
Just in time Entertainment Deployment on Mobile Platforms

Laurent Lefèvre
INRIA /LIP (UMR CNRS, INRIA, ENS, UCB)

Ecole Normale Supérieure de Lyon
laurent.lefevre@inria.fr

Jean-Marc Pierson
LIRIS (UMR CNRS, INSA)

Institut National Sciences Appliquées
Jean-Marc.Pierson@liris.cnrs.fr

Abstract

Managing the deployment of Games on mobile phones
can be really complex. Developers have to create multiple
versions of the applications, even if they write it in Java.
There is thus a need for generic tools to help programmers
in the task of building mobile games, that means to optimize
their packaging and deployment on the end-users phones.
Active and programmable networks allow deployment of dy-
namic new services for data transport. In this paper, we
describe how to use an active network solution to perform
dynamic packaging and deployment of applications on cel-
lular mobiles and to face heterogeneity of platforms. 1 We
describe the overall architecture, discuss further possibili-
ties of the platform as well as experimental results.

Keywords: mobile game deployment, active network, mo-
bile platforms, network emulation

1 Introduction

All modern mobile phones integrate now a Java Virtual
Machine. These JVM allow providers to propose appli-
cations working on heterogeneous mobile phones (without
having to redo some specific development and to adapt them
individually for specific features). Most of the core of the
application remains the same while only some small parts
of the code have to be adapted to the specific features of
mobile phones : the memory available, the exact version of
the JVM, the layout of the components, the graphics for in-
stance are such things the final application should take into
account.

The Mobile Information Device Profile (MIDP) is spe-
cially designed for mobile phones. Applications written
from the MIDP profile take account of the specific fea-
tures of mobile phones. The specificity of the API provided
by the mobile phone constructors limit the portability and

1This work is supported by Funds of Region Rhone Alpes on the collab-
oration between 3DDL (3 Degres De Liberte) company, LIRIS Laboratory
and INRIA RESO team.

force providers to create different versions of a same mo-
bile application, for each model of mobile. In the games
entertaining field, it is even more crucial, since games usu-
ally exploit the very limits of resources capabilities. In or-
der to efficiently exploit devices features, providers propose
for instance their own APIs dedicated to games which limit
portability of applications.

Active Networks[9] allow service providers to inject cus-
tomized dynamic services into the programmable network
equipments. The creation of new services is an original way
to think about development and deployment of customized
modules to perform computation within the network.

In our project, we propose to benefit from active and
programmable networks by deploying active nodes on data
path to efficiently adapt streams on the fly. This research
follows three main goals :

• to reduce development costs and the complexity for
managing a version of a game for each mobile class.
The active node will construct the application and
adapt the resource files on the fly;

• to reduce the usage of bandwidth and interactions be-
tween clients and applications server, by providing a
cache storage facility on the data path;

• to efficiently support deployment of games without
adding too much latency on real networks.

In this paper, we present the architecture of an active ser-
vice deployed inside the Tamanoir Execution Environment.
We will focus here on the dynamic creation of the applica-
tion. This service constructs and deploys on the fly games
from the different class files and graphic resources in order
to adapt them to target mobile phones.

This paper is organized as follows. Section 2 reminds
the reader with the standard deployment of applications on
mobile phones. Section 3 focuses on supporting on the fly
packaging inside the programmable network equipments.
Section 4 presents our first experiments on a local platform.
We discuss some deployment aspects in real frameworks in

1



section 5, as well as other features being deployed on the
platform.

2 Deployment of java applications on mobile
platforms

The development of one single game in a mobile envi-
ronment is not comfortable mainly due to heterogeneous
terminal equipment. A mobile infrastructure depends on
a multitude of features. To solve this problem various so-
lutions have been considered by the main companies (Mo-
torola, Ericsson and Nokia). Currently, the commonly used
solution is the J2ME pack (Java 2 Micro Edition[1]). J2ME
allows the downloading of applications in the portable
phone.

2.1 Mobile Information Device Profile

Large number of companies of mobile phones associated
to develop this standard, that allows to use the Java tech-
nologies on the mobile phones. Applications written from
the MIDP profile name themselves MIDlets[3]. These are
similar by structure to the applets or the servlets.

The Over The Air provisioning method (OTA [2]) is a
part of the standard MIDP. It allows to recognize, install,
actualize and eliminate some MIDlets on the mobile.

OTA provisioning works as follows : first a mobile phone
sends a WAP request for a JAD (Java Application Descrip-
tion) file. The request is sent to a Web server through a
WAP gateway. The Web server sends back JAD package to
the mobile phone. Then the phone fetches the JAR (Java
Archive) package defined in the JAD file from the Web
server. The phone Java Application Manager (JAM) installs
the package. After installation, the phone may send an op-
tional installation notification to the server.

2.2 Deployed files

Every JAR file includes a MANIFEST file that provides
information on classes it contains. Manifests support nine
attributes, among there exists one entry for every MIDP ap-
plication of the continuation, containing the name of the ap-
plication, an optional icon and the name of the class that
must be started to execute the MIDlet).

A JAD file provides textual information on JAR files, like
the location (URL) and size of a JAR file. It can include also
specific information concerning the deployment of games.
For example, in some Nokia phones Java Application Man-
ager can install a game MIDlet into Games folder instead
of the standard Application folder. This is possible if the
following Nokia specific setting is defined in the JAD file:
Nokia-MIDlet-Category: Game

Other information can be added in the JAD file, in or-
der to personalize the game itself. For instance, client’s
personal data being collected during his registration (phone
number, date of birth,...) can be added in this JAD file.

2.3 Static deployment and activation of a
mobile application on a mobile plat-
form

Two kinds of distant deployment are supported : (1) The
user connects to the site of the application server through
its mobile phone; (2) The user subscribes to a download
operation. He receives a SMS containing instructions for
downloading and installing the application.

The user must verify that the mobile phone on
which he wishes to download the application is com-
patible with this service (Fig. 1). The URL indi-
cated in the SMS corresponds to the access path for
the JAD file of the game requested, in the following
format http://ApplicationServer/User/MobileType/ Applica-
tionName.JAD. Once this JAD downloaded, the mobile
phone downloads the JAR file, with the URL provided by
the field MIDlet - JAR - URL of the JAD file.

As one can figure out, the location of the JAD file is dif-
ferent from one user/mobile pair, since it reflects some per-
sonalization, as explained before.

Figure 1 presents the needed operations to allow a down-
loading of an application on a mobile client :

• 1a: Enrollment, 1b: Downloading application

• 2: Creation of the temporary directory
(user/mobile/application) and copy/adaptation of the
JAD and JAR files of requested game

• 3: Send SMS via mobile operator

• 4,8,12 : Request for WML then JAD, then JAR files

• 5,9,13 : Request for WML, then JAD, then JAR files

• 6,10,14 : WML, JAD, and JAR files are transmitted to the
operator gateway

• 7,11,15 : WML, JAD, and JAR files are forwarded to the
client

3 Just in time deployment and packaging of
mobile games

This work is done jointly with a mobile applications (and
especially advertisement games) provider company 3DDL
which personalizes its applications for each customer (logo
integration, adaptation to mobile features...).

The specificity of the API provided by cellulars design-
ers limits the portability, and constrains providers to build
and manage various versions of the same application for
different mobile platforms. Indeed, the providers usually



Figure 1. Application deployment without active network support

add some user specific information in the JAD file and store
these information in a data base. Moreover, when a user
downloads an application, a directory User/TypeMobile is
created and the JAD and JAR files are copied there. This
is an easy and expensive (in terms of storage, management,
consistency) way to guarantee the relation between the user,
its mobile phone and the version of requested application.

Once the application installed on the mobile, its manage-
ment is very difficult. Each modification causes new trans-
fers of files (updating application, modifying resource files
like logo/advertising,...).

To avoid these consuming operations, we have previ-
ously proposed in [8] to process JAD files of the fly in-
side the network between applications server and terminal
clients.

We go here further in this direction. We adapt at the
latest possible time the game itself. Thus, we construct on
the fly the JAR file that will be sent to the mobile phone.
The benefit of this is :

• since the JAR file is constructed on demand, the
provider does not have to manage the different pack-
ages (that means to store and construct every possible
arrangement of class files);

• the class files can be cached along the way to the client
and thus can be re-used for other clients;

• when update is needed, only new modified class files
and resources are to be retrieved from the provider.

The mandatory parameters of the configuration of the ap-
plication are not known in advance by developers and are
provided at the time of the download operation of the appli-
cation by the user.

An active node located on the stream path between the
mobile terminal client and the application server is able

to play the role of content adapter and application pack-
ager. The proposed approach is to reuse the same appli-
cation software for all application deployment steps and for
many heterogeneous mobile platforms, without to redesign
programs. The stream adaptation can be applied on vari-
ous parts of the data (Java classes contained in JAR archive,
personalized JAD file, resources files : logos, sounds, an-
nouncements, animations). We developed an active service
deployed on a Tamanoir active node and localized between
the servers and the mobile phone of the customer.

Tamanoir Active Node

The RESO team at INRIA developed the TAMANOIR [6]
execution environment 2, which allows to open out new ser-
vices on the network.

We have designed an architecture for a high perfor-
mance active router capable of being deployed around a
high performance backbone: the Tamanoir Execution En-
vironment [6, 7]. Our approach comprises the strategic de-
ployment of active network functionality around a backbone
in access layer networks and the provision of a high perfor-
mance dedicated architecture.

We define an Active Network Execution Environment
(EE) as an environment able to load and deploy network
services. It must be also able to direct packets towards the
required service thanks to appropriate header filtering.

Active services must be deployed at various levels de-
pending on resources (e.g. processing capabilities, memory
consumption and storage capacity) and intelligence (flex-
ibility of the execution environment) they need. In order
to provide an adapted EE for each type of service and to
limit packets ascent, we design an active node architecture

2Tamanoir homepage: http://www.ens-lyon.fr/LIP/RESO/Tamanoir



on four levels: Network Interface card (NIC), Kernel space,
User space and distributed resources (see Figure 2).

Figure 2. Tamanoir active node

A TAMANOIR node is composed of two main compo-
nents, TAMANOIRd and ANM (Active Node Manager).
The first component TAMANOIRd, is a daemon who turns
on a active node TAN (Tamanoir Active Node) and that
acts like a programmable active router. The TAN node re-
ceives and sends packets while processing tagged data pack-
ets with personalized services. Indeed the TAMANOIRd
daemon redirects packets assets received toward the ade-
quate service that is launched under shape of one light pro-
cess (thread). The resulting packet of this treatment is sent
to the next TAN node or to the final receiver.

The ANM (Active Node Manager) manages localization
and deployment of new active services on the node.

Active network support

By deploying a Tamanoir Active Node near the terminal
clients, we propose an enhanced global architecture : The
active node is deployed on the mobile operator site; it han-
dles requests from mobile nodes and packages applications
to be downloaded. Application server and database remains
in the applications providers control.

Figure 3 presents the needed operations to download an
application on a mobile client within this infrastructure :

• 1: Register, provide registration profile, request specific
game

• 2a, 2b : Send SMS via mobile operator + URL of the JAD
file on Tamanoir

• 3, 8: Request for WML and JAD file

• 4: Extraction of the user agent + identifying user from the
URL

• 5: Request for file ”Standard JAD” + Sending of
user agent,User ID, Application ID to the Tamanoir servlet

• 6: Send standard JAD file, the list of Java class and the re-
sources constituting the application to Tamanoir node

• 7 : Check in the Tamanoir cache if the JAR is already built,
otherwise which Java classes are absent/present

• 8: Request Java classes not already present in the cache. Put
them in the cache

• 9 : Verify integrity of Java classes

• 10: Create on the Tamanoir node the final game JAR file :
compress Java classes, create manifest, put them together

• 11 : Adaptation of the JAD content according to user ID and
mobile type (containing size of JAR file)

• 12 : Install game

4 Experimental validation

Active nodes have the capabilities to process packets in
addition of the usual routing functionalities. In our fist ex-
periments, we evaluate the benefits of an active node to sup-
port the deployment of applications and some scalability is-
sues. To validate this device several measures and tests have
been conducted with a network emulator tool (NistNet [5])
which allows to emulate throughput, latency and packet loss
on a link.

For classical mobile java applications, JAD files and JAR
are on average, respectively 0.5KB and 45KB. The time of
downloading a JAR file of 45Kb, on a GSM (9,6 Kb/s) net-
work is usually about 1 minute.

4.1 Experimental platform

In order to experiment and validate our active network
support, we deploy it on a local platform with network
emulation environment (NistNet). This platform allows us
to perfectly manage network features (bandwidth, latency,
packet loss. . . ).

A specific node emulates a large number of mobile
clients. This node forwards client requests to a Tamanoir
node, which creates dynamically the games by connecting
to the company application server and downloading the re-
sources files (class, graphics, music files...), if not in the
cache of Tamanoir.

4.2 Adapted data streams

The first task was to verify the quality of the JAR files
being created by the active nodes. Results were convincing,
with a compression ratio for the generated archives simi-
lar in size with those created by the ”jar” command line
tool. On a classical mobile application, for instance, we
were even able to spare few hundred bytes relatively to the
original archive file.

This factor is important, since the delay to transmit the
information must not be too long, thus the JAR file gener-
ated must be kept small. Since a normal application is about
45 KB, and the transmission time slow on GSM, sparing
few hundred bytes is valuable, both for the client who pays



Figure 3. Logical operations during application deployment with active network support

less, but also for the scalability of Tamanoir, when hundreds
of clients share the connection.

4.3 Experiments with network emulation

With NistNet, we emulate a GSM network by forcing
the throughput to 10Kb/s between client machines (C1 and
C2) and the Tamanoir Active Node (T1). We also reduce
the bandwidth to 100Kb/s between T1 and the applica-
tion server (A1). By default the bandwidth emulated by
the NistNet node (N1) is shared between all connections.
For emulating a dedicated throughput between the mobile
clients and application server, we generate connections with
Tamanoir on different ports.

We wanted to exhibit the time devoted to the creation of
the Jar files in the whole process. The total time includes
the time to process the WML/HTML (negligible), the time
to create the JAR and the time to create the JAD. The results
show that most of the time is spent in the processing of the
JAD file, not surprisingly (Fig. 4). Indeed, this file needs
the size of the JAR file associated. This information can
only be obtained after the JAR file is created, thus when all
the java classes have been downloaded from the server and
the compression finished. We can also see the impact of the
cache management since the JAR processing tends to de-
crease along the time (all the files are in the cache, thus the
time to process them decreases). These experiments tend
to show that the Tamanoir platform performs well when
a large community of mobile phones users want to down-
load simultaneously the application files (with the limit that
the actual configuration of the Tamanoir node can not sup-
port more than 1200 simultaneous requests, due to memory
leak).

We have also measured the time spent in Tamanoir for
the download of a file, thus the impact of Tamanoir in the

process : This time is very small, never more than 3% of the
total time for downloading a file over a GSM connection.

5 Discussion and current trends

The prototype presented here on mobile games is under
test at the company side for mobile games deployment, as
explained in this paper. For the moment, we are collecting
usage traces to better understand the behavior of users and
waiting times in a real world. We want to follow experimen-
tal validations on our platform by emulating next generation
wireless networks (GPRS, UMTS) in order to evaluate the
deployment impact on these networks.

The development of one application using this platform
is being reduced, typically down to ten days, given the ex-
treme easiness and portability of the platform. Usually,
much time is spent in the actual deployment of the appli-
cations on the mobile phones, which is facilitated using our
framework.

When new versions of an application are distributed, the
Tamanoir node must not use any more the cached files.
Thus, we have a management facility for the application
provider so that they can upload directly the modified java
classes or resources to Tamanoir, in a proactive way. This
process is mandatory for the system to be consistent over
the time. This can be easily automated when the class files
have been approved by the application designer (some tests
have to be extensively done at the provider side before the
application being deployed).

Another concern is the size of the cache. The experi-
ments have be done with an ideal large cache size (never
filled). In fact, given the small size of an application, it is
feasible to have quite a lot of applications ready to be con-
structed in the Tamanoir cache. Otherwise, we would have
to select some class files to be deleted, starting for those



Figure 4. Processing times of WML/HTML, JAR and JAD

least accessed for instance, or any other cache policy strate-
gies.

The Tamanoir platform is ideally suited to perform data
adaptation on the way from the server to the client. We
are currently working on a video adaptation strategy using
Tamanoir. The overall idea is to perform the downloading
of a generic video from the server, and to adapt it to the mo-
bile phone characteristics on the Tamanoir node. The file
is transcoded from MPEG2 to 3GP file formats, which is
a common format understood by many available mobiles.
Here the possible adaptations concern basic features like
the size of the video or the number of colors, ... More so-
phisticated adaptations will be added in the future like for
instance the language of the movie or of the subtitles, the
length of the video, ... We have already some results in this
direction [4] within a classical proxy approach.

6 Conclusion

This paper presents our ongoing work on operational
support of java application on mobile platforms through ac-
tive networks. Three goals were followed in doing this ap-
proach: to reduce application development time, to reduce
required bandwidth between applications server and clients
and to improve download performance by putting an ac-
tive equipment closed to client terminals. We believe we
reached these goals using the Tamanoir nodes in the core
of the network. We have proposed an experimental plat-
form based on network emulator and streams generation
tools to emulate the whole architecture. Through the use
of the Tamanoir execution environment, we can propose a
scalable solution.

References

[1] Java 2 platform, micro edition (j2me).
http://java.sun.com/j2me/.

[2] Ota. Over The Air User Initiated Provisioning: Recom-
mended Practice for the Mobile Information Device Profile,
Version 1.0, May 2001.

[3] Midlets. Settings for OTA Download of MIDlets Version 1.0,
Document, http://www.forum.nokia.com, Sept. 2002.

[4] G. Berhe, L. Brunie, and J.-M. Pierson. Content adaptation
in distributed multimedia systems. Journal of Digital Infor-
mation Management, special issue on Distributed Data Man-
agement, 3(2), June 2005.

[5] M. Carson and D. Santay. Nist net: a linux-based network em-
ulation tool. SIGCOMM Computer Communication Review,
33(3):111–126, July 2003.

[6] J.-P. Gelas, S. El Hadri, and L. Lefèvre. Towards the design of
an high performance active node. Parallel Processing Letters
journal, 13(2), June 2003.

[7] L. Lefèvre. Heavy and lightweight dynamic network ser-
vices : challenges and experiments for designing intelligent
solutions in evolvable next generation networks. In I. Society,
editor, Workshop on Autonomic Communication for Evolv-
able Next Generation Networks - The 7th International Sym-
posium on Autonomous Decentralized Systems, pages 738–
743, Chengdu, Jiuzhaigou, China, Apr. 2005.

[8] L. Lefèvre and A. Saroukou. Active network support
for deployment of java-based games on mobile platforms.
In I. C. Society, editor, The First International Confer-
ence on Distributed Frameworks for Multimedia Applications
(DFMA’2005), pages 88–95, Besancon, France, Feb. 2005.

[9] D. Tennenhouse and D. Wetherall. Towards an active network
architecture. Computer Communications Review, 26(2):5–18,
April 1996.


