Building the Table of Energy and Power Leverages
for Energy Efficient Large Scale Systems

Issam Rais*, Mathilde Boutigny*, Laurent Lefévre*, Anne-Cécile Orgerie!, Anne Benoit*
*University of Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP
Email: issam.rais@inria.fr, laurent.lefevre @inria.fr, anne.benoit@ens-lyon.fr
TUniv Rennes, Inria, CNRS, IRISA, Rennes, France
Email: anne-cecile.orgerie @irisa.fr

Abstract—Large scale distributed systems and supercomputers
consume huge amounts of energy. To address this issue, an
heterogeneous set of capabilities and techniques that we call
leverages exist to modify power and energy consumption in large
scale systems. This includes hardware related leverages (such
as Dynamic Voltage and Frequency Scaling), middleware (such
as scheduling policies) and application (such as the precision
of computation) energy leverages. Discovering such leverages,
benchmarking and orchestrating them, remains a real challenge
for most of the users. In this paper, we formally define energy
leverages, and we propose a solution to automatically build the
table of leverages associated with a large set of independent
computing resources. We show that the construction of the table
can be parallelized at very large scale with a set of independent
nodes in order to reduce its execution time while maintaining
precision of observed knowledge.

Index Terms—energy leverages, high performance computing,
energy efficiency.

I. INTRODUCTION

Large scale distributed systems consume huge amounts of
energy. This consumption has direct financial and environmen-
tal consequences for Cloud and supercomputer infrastructures.

To increase the energy efficiency of data centers and to
lower their consumption, several techniques have been de-
veloped. These techniques, named energy leverages, can act
at three levels: hardware, middleware, and application. At
the hardware level, Dynamic Voltage and Frequency Scaling
(DVES) [1]l, [2] and shutdown techniques [3], [4] constitute
the two most studied leverages. DVFS reduces the voltage
and frequency of processors when they do not require all their
computational power. As for shutdown techniques, they consist
in switching off entire servers or putting them in sleep modes
when they are idle.

At the middleware level, data center managers can employ
energy-efficient resource allocation policies to schedule the
jobs by respecting energy budget or power cap [3], consol-
idating the workload on fewer servers [6]], benefiting from
intermittent renewable energy sources [7], or modifying the
number of used OpenMP threads [8]].

Finally, leverages at the application level include green pro-
gramming [9]], vectorization techniques [[10], and computation
precision [11].

While studies have been conducted on each of these lever-
ages, only few work considers combining them. For instance,
in [8]], and [[12], the authors combine the number of OpenMP

threads and DVFS, and in [13]], the authors combine shutdown
and DVFS leverages. In the case of shutdown, this leverage has
obvious impacts on other leverages: in the off state, no other
leverage can be employed at the application level, for instance.
Indeed, the utilization of a given energy leverage can impact
both the utilization and the efficiency of another leverage.
Moreover, the variety of leverages and the complexity of mod-
ern hardware architectures, in terms of size and heterogeneity,
makes the energy efficiency more complex to reach for users.
The authors of [14] and [15] propose energy-aware runtimes
that exploit the dynamic behavior of HPC applications in order
to improve performance and energy-efficiency. Yet, energy
leverages’ characterization is a prerequisite for building such
runtimes.

In this paper, we propose a first approach toward a com-
pletely automated process to characterize the energy lever-
ages available on data center servers. The key idea of our
contribution consists in building a score table with a value
for each leverage combination and each studied metric. These
scores are obtained through the execution of a representative
benchmark. Based on this score table, we can provide hints to
users about the most suitable solution for their application.

This paper makes the following contributions:

1) We propose a generic framework formalizing the com-
bination of leverages through the definition of a table of
energy leverages;

2) We present a comprehensive experimental method based
on benchmarks and a detailed overview of its concrete
implementation to build the table of energy leverages;

3) We analyze experimental results on several servers
demonstrating how to parallelize the building of the
table.

The remaining of this paper is structured as follows. Sec-
tion |lI| presents our definition and formalism of a leverage and
details the leverages that are used as examples in this study.
Section [[II| shows our process to build the table of leverages,
and Section explains how this formalism is implemented.
Section presents the experimental setup and a first full
example of table of leverages. Section demonstrates the
parallelization of the creation process of the table of leverages.
Finally, Section concludes this work and gives perspec-
tives.



II. LEVERAGE DEFINITION

A leverage L is composed of S = {sg, $1,...,8n}, the set
of available valid states of L, and s., the current state of L.

An energy or power leverage is a leverage that has an
impact on the power or energy consumption of a device: the
energy consumption may differ depending on the current state
at which the application is executed. Of course, switching
from one state to another can have a cost in terms of time
and energy, but we focus on studying the impacts of leverage
combinations over a single intensive application phase, and
thus we do not study the switching costs between states in
this work.

We focus on three leverages that are available on current
hardware: multi-thread, computation precision and vectoriza-
tion. While multi-thread is a middleware level leverage, the
two last are at the application level, as detailed below.

1) Multi-thread leverage: Multi-core architectures are
nowadays the de facto standard in modern supercomputers.
The first studied leverage is a middleware-level leverage
that permits the usage of multiple cores during computation.
OpenMP [16], a well-known application programming inter-
face abstraction for multi-threading, can be used to exploit this
intra-node parallelism of multi-cores. In particular, it is well
known for its simplicity and portability. It consists of a set
of directives that modifies the behavior of the executed code,
where a master thread forks a specific number of slave threads
that run concurrently. This multi-thread leverage increases the
CPU utilization of the node. Consequently, because of the non-
power proportionality of current hardware architectures [3]],
this leverage can improve the energy efficiency of the node.

This leverage is denoted by nbThreads or #Threads, and
the set of states is {1,...,7nmas}, Where 1 means that one
OpenMP thread is used, and 7,4, corresponds to the maxi-
mum number of threads that could be launched simultaneously
on the node without hyperthreading.

2) Computation precision leverage: The second leverage
belongs to the application level and exploits the various
computation precision options available on actual hardware
(i.e., int, float, double). Such a leverage alters the precision of
the results computed by the application, but lower precision
translates into shorter data representation and so, less compu-
tation and less energy consumption. At the application level,
the user can specify a desired Quality-of-Service that can be
expressed as accessible computation precision states.

This precision leverage is denoted by Precision or Prec.,
and the set of states is {int, float, double}, corresponding to
the data format for the application. For each of these states, a
different code version is provided.

3) Vectorization leverage: Finally, the last studied leverage
concerns the application level. Current CPUs allow the usage
of vectorization capabilities to exploit intra-core parallelism.
On Intel architectures, it started with MMX instruction in
Pentium P5 architectures in 1997 [17]. It was then extended
to SSE [18]]. SSE was then extended to SSE2, SSE3, SSSE3
and finally SSE4. AVX [19] then introduces new instructions,
followed by AVX2 and finally AVX512 available in XeonPhi

architecture. In this paper, we focus on SSE3 and AVX2,
which are representative of the SSE and AVX families. These
instruction sets permit single instruction on multiple data
(SIMD) at application level.

This vectorization leverage is denoted by Vectorization
or Vect.. The set of states is {none, SSE3, AVX2}, where
none means that no vectorization is used. For each of these
states, a different code version is provided using the adequate
compilation flags for each version.

Note that the methodology proposed in this paper can be
applied to any number and any type of energy leverages,
even though we focus here on three leverages, chosen to
be representative examples of available energy leverages on
modern architectures.

III. FORMALISM OF TABLE OF LEVERAGES

In this section, we describe the methodology applied to
build a table of energy leverages, which relies on metrics and
benchmarks to characterize the performance and energy impact
of each leverage combination on a given node. For each metric
and each benchmark, a score is attributed to a given leverage
combination. First, we describe the basic concepts used to
build the table: the metrics and benchmarks. Then, we present
the formal definition of the table of leverages, and finally, the
methodology for building it.

A. Metrics

Leverages may influence the quality of service or per-
formance of an application. For instance, shutdown tech-
niques may induce latency in waking up the required nodes.
Consequently, for these leverages, users need to determine
their acceptable trade-off between energy-related metrics and
performance metrics.

Here, three different metrics that represent both energy
and performance constraints are explored. These metrics are
measured for a given period of time corresponding to the time
spent during the execution of the benchmark.

The two first metrics are energy and power related metrics.
To define them, we introduce the following notations:

o T = {tg,...,tn} is the set of time stamps of energy
consumption measurements of a given run; ¢y and ¢ rep-
resent the starting and ending timestamps, respectively;

e pj, j € [0,N], represents the power consumption (in
Watt), of the considered node for the timestamp ¢;.

a) Average Watt: denoted avrgWatt, it represents the
average power consumption of a chosen run. It is defined as
follows:

2 jefo,nPi

N+1
b) Joules: denoted Joules, it represents the energy con-

sumption of the run. It contains the energy consumption of
the complete node used between ¢y and t. It is defined as
follows:

avrgWatt = (1)

Joules =

Yo (i —t) xp;. 2

j€[0,N—1]



c) Execution time: Finally, the execution time, denoted
Time, is the whole execution time of a run, including initial-
ization time.

B. Benchmarks

A benchmark corresponds to a self-contained application
that is representative of typical applications or portions of
applications. The benchmark is compiled before the run, and
once launched, the metrics previously defined are collected
during its execution.

Here, for the sake of clarity, we evaluate only one bench-
mark for a set of embedded leverages. We chose to focus
on a well-known CPU intensive code: the line per line matrix
multiplication (LpL MM) of dense random matrices. The same
algorithm is implemented for the various leverage combina-
tions. As detailed in Section [[I} the considered leverages are
multi-thread, computation precision and vectorization. For the
last two leverages, a different state means a different version of
code, here generated by hand. Automatic generation is possible
but it is not the focus of this paper.

C. Formalization of the table of leverages

1) Format of the table of leverages: Here, we describe
how to compute the score associated to each metric for each
leverage. Let X,Y, Z be the sets of available states of three
leverages x,v,w: X = {xo,..., 20, }, Y = {¥0,--,¥Un, }»
and Z = {z0,...,2n,}.

Let g1, ..., g be the measured metric functions, as for in-
stance avrgWatt, Joules, and Time. For all u (1 < u < m),
9u (i, Yj, z) is the value of metric g,, for the states x;, y;, 2k
respectively for the leverages x, ¥, w.

In the table of leverages, each line corresponds to a combi-
nation of states for each leverage and the columns correspond
to the measured metrics. In order to ease the comparison, we
normalize each value on the minimum value for each metric.
These normalized values constitute the scores indicated in the
table of leverages. Let hq, ..., h,, be the normalized versions
of g1,...,9m. So, we have, for 1 <u <m:

gu(xiv Yjs Zk)
gu(xi’v Yj’, Zk’) ’
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with hy(x;,y;, 2) being the value in the table of leverages
in column of metric u and corresponding to the line for the
states x;, y;, 21, respectively for the leverages x, ), w.

2) Methodology to build the table: Building the table of
leverages requires to run the benchmark in its adequate version
for each leverage combination. Hereafter, we describe our
methodology for running all the required executions.

Algorithm [I] shows the generic pseudo-code to execute
the adequate benchmark version on the correct leverage
combination for a given set of metrics. This algorithm has
two inputs: LeverageTree is a tree representing the set of
selected states on the studied leverages, and SelectedStates
keeps trace of every current state of leverage involved so
far. The functions root(X) and unseen_children(X) return
respectively the root of tree X, and the first unseen children

Algorithm 1: Building the table of leverages: benchmark
execution for each leverage combination for a given set of
metrics.
Input: LeverageTree: leverages to benchmark
Input: SelectedStates: name of states of leverages being
currently benchmarked

1 mM: metric measurements;

2 for s. in root(LeverageTree).S do

3 if root(LeverageTree) is leaf then

4 Add s. to SelectedStates;

5 mM .start();

6 Benchmark(SelectedStates).exec();

7 mM .end();

8 tableO f Leverages[SelectedStates] < mM;

9 else

10 Add s, to SelectedStates;

11 Algorithm1(unseen_children(LeverageTree),
SelectedStates);

12 end

13 end

node of tree X. mM corresponds to an entity gathering metric
values (as defined before in our case: avrgW att, Joules, and
Time). Benchmark corresponds to the entity that matches
the current state of every leverage SelectedStates and the
corresponding binary file to execute, exec corresponds to the
execution of the benchmark. Thus, for all the considered
leverages (Leveragelree), the algorithm is executed recur-
sively over their respective states (S) and collects the met-
rics (mM) before moving to the next leverage combination.
The metrics gathered during the executions are saved in the
TableO f Leverages entity.

Figure [I] shows an example of input used for Algorithm [I]
in the following table of leverages of this paper. Rounded
bullets represent states of the three considered leverages. The
benchmark chooses the corresponding binary, for leverages
having different binaries in set of states S, here Precision and
Vectorization. Leverage nbThreads changes its state through
environment variable.

When the execution of Algorithm [T] with Figure[T]as input is
finished, the table of leverages is complete for the considered
benchmark.

IV. IMPLEMENTATION OF FORMALISM

In order to be able to build the table of leverages, we
created a framework able to identify available known leverages
on a given hardware, benchmark the leverages combination
and collect the associated metrics. This tool can run on a
single node or on an entire cluster. It is designed to be as
flexible as possible on three basic concepts: leverage, metric
and benchmark. This framework fits the needs of a wide type
of users, going from basic users without specific knowledge
to more experts ones capable of implementing new leverages,
benchmarks and metrics collection methods.
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Fig. 1: Example of LeverageTree input for Algorithm
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Fig. 2: Framework UML diagram

A. Leverages

As shown in Figure |2| the framework provides multiple
interfaces, or contracts, to fully describe our basic con-
cepts. These contracts are implemented through a fully ab-
stract class, forcing a class inheriting from it to imple-
ment the needed functions. Thus, every leverage class must
be able to detect it’s availability (is_leverage_available()),
to retrieve it’s current status (get_actual_status()), to re-
trieve it’s list of available statuses (get_all_statuses()) and to
change it’s actual status with a valid one (sef_new_status()).
For example, the availability of the DVFS can be val-
idated if the file /sys/devices/system/cpu/cpuO/cpufreq ex-
ists. The actual status of the DVFS leverage for a spe-
cific core, here 0, can be found in a configuration file
/sys/devices/system/cpu/cpul/cpufreq/cpuinfo_cur_freq. Read-
ing the scaling_available _frequencie file permits to extract
all statuses. Finally, the current state can be changed using the
command cpufreq-set.

B. Metrics

The framework provides an interface for the metrics. It
imposes to be able to start and end the monitoring of a metric.
It also imposes a metric to check the validity of obtained

IPath file is /sys/devices/system/cpu/cpuO/cpufreq/

results (check_validity_results()). The actual implementations
of the metric contract allows various focus for various metrics.

Grid’5000 provides the Kwapi API [20]], to get the collected
data from the wattmeters for a given time period. Once a
benchmark has been executed on a node, the contract asks
Kwapi for the node’s consumption during this time period.

Another possibility given by Grid’5000 is to use the live
metric webpage. This webpage returns the consumption met-
rics of the nodes of Grid’5000 every second. We created a
script that collects them every second. The framework then
gets the metrics from the script by giving the starting and
ending timestamps of the benchmark execution.

Such method could also be exported to platforms without
wattmeters. For example, we implemented the contract for
captors such as RAPL or IPMI, also to get energy related
metrics.

The framework also implements a contract to retrieve
FLOPs (FLoating point OPeration per seconds). In order to
retrieve the FLOPs, a script that collects the flops metrics
during a benchmark execution using the PAPI framework
is deployed on used nodes. This method is not specific to
Grid’5000 and could be used on a different architecture.

C. Benchmark

The final contract is relative to the benchmark execu-
tion. The first function executes the given binary. The



second gives the current states of application leverages.
A family of leverage is relative to the application. Thus,
the state of application leverages changes for every binary
(get_app_leverages_state()).

The framework copies and executes the given binary on
chosen nodes. We assume that compiled and ready to used
binary files are passed to the framework.

D. Construction of the table of leverages

The table of leverage class uses previously presented con-
tracts to implement algorithm |1} Various mode of construction
are provided.

a) Default method: construct() method runs the same ex-
periment on every node. Thus, every node will make the same
leverage exploration. This method can be time consuming. For
example, using our testbed, combining the first and last status
of nbThreads leverage, Precision (int, float and double) and
Vectorization (SSE3 and None) leverages, takes approximately
1 hour and 30 minutes.

b) Automatic node spread work method: In the con-
struct_parallel() method, the framework runs one scenario
by dividing and assigning automatically work on nodes. The
execution time of the framework would be divided by the
number of used nodes. If we take the previous example
combining the nbThreads, Precision and Vectorization, with
5 nodes, the execution time of the framework for this scenario
is around 18 minutes. However, the user will need to have a
good knowledge of the nodes and asked metrics in order to
ensure coherent results.

V. EXPERIMENTAL SETUP AND FIRST TABLE OF
LEVERAGES

In this section, we present the table of leverages built on a
node from our experimental testbed.

A. Experimental setup

To evaluate our methodology in various computing envi-
ronments, Grid’5000, a large-scale and versatile testbed for
experiment-driven research in all areas of computer science,
is used as a testbed [21]. Grid’5000 deploys clusters linked
with dedicated high performance networks in several cities in
France (Lille, Nancy, Sophia, Lyon, Nantes, Rennes, Greno-
ble).

TABLE I: Server Node characteristics

Features Taurus Nova

Server model Dell PowerEdge R720 | Dell PowerEdge R430
CPU model Intel Xeon E5-2630 CPU E5-2620 v4

# of CPU 2 2

Cores per CPU 6 8

Memory (GB) 32 32

Storage (GB) 2 x 300 (HDD) 2 x 300 (HDD)
Date of arrival 11.2012 03.2017

As our focus is on energy and performance related met-
rics, we used the Grid’5000 Lyon site, where the energy
consumption of every node from all available clusters, as
shown in Table E[, is monitored through a dedicated wattmeter,

TABLE II: Table of energy leverage states for LpL. MM
benchmark on a Nova node

#Threa(Lil:Vrri’%ch.tate[S Vect. avrgWatt(W) | Joules(J) | Time(sec)
1 int none 1.05 65.09 61.89
1 int SSE3 1.06 28.26 26.56
1 int AVX2 1.06 29.32 27.67
1 float none 1.05 72.97 69.67
1 float SSE3 1.06 33.8 31.89
1 float AVX2 1.05 36.8 34.89
1 double | none 1.06 81.59 76.89
1 double | SSE3 1.07 58.52 54.89
1 double | AVX2 1.06 57.72 54.22
32 int none 1.43 13.48 9.44
32 int SSE3 1.4 4.68 3.33
32 int AVX2 1.0 1.0 1.0
32 float none 1.45 7.4 5.11
32 float SSE3 1.41 3.76 2.67
32 float AVX2 1.56 3.11 2.0
32 double | none 1.53 8.34 5.44
32 double | SSE3 1.53 8.52 5.56
32 double | AVX2 1.54 7.0 4.56

exposing one power measurement per second with a 0.125
Watts accuracy.

B. Table of leverages for three leverages

We applied our previous methodology for the three chosen
leverages to the CPU intensive benchmark. This allows us to
explore all possible states of chosen leverages, and thus to
build a complete table of leverages. In this paper, it has the
following format: the first three columns present the states
of the nbT hreads, Precision, and Vectorization leverages
respectively, while the last three columns show the normalized
results of the three metrics avrgWatt, Joules, and Time,
respectively, for every combination of leverage.

As described in Table [l a line of the table of leverage
represents results of all gathered metrics for the execution of
a representative load for a chosen combination of leverages.
The results are normalized as shown in Section [IIZCl The
table of leverages gathers the knowledge of a node, here Nova
(Table [I), for a given workload done for multiple states of
leverages combined.

Note that the best combination for all metrics used here is
always the {32, int, AVX2} combination. This result is the best
combination to choose only if we have no constraints about
leverage choices. For example, this table could help a user
to choose a combination taking into account a fixed leverage
state. Or to answer the following question: is there a leverage
or a state of leverage that is always better for a given metric?

VI. PARALLELIZATION OF THE TABLE CONSTRUCTION

The construction of the table of leverages may take a long
time if many different leverage combinations are considered.
In this section, we explain how the construction could be
parallelized, so that the time to generate a complete table of
leverages could be significantly reduced.
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Fig. 3: Nova-1, 30 runs of various stresses for Time (seconds) and Power (Watts) metrics

A. Re-usability of energy and performance metric, one node

The first hypothesis to be considered, is the fact that a node,
exposed to the same load, gives the same metric results, with
very low variation.

Previous work on HPC applications indicates that phases
could be recognized thanks to an analysis of existing regis-
ters [22]. We run various intensive workloads using stresﬂ a
tool that applies a specific phase to the used node. We execute
30 times every stress on a unique “Nova” node. Figure 3| shows
results of such a protocol. For HDD stress (hard drive usage),
three types of patterns could be recognized. The first one from
t = 0s to t = 10s and last one from ¢ = 35s to ¢t = 80s are
the same for every run. The variation occurs between ¢ = 10s
and ¢ = 35s. When the disk is active and writing in various
regions, the energy cost could differ depending on the chosen
region for writing. We observe that for CPU, I0 and RAM
stress, all runs have approximately the same behavior, meaning
that one run on the same node always has the same energy
consumption, for this kind of stress.

Zhttps://people.seas.harvard.edu/~apw/stress/

B. Re-usability of energy and performance metric, one family
hardware

The second hypothesis that we have to evaluate here is the
fact that extracted metrics could also be used by different
nodes with the same hardware.

We stress several nodes of the same hardware (Taurus
or Nova clusters) to observe how the standard variation
concerning various energy-efficiency and performance-related
metrics evolve. We chose these two families of hardware to
evaluate a newly acquired node family (“Nova”, 2017) and
an old one (“Taurus”, 2012). This evaluation is done with
various intensive workloads that stress differently the energy
consumption of a node (CPU, IO, hard drive usage, RAM).

Metrics and standard deviation averages of families of nodes
are exposed in Table m for CPU, HDD, IO, and RAM
workloads. For this experiment, every node is doing the same
work at the same time. We get interesting metrics for every run
(10 run averages on every node). We then average interesting
values for families of nodes. 10 Taurus nodes were used,
while 5 Nova nodes were used. The standard variation for the
three chosen metrics are negligible for all stress benchmarks,


https://people.seas.harvard.edu/~apw/stress/

TABLE III: Average (Av.) and standard deviation (StD.) of
various workloads for various energy and performance related
metrics for various hardware architectures

Hardware family Joules (J) AvrgWatt(W) Time(t)
Av. - StD. Av. - StD. Av. - StD.

CPU

Taurus 6807.0 - 68.8 205.84 - 1.37 | 32.81 - 0.39

Nova 4998.86 - 49.3 15491 - 1.09 | 32.06 - 0.43
HDD

Taurus 5055.98 - 365.33 | 140.58 - 298 | 35.85-24

Nova 9381.94 - 251.5 107.8 - 0.57 87.01 - 2.47

10

Taurus 3957.52 - 34.98 123.46 - 0.21 320-03

Nova 4194.53 - 68.06 130.3 - 0.67 32.04 - 0.66
RAM

Taurus 5097.83 - 55.81 22214 -2.2 32.5-0.52

Nova 7282.26 - 115.89 158.53 - 0.8 31.93 - 0.44

except HDD (as already explained in the previous subsection).
Even for the Joules metric, we note that the variation is
under the second of idle consumption of both nodes for every
benchmark, meaning that differences between metric results
from the same family of hardware are negligible.

These experiments show that for the same workload, same
energy and performance behavior could be witnessed for
various nodes having the same configuration.

C. Table of leverages, variability between nodes

In this section, we evaluate the same hypothesis for our pre-
viously defined table of leverage (Table [[I)) with 5 nova nodes.
For every leverage combination, we evaluate the standard
deviation of obtained metrics on all nodes. For every leverage
combination, we extract the average and the standard deviation
of all used nodes. To understand these numbers easily, we also
extract the percentage that represents the standard deviation to
the average.

Table presents the same exploration that the previously
presented Table of leverages [lI| for 5 nova nodes with average,
standard variation and percentage represented by the standard
deviation to the average, respectively, for every extracted
metrics. Table |V|presents the same exploration but for Taurus
nodes. The same matrix dimension is used for both exploration
(8192). Note that Taurus nodes don’t have AVX as available
state for the vectorization leverage.

Table [[V] underlines the fact that the most stable metric is
undeniably time, with only three combinations of leverage
above or equal to 1% and only one combination, {I, int,
none}, with a standard deviation above 1 second. Same goes
for Table [V] where only two combinations of leverages are
above 1%.

For Joules metric, every percentage is under 3.33% for
Table [[V] except for the less consuming combination of
leverages, {32, int, AVX} at 7.07%, which is still reasonable.
This high value for this combination could be explained by
the fact that our wattmeters are giving a power value every
second, thus if a run is a bit longer than the 9 seconds, it
will get an extra power value that others won’t have. Because
there are not a lot of values (one per second), an extra value

on such a short run has high repercussions on the standard
deviation. Because runs are longer on Table [V] percentage
are more stable, between 2.34% and 1.32%. Finally, for the
AvrWatt metric, every percentage is under 3.27% for Table
and under 3.55 for Table [V

These previous results (Table Table [[V] and Table [V)
analysis underlines the fact that for the same workload, same
energy and performance behavior could be witnessed for
various nodes having the same configuration, under a low
percentage of difference. Thus, for large scale computing
systems with large amount of computing nodes with the same
configuration, the table of leverage could be done on only one
node, or derived from a segmented construction on multiple
nodes, and used as knowledge for other nodes.

VII. CONCLUSION

Energy efficiency is a growing concern. In the context of
HPC and datacenters where the size of infrastructures grows
drastically, energy consumption has to be taken into account
as a high expense.

There is a wide range of hardware and software techniques,
that we formally define as leverages, that permits to modulate
the computing capabilities and/or the energy/power used by a
device. We propose a generic solution to create a score table
about multiple metrics for a given set of leverages, called the
table of leverages. We propose a fully implemented and highly
modular framework which allows an easy discovery, combina-
tion and exploration of leverages. Finally, we underline the fact
that parallelization of the building of the table of energy and
power leverages permits high gain of time while maintaining
high precision.

Possible future work concerns reducing the completion time
for building such a table. In fact, the time to solution here
could be greatly reduced, for example by predicting which
run is not necessary to know values of relevant metric using
learning or prediction techniques.
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