications�

DOSMOS �as well as DOSMOS�Trace� has been developed on top of PVM�

�DOSMOS � Distributed Objects Shared MemOry System

�

This paper is divided into three parts� After a short description of previous works �section ���

we analyse the basics of the DOSMOS DSM system in terms of management of shared data and

process structuring �section 	�� Then a description of the programming environment is proposed

�development platform� programming model and monitoring facilities�� At last� section
 proposes

a discussion both on the basic features of this programming environment and on implementation

choices and points out future developments�

� Purpose of Distributed Shared Memory systems and previous

works

By allowing the programmer to share �memory objects� �i�e� programming variables� in a trans�

parent way� Distributed Shared Memory Systems �DSM� propose a interesting trade�o� between

the easy�programming of shared memory machines and the e�ciency and scalability of distributed

memory systems� Basically� a Distributed Shared Memory system is a mechanism that allows ap�

plication processes to access to shared data in a transparent way� In other words� a DSM system

releases the programmer from the management of all inter�process communications�

Both hardware and software implementations have been proposed� The main systems require

to implement an additional software layer �

Virtual Shared Memory systems �VSM� allow to share pages of data� i�e� to merge into a

single wide address space a set of memory pages distributed in the network� Such systems

like MIRAGEFP��� or MUNIN CBZ��� have to deal with speci�c problems of operating

systems�

Object�based Distributed Shared Memory systems �DSM� work at the program level� i�e�

they implement a software layer that automatically generates� on the user�s behalf� all the

	

communications required to manipulate shared data� In other words� instead of de�ning �and

writing in the code� the inter�process communications� the programmer only speci�es which

data are actually shared� Then he can use these data as if they were local� On its side�the DSM

system takes into charge all the communications necessary �as a message�passing programmer

would do�� Such DSM systems like ORCATKB��� or CLOUDS system RAK��� have been

implemented on parallel machines� The DOSMOSBL��� BL��� system belongs to this class

of systems�

� Basics of DOSMOS

DOSMOS is an object�based DSM system �cf section ��� i�e� it allows processes to share in a

transparent way a set of passive objects �i�e� of programming variables� distributed in the network�

However� DOSMOS integrates novel features �

DOSMOS Processes � Basically� a DOSMOS application is composed of two types of processes�

� Application processes �A�P�� contain and execute the code �written in C� of the

application �

� Memory processes �M�P�� manage the whole DSM system� i�e� they provide A�P�

with the objects they request and maintain the data coherence� Each A�P� is connected

to one and only one memory process� On the contrary� an M�P� can be connected to

several A�P� and several M�P�

Array allocation � DOSMOS allows to manipulate both basic type variables �integer� �oat�

char� � �� and distributed arrays� These arrays are split into several �system objects�� dis�

tributed in the network� Various splittings are provided � by row� by column� by block and

�

by cyclic block� The system ensures a transparent access to arrays� whatever the splitting

implemented�

Optimized weak consistency protocols � for e�ciency and scalability purpose� DOSMOS al�

lows to duplicate shared objects� It is clear that these replicas have to be kept coherent�

Most of actually implemented models are strong consistency oriented� DOSMOS implements

a weak protocol� the release consistency� This model GLL���� provides two synchronization

operators� acquire and release� These operators allow processes which want to modify shared

objects to lock and unlock them �in other words� these routines actually implement a mutual

exclusion on the accesses to the shared objects��

Hierarchical structuring of the application processes � Previous DSM systems have always

proposed ��at� models in which any shared object is accessible from any process� Such

�anarchical� models cannot be scalable� In DOSMOS� processes can be group into groups in

sub�groups in order to optimize the management of the coherence of data�

When one observes the behaviour of a DSM application� and more particularly the behaviour

of a process participating to the application� it appears that if some shared data are intensively

accessed by this process� some others are either very not often accessed or never accessed�

This leads us to introduce some de�nitions �see �g� �� �

� G�V�S� � The Global Virtual Space �GVS� of a process is the set of the shared objects

accessed �in read or write mode� by a process during the execution of the application�

� L�V�S� � The Local Virtual Space �LVS� of a process is the set of the shared objects

intensively accessed by this latter�

� E�V�S� � The Extern Virtual Space �EVS� of a process is the set of the shared objects

rarely accessed by the process�

Let P a process� We have �

Global V irtual Space�P � � Local V irtual Space�P � � Extern V irtual Space�P �

Usually� in previous systems� when an object O is modi�ed� an invalidation message is sent to

all the processes P such that O � GV S�P �� This prevents� as noted before� to ensure a good

scalability� By using a hierarchical grouping of processes� DOSMOS limits the invalidation

messages to processes such that O � LV S�P ��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Amount of
accesses

L.V.S. E.V.S.

Objects

G.V.S.

Unshared Objects

Figure �� Example of accesses distribution

A B

D E

C

G

F

A..G: Object

: Process

Figure �� Hierarchical grouping of processes

Basically� DOSMOS proposes to structure the application into hierarchical groups of processes

sharing the same objects �Figure ��� In practise� a group is de�ned by a set of processes and

a set of shared objects� Processes of a same group share all the objects attached to the

group� i�e� if they request an object� they will receive a copy of this object which will be

automatically updated by the system�

But DOSMOS also allows processes to access to extra�group shared objects� For this purpose�

in each group� a dedicated memory process� called Link Process �LP�� plays the role of link

between groups �see Fig 	�� Thus� these special MPs takes into charge all the communications

between groups� This model presents two important advantages �

� the access to the shared objects is optimized �

� the maintaining of the consistence is kept cheap�

�

MP

MP

MP

MP
MP

LP

LP

LP

Figure 	� Groups and link processes

Experiments done with DOSMOS system on network of workstations and parallel machines

have shown great improvements when using hierarchical groups�

� Programming environment

��� Development platform

The implementation of DOSMOS is based on two di�erent layers �see Figure ���

� Preprocessing level� this layer analyses the user�s application in order to detect and gen�

erate accesses to shared objects ��g�
�� This layer allows the system to be �transparent��

� DSM level� this layer assumes the creation and management of shared objects� groups

and of various processes involved in execution of the application �APs� MPs� LPs�� This

management is performed using PVM routines�

�

Application in C

Preprocess
Dosmos
Environnement

Dosmos application

Creation of MP, AP and groups
Running phase

Figure �� Dosmos Environment

int i,j,k,t;

 for (k=0;k<100;k++)

Use_Dosmos();
 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 { t=0;

 }
End_Dosmos();

 t=t+get(1,k,i)*get(0,j,k);
 put(2,i,j,t);

 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 { t=0;
 for (k=0;k<100;k++)
 t=t+X[k,i]*Y[j,k];
 Z[i,j]=t;
 }
End_Dosmos();

Use_Dosmos();

int i,j,k,t;
shared int by row Y[100,100];

 Z[100,100];
shared int by col X[100,100],

Pre-processing

Figure
� Example of pre�processing on a matrix

multiplication application

��� DOSMOS primitives

By only adding a few new primitives� DOSMOS systems stays really easy to use for the user� All

accesses �except exclusives ones� are totally transparent for the user�

� �include Dosmos�h

� Declaration shared ���

� Begin�End use dosmos�� � end dosmos��

� Exclusive access acquire�object�� acquire blk�block�

release�object�� release blk�block�

� Synchronization sync�object or group�

Figure �� DOSMOS primitives

��� Programming model

As soon as the Use Dosmos�� primitive has been executed� the user can access to the shared objects

in a transparent way� However� DOSMOS� as any DSM system� does not pretend to be e�cient

�

in all the situations� Consequently� in order to allow the user to optimize speci�c applications�

DOSMOS allows to combine di�erent programming models for user�s confort� Consequently� three

programming models are available�

� Local programming � in order to minimize the accesses to shared objects� it is sometimes

more performant to work on local variables before modifying shared variables�

� D�S�M� programming � the user can use DOSMOS primitives to declare and access to the

shared variables in a transparent way�

� Mixing of DSM and message�passing programming � the user can integrate message�passing

communications into DOSMOS applications� This feature presents two advantages� First� it

permits to deal with speci�c applications� Second� it allows to port PVM applications on

DOSMOS with slight modi�cations of the code�

��� DOSMOS�Trace monitoring environment

The only way a user can in�uence the behaviour of his application is the modi�cation of the

structure of the shared variables space� So� from the user point of view� monitoring facilities should

allow him to precisely know the �activity� of the shared variables�

The purpose of the DOSMOS�TraceBLR��� monitoring environment is to provide such informa�

tion in a scalable and weakly intrusive way� The DOSMOS�Trace tool is based on a set of dedicated

processes which collect informations during execution� This data collection is completely transpar�

ent for the user� This tool provides several visualizations and informations about the execution like

statistics on shared objects� histories� � �

Such diagrams are extremely useful for the user to analyse problematical situations� Indeed

they allow to very easily isolate ping�pong e�ects �e�g� �g� ��� over�accessed variables� bottlenecks�

�

not actually shared variables� etc�

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Temps (s)

N
om

br
e

de
 le

ct
ur

es

Objet systeme: MAX(3) − Nombre et repartition des lectures

Figure �� Number and origin of the read accesses

performed on an object vs execution time �in

black � inter�group accesses�

0 0.5 1 1.5 2 2.5

 1

 2

 3

 4

 5

Temps (s)

P
ro

ce
ss

us
 A

pp
lic

at
io

n
(D

N
)

Objet systeme: PING_PONG(0) − Historique des evenements

R
W

R
W

R
W

R
W

R
W

Figure �� Object activity vs execution time

� here a ping�pong e�ect between two pro�

cesses�

� Discussion and future works

This paper has described a novel DSM�based programming environment� the DOSMOS system� In

comparison with previous works� this system integrates original functionalities � structuring of the

application processes into hierarchical groups� possibility of mixing message�passing code and DSM

code� optimized weak consistency protocols� monitoring facilities�

The whole system has been designed to be as e�cient and scalable as possible� Thus the

process grouping allows� in conjunction with weak consistency protocols� to reduce the amount

of communications required by the management of the DSM system� For the same purpose� the

DOSMOS�Trace environment is based on distributed processes and has been designed to permit

to use distributed traces �les� Tests have shown the e�ectiveness of the approach developed in

DOSMOS�

��

Opened to various programming models� designed to be e�cient both on parallel machines

and distributed systems� DOSMOS provides a portable development platform� Moreover by only

adding few new primitives and by providing graphical interfaces to analyse execution application�

DOMOS is an user�friendly programming environment which can easily adapt to a non�expert

parallel programming user�

We currently continue to improve our programming environment by adding a new distributed

tool to DOSMOS which will allow to debug the application code of the user� Moreover important

DSM�applications �scienti�c computing� imagery� neural networks� � �� are currently being imple�

mented on DOSMOS system to show the performance and e�ectiveness of our approach�

References

BL��� L� Brunie and L� Lef�evre� Mod�ele de m�emoire distribu�ee�partag�ee pour machine mas�

sivement parall�ele� In RenPar��� Ecole normale Sup�erieure de Lyon� France� June �����

BL��� Lionel Brunie and Laurent Lef�evre� New propositions to improve the e�ciency and

scalability of DSM systems� June ����� to be published in the proceedings of the IEEE

ICA	PP��� conference �Singapore��

BLR��� Lionel Brunie� Laurent Lef�evre� and Olivier Reymann� Execution analysis of DSM ap�

plications� A distributed and scalable approach� May ����� to be published in the

proceedings of the ACM SPDT��� conference �Philadelphia� USA��

CBZ��� John B� Carter� John K� Bennet� and Willy Zwaenepoel� Implementation and perfor�

mance of MUNIN� ACM � Operating Systems Review� �
�
���
������ �����

��

FP��� Brett D� Fleisch and Gerald J� Popek� Mirage� A coherent distributed shared memory

design� In ACMPRESS� editor� Proceedings of the twelfth ACM Symposium on Operating

Systems Principles� volume �	� pages ������	� The Wigwam Litch�eld Park� Arizona�

December �����

GLL���� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Mem�

ory consistency and event ordering in scalable shared�memory multiprocessors� In In�

ternational Symposium on Computer Architecture� pages �
���� �����

RAK��� Umakishore Ramachandran� Mustaque Ahamad� and M� Yousef A� Khalidi� Coherence

of distributed shared memory� unifying synchronization and data transfer� In �	
	

International conference on parallel processing� volume II� pages �������� �����

TKB��� Andrew S� Tanenbaum� M� Frans Kaashoek� and Henri E� Bal� Parallel programming

using shared objects and broadcasting� IEEE computer� �
���������� August �����

��

