
hFT-FW: hybrid fault-tolerance for

cluster-based Stateful Firewalls

P. Neira1, R.M. Gasca3

Department of Languages and Systems

Quivir Research Group

ETS Ingenierı́a Informatica

University of Sevilla

Avda. Reina Mercedes, s/n

41012 SEVILLA - Spain

{pneira|gasca}@us.es

L. Lefèvre2

INRIA RESO - Universite of Lyon

LIP Laboratory

(UMR CNRS, INRIA, ENS, UCB)

Ecole Normale Supérieure de Lyon

46 allée d’Italie

69364 LYON 07 - France

laurent.lefevre@inria.fr

Abstract—Failures are a permanent menace for the availability
of Internet services. During the last decades, numerous fault-
tolerant approaches have been proposed for the wide spec-
trum of Internet services, including stateful firewalls. Most of
these solutions adopt reactive approaches to mask failures by
replicating state-changes between replicas. However, reactive
replication is a resource consuming task that reduces scalability
and performance: the amount of computational and bandwidth
resources to propagate state-changes among replicas might be
high. On the other hand, more and more commercial off-the-shelf
platforms provide integrated hardware error-detection facilities.
As a result, some current fault-tolerance research works aim to
replace the reactive fault-handling with proactive fault-avoidance.
However, pure proactive approaches are risky and they currently
face serious limitations. In this work, we propose a hybrid
proactive and reactive model that exploits the stateful firewall
semantics to increase the overall performance of cluster-based
fault-tolerant stateful firewalls. The proposed solution reduces
the amount of resources involved in the reactive state-replication
by means of bayesian techniques to perform lazy replication
while, at the same time, benefits from proactive fault-tolerance.
Preliminary experimental results are also provided.

I. INTRODUCTION

Failures are a permanent threat for continued availability of

the Internet services. If failures are not handled appropriately,

they can lead to service misbehaviours and disruptions.

During the last three decades, numerous fault-tolerant ap-

proaches have been proposed for the wide spectrum of In-

ternet services. This includes databases [1][2], web servers

[3], TCP-based back-end servers in general [4][5][6], VoIP

PBX [7], stateful firewalls [8][9], CORBA [10], among many

others. These solutions are mainly based on active and passive

replication. Thus, they inherently adopt reactive approaches to

mask failures.

However, replication is a resource consuming task. The

amount of computational and bandwidth resources to prop-

agate state-changes among replicas is generally high. Thus,

reactive fault-tolerant solutions may not be suitable for large

scale and high performance network setups.

On the other hand, commercial off-the-shelf platforms pro-

vide integrated hardware error-detection facilities more and

more. These mechanisms go even further as they can also cor-

rect hardware errors in runtime. These include RAM memory

and PCI bus transfer error detection and correction [11].

Intuitively, if a system has correctable errors, the service will

experience performance degradation. Moreover, correctable

errors may become uncorrectable at some point, and the

chances of experiencing a failure increases. Following this

basis, it would be safe to proactively migrate the service from

the primary replica, that is experiencing correctable errors, to

a sane operational backup replica; thus, forcing the take-over.

However, a pure proactive approach is risky because:

1) It lacks of completeness since, as for now, there is

no feasible model to diagnose and predict all kind

of possible computer software and hardware errors in

runtime. At best, they cover a subset of the possible

errors.

2) If the failure happens during the service migration, we

may fail to recover the service or, even if we try to

recover the service partially, we will not be able to know

how many states have been recovered either. This is

due to the fact that we have no guarantees on when an

error turns out uncorrectable and, consequently, leads to

failures.

For that reason, we propose a hybrid architecture to solve

these issues which is composed of two parts:

1) Reactive fault-handling: the service state-changes are

preventively propagated from the primary to the backup

replicas. However, we exploit the semantics of Internet

service to relax the degree of replication. Thus, reducing

the waste of computational and bandwidth resources.

2) Proactive fault-avoidance: the service states are fully

migrated from the primary replica to a sane backup

replica in case that some errors are detected.

Thus, in contrast to other previous work in this area, we

do not aim to replace the reactive fault-tolerance approach

with a pure proactive solution but, instead, to hybridize both

approaches to:

1) define an architecture more suitable for large scale

environments.

2) reduce the impact of a possible unsuccessful proactive

take-over.

However, covering the whole variety of Internet services,

with very different semantics, would be rather ambitious.

For that reason, we particularly focus on cluster-based fault-

tolerant stateful firewalls as case study to extend our previous

works in this field.

This paper is organized as follows: In Section II, we provide

an overview of related works in the domain of fault-tolerant

stateful firewalls and existing proactive fault-tolerant architec-

tures. Then, Section III details the system model covered in

this work. The hybrid proactive and reactive architecture is

detailed in Sections IV, V and VI. We conclude with the

evaluation in Section VII and the conclusions and future works

in Section VIII.

II. RELATED WORKS

In our previous works, we have proposed an event-driven

architecture and a replication protocol to build cluster-based

reactive fault-tolerant stateful firewalls [8]. We have extended

it to support multi-primary setups in [9]. The main features of

the solution are:

1) Transparency. The solution ensures negligible delay

in client responses and quick recovery from failures.

Clients does not notice any bandwidth throughput drop.

It is suitable for 1 GEthernet network setup.

2) Simplicity. We reuse and extend existing software-based,

high availability solutions. Moreover, the client does not

require any modification. Therefore, this is a client trans-

parent solution. The firewall must also require minimal

and non-intrusive modifications.

3) Low cost. The solution is suitable for off-the-shelf

equipments and it requires no hardware extensions.

4) Multi-primary workload sharing setups. The architecture

proposed supports advanced setups where several replica

firewalls share workload to increase scalability.

In particular, the replication protocol exploits the stateful

firewall semantics to reduce the number of retransmitted

messages under message omission situations and improve the

overall flow durability.

On the other hand, several research works have focused

on defining frameworks to predict and diagnose failures in

computer systems [12]. Indeed, these are the main block to

build proactive fault-tolerance solutions for Internet services.

In [13], the authors provide a proactive event-driven fault-

tolerant framework based on virtualization techniques that

aims to improve the scalability of fault-tolerant High Perfor-

mance Computing (HPC) solutions. The solution is composed

on three blocks: the fault predictor (FP), the policy daemon

(PD) and the fault-tolerance daemon (FTD). In this approach,

the FP asynchronously delivers alarms to the PD which

determines how to react to the detected error according to

the selected policy. The policy is expressed in a state-machine

specification. The decision issued by the PD is executed by the

FTD which migrates the virtual machine to a healthy replica.

A similar solution is presented in [14] that directly implements

the policy into the system.

In [15], the same authors of [13] make some interesting

observations regarding reactive and proactive fault-tolerance.

Among them, they state that all system failures cannot be

predicted and, consequently, proactive fault-tolerant policies

are still very naive since they are still based on basic fault

prediction mechanisms.

III. SYSTEM MODEL

The formalization of the stateful firewall model is out of

the scope of this work as other works have already proposed

a model [16]. Nevertheless, we formalize the definitions ex-

tracted from the fault-tolerant stateful firewall semantics that

are useful for the aim of this work:

Definition 1. Fault-tolerant stateful firewall cluster: it is a

set of stateful replica firewalls FW = {fw1, ..., fwn} where

n ≥ 2 (See Fig. 1). The number of replica firewalls n that

compose the cluster depends on the availability requirements

of the protected network segments and their services, the

cost of adding a replica firewall, and the workload that the

firewall cluster has to support. We also assume that failures

are independent between them so that adding new replica

firewalls improve availability. The set of replica firewalls fw
are connected through a dedicated link and they are deployed

in the local area network. We may use more than one dedicated

link for redundancy purposes. Thus, if one dedicated link fails,

we can failover to another.

Fig. 1. Stateful firewall cluster of order 2 respectively

Definition 2. Cluster rule-set: Every replica firewall has

the same rule-set.

Definition 3. Flow filtering: A stateful firewall fwx filters

a set of flows Fx = {F1, F2, ..., Fq}.
Definition 4. Multiprimary cluster: We assume that one or

more firewall replicas deploy the filtering at the same time, the

so-called primary replicas, while others act as backup replicas.

Definition 5. Failure detection: We assume a failure detec-

tion manager, eg. an implementation of VRRP [17] [18], that

detects failures by means of heartbeat tokens. Basically, the

replicas send a heartbeat token to each other every t seconds,
if one of the replicas stops sending the heartbeat token, it is

supposed to be in failure. This failure detection mechanism

is complemented with several multilayer checkings such as

link status detection and checksumming. This manager is also

responsible of selecting which replica runs as primary and

which one acts as backup. Also, we assume that the manager

runs on every replica firewall belonging the cluster.

Definition 6: Flow durability (FD): The FD is the proba-

bility that a flow has to survive failures. If FD is 1 the replica

firewall can recover all the existing flows. In this work, we

introduce a trade-off between the FD and the performance

requirements of cluster-based stateful firewalls.

Definition 7. Flow state: Every flow Fi ∈ F is in a state

si
k in an instant of time tk.
Definition 8. State determinism: The flow states are a finite

set of deterministic states S = {s1, s2, ..., sn}.
Definition 9. Maximum state lifetime: Every state si

k has

a maximum lifetime Tk. If the state si
k reaches the maximum

lifetime Tk, we consider that the flow Fi is not behaving as

expected, eg. one of the peers has shutdown due to a power

failure without closing the flow appropriately.

Definition 10. State variables: Every state si
k is composed

of a finite sets of variables si
k = {v1, v2, ..., vj}. The change

of the value of a certain variable va may trigger a state change

si
k → si

k+1
.

Definition 11. State history: The backup replica does not

have to store the complete state history si
1 → si

2 → ... → si
k

to reach the consistent state si
k. Thus, the backup only has to

know the last state si
k to recover the flow Fi.

Definition 12. State classification: The set of states S
can be classified in two subsets: transitional and stable states.

These subsets are useful to notice if the effort required to

replicate one state change is worthwhile or not:

• Transitional states (TS) are those that are likely to be

superseded by another state change in short time. Thus,

TS have a very short lifetime.

• Stable States (SS) are long standing states (the opposite

of TS).

We have formalized this state classification as the function

of the probability (P) of the event of a state change (X). Let

t be the current state age. Let Tk be the maximum lifetime

of a certain state. Given the flow Fj in the current state sj
k,

we define the probability Px that a TS can be superseded by

another state change can be expressed as:

Px(t, sj
k) =

{

1 − δ(t, sj
k) if (0 ≤ t < Tk)

0 if (t ≥ Tk)

And the probability Py that a SS can be superseded by a

state change can be expressed as:

Py(t, sj
k) = 1 − Px(t, sj

k)

This formalization is a representation of the probability that

a state can be replaced by another state as time goes by. Both

definitions depend on the δ(t, sj
k) function that determines how

the probability of a state change sj
k increases, e.g. linearly,

exponential, etc. The states can behave as SS or TS depending

on their nature, eg. in the case of TCP flows (Fig. 2), the initial

handshake and closure packets (SYN, SYN-ACK and FIN, FIN-

ACK, ACK respectively) trigger TS and ACK after SYN-ACK

triggers TCP Established state which usually behaves as SS.

Fig. 2. A valid TCP flow state-machine extracted from Linux’s Netfilter

Network latency (measured in round-trip time, RTT) is

another important factor because if latency is high, all the

states tend to behave as SS. In practise, we can define a simple

δ(t, sj
k) that depends on the acceptable network latency l:

δx(t, sj
k) =

{

1 if t > (2 ∗ l)
0 if t ≤ (2 ∗ l)

The acceptable network latency l depends on the communi-

cation technology, eg. on a wired line the acceptable latency

is 100ms and in satellite links 250 ms.

For the aim of this work, we focus on ensuring the durability

of SS as they have a more significant impact on the probability

that a flow can survive failures. This means that our main

concern is to ensure that long standing flows can survive

failures because the interruption of these flows lead to several

problems such as:

1) Extra monetary cost for an organization, eg. if the VoIP

communications are disrupted, the users would have to

be re-called with the resulting extra cost.

2) Multimedia streaming applications breakage, eg. Internet

video and radio broadcasting disruptions.

3) Remote control utility breakage, eg. SSH connections

closure.

4) The interruption of a big data transfer between two

peers, eg. peer to peer bulk downloads.

Nevertheless, the high durability of TS is also desired;

however, they are less important than SS since their influence

on the FD is smaller.

IV. HYBRID FAULT-TOLERANT ARCHITECTURE

Our proposed solution hybridizes both proactive and reac-

tive fault-tolerant solutions. The architecture consists of two

parts:

1) The proactive fault-avoidance implements a fault detec-

tor that triggers the migration of the flow-states from

the unhealthy firewall replica to a healthy one. This

migration happens if an error occurs, otherwise the fault-

tolerant solutions does not consume any resource, thus,

increasing the overall performance.

2) The reactive fault-handling propagates state-changes

from the primary firewall replica to the backup firewall

replica. However, the replication adopts a lazy approach

as we do not propagate every state-change. Instead,

the approach only replicates a subset of them that are

considered to be SS.

Our solution supports the following scenarios:

1) A detectable error, ie. an error that the proactive part

can recognize, triggers the migration of the states to a

healthy firewall replica. Thus, the 100% of the flows are

fully recovered.

2) A detectable error triggers the migration of the states

to a healthy firewall replica. However, in the middle

of the migration, the unhealthy node crashes. In this

case, the proactive part only guarantees that a part of the

flows will be recovered. Nevertheless, the lazy reactive

approach gives us the chance to recover those flows that

were not successfully recovered by the proactive part.

3) An undetectable error, ie. an error that the proactive part

cannot recognize, results in a failure that crashes the

node. Thus, the proactive part did not have any chance

to initiate the migration of the flow-states. However, the

lazy reactive approach gives us the chance to recover

the flows that were not successfully migrated.

Thus, with regards to the reactive part, we have to define

an approach that:

1) consumes few computational and bandwidth resources.

2) ensures that a high rate of flows can be recovered in case

that the proactive part does not successfully migrate the

states.

In the following sections we detail the proactive (Sect. V)

and the reactive (Sect. VI) parts that compose our proposed

architecture keeping in mind the previous key ideas to build a

lazy reactive approach.

V. PROACTIVE: MIGRATION ON ERRORS

We assume that our cluster-based stateful firewall imple-

ments a proactive fault-tolerant framework similar to the

one described in [13]. This includes a fault-tolerant detector

and predictor (FPD) which uses some existing fault-detection

framework such as [11] to detect, correct and notify PCI

bus and RAM memory errors. Moreover, the FPD can also

implement other fault detection techniques based on hardware

sensors information [12] and log-files.

The FPD notifies to the policy daemon (PD) that an error of

a certain seriousness will happen. The PD evaluates the error

and, if it considers that it can compromise the firewalling, it

tells the state migrator (SM) to extract the state-information of

the existing flows from the stateful firewall and to propagate

them to a sane firewall replica.

To ensure that the proactive approach works, we have to

make the following assumptions:

1) Let Tprop be the time required to propagate the current

flow-states plus the time required by PD to decide the

appropriate action in answer to the error. Let Tfail be the

time between an error occurrence and the failure time.

Then Tprop must fulfill Tprop < Tfail to ensure high

flow durability. If this assumption is not fulfilled, we

cannot ensure that the state migration will be succesfully

accomplished.

2) If the evaluation of a certain error is not appropriate,

the state migration may possibly not be successful. In

other words, if the detection and evaluation of the error

takes too long, then the necessary time Tprop cannot be

assured. For that reason, the PD must deploy simple

but conservative policies and implement fast runtime

decision algorithms at the same time.

In spite of the detailed limitations, this approach does not

incur any penalty in the system performance as the migration

only happens when faults arise, and we assume that faults

rarely occur. Still, we have to consider that it is not possible to

predict and detect all possible errors before the system crash.

VI. REACTIVE: BAYES-BASED LAZY REPLICATION

State replication is generally a resource-consuming task.

This is particularly true if state-changes occur quite often and

the number of replication messages become high. This reduces

the overall scalability of the replication solution.

For that reason, we propose an improvement which consists

of a simple routine that determines in runtime if the effort to

replicate the state-changes si
k of a given flow Fi is worthwhile

or not. For that purpose, we use Naive Bayes techniques that

automatically learn the behaviour of the flow communications

to decide if the resources invested to replicate si
k substantially

improve the flow durability (FD), which is the probability that

a flow can be successfully recovered.

The naive Bayesian classifiers provide a simple way to

classify information in runtime that gives usually good results

in practise, eg. in spam filters. Let C be the class, let Xi

be the variable that represents one of the features of the

system. Given a specific instance x = {x1, x2, ..., xn} of fea-

ture variables. A Bayesian classifier calculates the probability

P (C = ck|X = x) for every possible class ck as:

p(C = ck|X = x) =
P (X = x|C = ck) ∗ P (C = ck)

P (X = x)

In this equation, P (X = x|C = ck) is the most difficult

part to calculate. Naive Bayes [19] solves the problem in the

most restrictive form by assuming that every variable xi is

conditionally independent of every other feature xj given the

class C. Therefore:

P (X = x|C = ck) =
∏

i

P (X = xi|C = ck)

A. State classification

We have classified state-changes in two types: transitional

and stable. This classification can be used to decide if the

effort required to replicate one state-change is worthwhile or

not. Roughly speaking, transitional states (TS) are those that

are likely to be superseded by another state-change in short

time. Thus, TS have a very short lifetime. On the other hand,

Stable States (SS) are long standing states so that they are the

opposite of TS. We have formalized this state classification in

the system model (Sect. III). This classification is simple but it

provides good results in practise for online state classification.

B. Bayesian state replication

We assume that there is a knowledge base indexed by the

tuple Qr = [Addrsrc, Addrdst, Portdst] which is initially

empty. Note that two different established flows Fi and Fj

between peer pA and pB are identified by the same tuple Qr

if Fi and Fj refer to the same Portdst. At startup, we assume

that the base of knowledge is empty. Thus, when a flow Fi is

filtered for first time a new tuple Qr is inserted.

Every tuple Qr points to one array Ar which stores

the probability that the states can be transitional Ar =
{P (TS|s1) = v1/t1, ..., P (TS|sn) = vn/tn } where vk

identifies the number of TS out of the total tk states sn

observed. Thus, the probability P (TS|sk) = vk/tk is calcu-

lated by observing the lifetime of state change sk of every

flow Fj in runtime. If the lifetime of the state change sk

goes over the classification barrier, we assume that it behaves

as TS, therefore P (TS|sk) = vk + 1/tk + 1, otherwise

P (TS|sk) = vk/tk + 1.
The Portdst parameter is useful since the same peer pB

can provide different services to the same peer pA, eg. pB can

provide HTTP at port 80 and SSH at port 22, and the service

provider may have applied different Quality of Service (QoS)

policies depending on the type of service like prioritizing

interactive traffic can be over bulk traffic. Thus, the set of

TS and SS for SSH and HTTP flows may differ due to QoS.

We define the domain of the class C into transitional and

stable states, and the set of features is the domain of possible

flow states S = {s1, s2, ...sn}. Thus, the probability that a

certain state sk is a transitional state is:

P (C = TS|X = sk) =
P (X = sk|C = TS) ∗ P (C = TS)

P (X = sk)

Similarly, the probability that a state sk is a stable state is:

P (C = SS|X = sk) =
P (X = sk|C = SS) ∗ P (C = SS)

P (X = sk)

Intuitively, we deduce that:

P (C = SS|X = sk) + P (C = TS|X = sk) = 1

In order to resolve these equations, we have to define

a training period where we collect how every state-change

belonging S behaves by using the classification barrier. Thus,

we define a simple solution to reduce the number of replication

messages: if the state-change sk behaves as TS, we delay or

eliminate the replication. On the other hand, if the state-change

represents a SS, it is propagated to the neighbour mesh AP.

As the latency of the network may change due to several

factors, the state-change prediction may start failing. In order

to solve this problem, we can define a maximum number of

failing predictions after which we reset the outdated tuple Qr.

VII. EVALUATION

In order to evaluate our approach, we have deployed a sim-

ple Primary-Backup cluster-based stateful firewall of order two

based on our free-software daemon for Linux [20] in a segment

of the university network. The setup is composed of Intel

Xeon 1.6GHz with 1GEthernet cards. We have implemented

an extension in C to enable the Naive Bayes-based replication

that has around 400 LOC [21]. We did not enable any compiler

optimization in our experiments. We have emulated the users

behaviour with a small bot that: connects to HTTP websites

in France, Spain, and Japan; checks for new messages via

POP3 and IMAP; file downloads via FTP; and starts SSH

connections with several servers in Spain and France. The

size of the experiment is small as we have only measured

the behaviour of our implementation until we have observed

the end of 200 flows. We plan to perform bigger experiments

in the near future.

We aimed to evaluate the following aspects that are impor-

tant to validate our proposed solution:

1) The time required by the proactive approach to migrate

the states from one hypothetic unhealthy firewall replica

to a healthy one.

2) The number of state-changes that can be saved by the

Bayes-based reactive lazy replication, including the good

and wrong prediction rates.

3) The amount of computational resources invested in the

Bayes-based reactive lazy replication.

We do not cover further evaluation of the proactive part as

we consider that the formalization of a proactive framework

is out of the scope of this work.

We have evaluated the extra CPU and memory consumption

of the Bayes-based lazy replication. Our experiments have

shown that the CPU consumption is negligible to our previous

works [8][9]. With regards to the memory consumption, our

implementation consumes the 80 bytes per tuple T (see

Sect. VI for details) to store the states behaviour.

A. Bayes-based replication: prediction with homogeneous net-

work latency

For our experiments, and according to Sect. III, we have

adopted a boundary of 200ms to train Naive Bayes, ie. if a

state lives more than 200ms is a SS, otherwise it is a TS. The

measured homogeneous network latency is around 30ms.

Moreover, as Naive Bayes approach returns the probability

that a state sk is SS (not a boolean answer), we have to select

a barrier that is used to determine the prediction, eg. if the

barrier is set to 0.05, Naive Bayes must return ≤ 0.05 to

classify sk as TS. We assume that a wrong prediction occurs

when a SS is classified as TS since then sk is not replicated.

Intuitively, we do the following observations: if we keep

the barrier low, Naive Bayes easily predicts that most states

are stable. Thus, we have less chances to save states in the

replication but the chances to hit wrong predictions decreases.

On the other hand, if we keep the barrier high, Naive Bayes

easily predicts that most states are transitional. Thus, we have

more chances to save states in the replication but also the

chances to hit wrong preditions increases.

Therefore, we have to look for a low barrier that gives a

good tradeoff between a high rate of saved-states and a low

rate of wrong predictions.

The following figures shows the experimental results when

the barrier was set to 0.125 (Fig. 3), 0.25 (Fig. 4) and 0.50

(Fig. 5). The results initially may fluctuate since Naive Bayes

requires some time to learn the state-change behaviour until it

stabilizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

ra
te

 [
0
:1

]

number of flows

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 3. Bayesian replication using barrier 0.125 - homogeneous latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

ra
te

 [
0
:1

]

number of flows

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 4. Bayesian replication using barrier 0.25 - homogeneous latency

As we can observe, using 0.50 as barrier increases the

number of saved states in the replication but dramatically

increases the number of wrong predictions close to 18%. Thus,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

ra
te

 [
0
:1

]

number of flows

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 5. Bayesian replication using barrier 0.50 - homogeneous latency

in case that the proactive part fails to migrate the service, the

reactive part will not be able to recover 18% of flows.

In Fig. 6, we have represented the evolution of the good

predition rate, the wrong prediction rate and the saved state-

changes rate. The results show that adopting a low barrier

ensures a save of 50% in the state replication. The increase of

the barrier consequently increases the wrong predictions. The

use of a low barrier forces Bayes to have high certainty that

the state is trancisional.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ra
te

 [
0
:1

]

Bayes boundary [0.05:0.50]

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 6. Bayesian replication: barrier comparison results

B. Bayes-based replication: prediction with heterogeneous

network latency

We have repeated the measurements by introducing hetero-

geneous latency in the network. Specifically, we have used a

normal distribution of 20-500ms with Linux netem1.

With regards to the previous experiments with an homo-

geneous network latency, we observe that the rate of wrong

predictions increases quicker with heterogeneous network la-

tency. In Fig. 8, the rate of wrong predictions using a barrier

of 0.25 to classify states is close to 19% which is similar to

the results obtained using a barrier of 0.50 with homogeneous

1http://www.linuxfoundation.org/en/Net:Netem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

ra
te

 [
0
:1

]

number of flows

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 7. Bayesian replication using barrier 0.125 - heterogeneous latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

ra
te

 [
0
:1

]

number of flows

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 8. Bayesian replication using barrier 0.25 - heterogeneous latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

ra
te

 [
0
:1

]

number of flows

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 9. Bayesian replication using barrier 0.35 - heterogeneous latency

latency. However, the number of saved-states is around 40%

using a barrier of 0.125 (Fig. 7) which is still a good rate.

Thus, we can conclude that keeping the barrier low ensures

a save around 40-50% while the rate of wrong predictions

does not goes over 2%.

In Fig. 10, we represent the relationship between the good

prediction rates, the wrong prediction rates and the saved-

states in a heterogeneous network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25

ra
te

 [
0
:1

]

Bayes boundary [0.05:0.25]

good prediction rate
wrong prediction rate

saved state-changes messages rate

Fig. 10. Bayesian replication: barrier comparison results

C. Proactive migration

We have measured and normalized the time required to

migrate the flow states between two replica firewalls. In our

experiments, we have emulated different message omission

rates. Of course, we assume the use of the reliable replication

protocol detailed in [8]. The results show that the time to

transfer the states between two replicas with no packet loss are

around 4 seconds for 25000 state-flows. This time increases

if there is message omission situations, as the backup firewall

replica requests retransmissions to the primary firewall replica.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000

T
im

e
 (

s
e
c
o
n
d
s
)

State objects

0% message omission
5% message omission

12.5% message omission
25% message omission

Fig. 11. Proactive migration time

VIII. CONCLUSION AND FUTURE WORKS

In this work, we extend our previous works by proposing

an hybrid fault-tolerance approach for clusted-based stateful

firewalls that mixes proactive fault-avoidance with lazy reac-

tive fault-handling. This approach reduces the computational

resource consumption with regards to our existing reactive

solution, and it is less risky than a pure proactive approach.

Adopting a low barrier in Naive Bayes to classify states,

our solution ensures that the reduction in the state replication

is 40-50%, which is a considerable reduction, and the rate of

wrong predictions is around 2%. The solution benefits from

the proactive approach to reduce the resources involves in the

state replication.

As future work, we plan to evaluate more sophisticated

machine-learning approaches to classify states keeping in mind

the performance runtime requirements of the covered scenario.

We are also studying other Internet services with similar

semantics that can benefit from this hybrid architecture.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Min-

isterio de Educación y Ciencia through a coordinated research

project(grant DPI2006-15476-C02-00) and Feder (ERDF).

REFERENCES

[1] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Un-
derstanding replication in databases and distributed systems,” ICDCS,
2000.

[2] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, and G. Alonso, “How
to select a replication protocol according to scalability, availability, and
communication overhead,” SRDS, p. 24, 2001.

[3] R. Zhang, T. Adelzaher, and J. Stankovic, “Efficient TCP Connection
Failover in Web Server Cluster,” in IEEE INFOCOM 2004, Hong Kong,
China, mar 2004.

[4] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP:
Connection Migration for Service Continuity in the Internet,” in 22nd

International Conference on Distributed Computing Systems, 2002.

[5] M. Marwah, S. Mishra, and C. Fetzer, “TCP server fault tolerance
using connection migration to a backup server,” In Proc. IEEE Intl.

Conf. on Dependable Systems and Networks (DSN), pages 373–382,

San Francisco, California, USA, Jun 2003.
[6] N. Ayari, D. Barbaron, L. Lefevre, and P. Primet, “T2CP-AR: A system

for Transparent TCP Active Replication,” in AINA ’07: Proceedings

of the 21st International Conference on Advanced Networking and

Applications. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 648–655.

[7] A. Gorti, “A faul tolerant VoIP implementation based on Open Stan-
dards,” in IEEE Proceedings EDCC-6, pag. 35-38, Coimbra, Portugal,
Oct. 2006.

[8] P. N. Ayuso, R. M. Gasca, and L. Lefevre, “FT-FW: Efficient Connection
Failover in Cluster-based Stateful Firewalls,” in Proceedings of the

16th Euromicro Conference on Parallel, Distributed and Network-Based

Processing (PDP 2008). Washington, DC, USA: IEEE Computer
Society, 2008, pp. 573–580.

[9] P. Neira Ayuso, L. Lefevre, and R. M. Gasca, “Multiprimary support
for the availability of cluster-based stateful firewalls using FT-FW,”
in Proceedings ESORICS’08: European Symposium on Research in

Computer Security, Malaga, Spain, Oct. 2008.

[10] P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte,
J. G. Slember, and D. Srivastava, “Mead: support for real-time fault-
tolerant corba: Research articles,” Concurr. Comput. : Pract. Exper.,
vol. 17, no. 12, pp. 1527–1545, 2005.

[11] “Linux edac (error detection and correction) project,”
http://bluesmoke.sourceforge.net.

[12] N. A. D. Turnbull, “Failure prediction in hardware systems,” Departa-
ment of Computer Science. University of California, CA, USA, Tech.
Rep., 2003.

[13] G. Vallee and K. Charoenpornwattana, “A framework for proactive
fault tolerance,” in Proceedings of 3rd international conference on

Availability, Reliability and Security (ARES), Mar. 2008.

[14] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
fault tolerance for hpc with xen virtualization,” in ICS ’07: Proceedings

of the 21st annual international conference on Supercomputing. New
York, NY, USA: ACM, 2007, pp. 23–32.

[15] G. Vallee, T. Naughton, C. Engelmann, H. Ong, and S. L. Scott,
“System-level virtualization for high performance computing,” Proceed-

ings of the 16th Euromicro Conference on Parallel, Distributed and

Network-Based Processing (PDP 2008, vol. 0, pp. 636–643, 2008.
[16] M. Gouda and A. Liu, “A model of stateful firewalls and its properties,”

Proceedings of International Conference on Dependable Systems and

Networks, 2005 (DSN), pp. 128–137, 28 June-1 July 2005.
[17] R. Hinden, “Rfc 3768: Virtual router redundancy protocol (vrrp),” apr

2004.
[18] A. Cassen, “Keepalived: Health checking for lvs & high availability,”

http://www.linuxvirtualserver.org.
[19] I. Good, “The estimation of probabilities: An essay on modern bayesian

methods,” MIT press, 1965.
[20] P. Neira, “conntrackd: The netfilter’s connection tracking userspace

daemon,” http://people.netfilter.org/pablo/.
[21] ——, “Extension to implement naive bayes state replication,” 2008.

[Online]. Available: http://dune.lsi.us.es/bayes.tgz

