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Abstract—In an effort to raise awareness on the increasing
carbon emissions of Cloud computing, the European Corporate
Sustainability Reporting Directive effectively requires providers
to supply their customers with an assessment of the carbon
impact associated with their use. This represents a challenge
for bare metal servers, where the deployment of dedicated
power meters is often unfeasible at scale. To address this, we
present PPEM-BM, a novel sensor-driven modeling approach to
estimate the power consumption of bare metal servers using CPU
temperature data acquired via IPMI. PPEM-BM enhances and
generalizes the existing POWERHEAT method, which correlates
CPU temperature with power. Our methodology involves training
individual power models, performing cross-evaluation to deter-
mine their portability, and then using a Learning to Rank (LTR)
model to select the most appropriate pre-trained model for a
target server based on its hardware configuration and CPU tem-
perature statistics. An experiment conducted on 1,076 production
servers at OVHcloud shows that PPEM-BM demonstrates a
significant improvement compared to models based solely on
hardware profiles. The approach offers a practical, scalable, and
cost-effective solution for hosting providers to monitor energy
consumption without widespread sensor deployment.

Index Terms—Power Estimation, Sensor-driven Modeling,
Model Portability, Bare Metal Server, Non-intrusive Monitoring

I. INTRODUCTION

Data centers are crucial elements of the global digital infras-
tructure, and their substantial energy consumption generates
not only high operational costs, but also significant environ-
mental impacts, particularly in terms of carbon emissions [1].
Accurately measuring this consumption has become essential
for hosting providers to be able to provide an assessment of
the carbon impact of services to their customers, particularly
those subject to regulations like the European Corporate Sus-
tainability Reporting Directive (CSRD) [2].

In this paper, we consider the industrial context of an
existing server hosting company that is operating 450,000
servers worldwide, most of them leased in a bare metal mode,
where customers are super-users on the physical machines they
rent. In this context, the company cannot use classical power
estimation methods relying on hardware counters (e.g. using
Running Average Power Limit) [3] since they require to have
access to the operating system of the server, which is not the
case for providers of bare metal servers.

Another approach consists in using external energy sen-
sors. Deploying energy sensors on every server in large-scale
data centers is an extremely costly and complex task. The

challenges include not only the expense of acquiring and
installing the sensors, but also the installation, maintenance
and management of the hardware and the data generated.

These constraints make it difficult to use physical sensors in
infrastructures with thousands of servers. Consequently, it is
crucial to develop alternative solutions, capable of estimating
energy consumption without relying on such costly equipment.
A portable, cost-effective method can ensure widespread ap-
plication and reduce financial and operational obstacles.

The main objective of this work is to develop an approach
for training and using “portable” models, capable of estimating
the energy consumption of bare metal servers from CPU
temperature data obtained via IPMI (Intelligent Platform Man-
agement Interface). This standardized protocol is indeed able
to get access to server monitoring information independently
from the operating system. Unlike conventional models that
depend on hardware or software metrics that are difficult to
access in bare metal environments, this model stands out for
its portability and large-scale applicability.

In this article, we make the following contributions:

« A methodology for porting power sensor-driven models
from power monitored servers to unmonitored servers,
without intrusive access (i.e. no operating system access)

o The generalization of an existing approach: POWER-
HEAT [4], that uses CPU temperature to estimate power
consumption

o An experimental evaluation of the proposed solution
conducted on 1,076 production servers from OVHcloud.

The article is organized as follows: Section II reviews
previous work on power measurement and estimation. Sec-
tion III presents the industrial context at OVHcloud and the
challenges justifying modeling. Section IV details the IPMI
data collection. To address the challenge of estimation, Section
V describes the PPEM-BM methodology, which generalizes
POWERHEAT approach through cross-evaluation and a Learn-
ing to Rank (LTR) model. Section VI presents the experiment
comparing PPEM-BM with other methods and Section VII
analyzes its performance. Finally, Section VIII concludes on
the contributions of PPEM-BM, its efficiency, and future
improvement directions.

II. BACKGROUND AND RELATED WORKS

Assessing a server’s energy consumption might seem trivial:
one could simply install a wattmeter at the power inlet.



However, an activity that is simple on a small scale becomes
highly complex when operating hundreds of thousands of
servers. In this section, we explore methods for electrical
measurement and estimation, focusing on large-scale solutions.

A. Individual energy measurement in production

Intelligent PDUs (Power Distribution Units), also known as
Smart PDUs, iPDUs, or Metered PDUs, distribute power to
servers and other IT equipment. They also integrate measure-
ment capabilities, providing data on voltage, current, power,
and energy consumption [5]. This monitoring can occur at the
PDU’s input (total for the PDU), at the branch circuit level,
or more granularly at each individual outlet powering a server
[6]. They are considered an accurate data source for power
consumption measurement in data centers, particularly for
granular per-outlet measurements. However, their deployment
can be costly and may pose scalability challenges, especially
in large-scale environments [7].

For several years, hardware manufacturers have been de-
ploying various embedded sensors on system motherboards
to collect power consumption data. The power consumption
of the entire host system is reported by BMC (Baseboard
Management Controller) present on the nodes [3]. Standard
specifications like IPMI (Intelligent Platform Management
Interface) and Redfish provide an interface with these sensors
[8]. These embedded sensors are valuable and necessary
tools for large-scale power consumption monitoring in data
centers. However, the accuracy of these measurements can
vary considerably. It depends on the quality and calibration
of the sensors, the BMC firmware used to interpret the data,
and the measurement frequency. Furthermore, depending on
the configuration, the sensors do not always measure the total
server power consumption [9].

In 2011, Intel introduced RAPL (Running Average Power
Limit), a standard interface developed by Intel for measuring
and limiting the power consumption of the CPU and DRAM
memory [10]. RAPL reports power consumption with a high
update frequency and low performance overhead [11]. How-
ever, using RAPL requires interacting with internal interfaces,
which necessarily implies having a certain level of access and
privileges on the machine [3].

B. Power estimation methods

Modelling server energy consumption is a particularly dy-
namic area of research. These models make it possible to
estimate server power without requiring investment in specific
hardware, by exploiting properties indirectly linked to energy
consumption.

Jin et al. have reviewed numerous models [12], classifying
them into three categories:

« Additive models, based on adding up the consumption of
individual components.

« Baseline + Active Power (BA) models, which distinguish
between idle and active power consumption.

o Other models, including linear and polynomial regres-
sions, functional models, and various non-linear ap-
proaches

The work of Fan er al. [13] led the way in this field,
linking resource utilization directly to energy consumption.
CPU utilization is widely adopted as the primary metric for
modeling server energy consumption, as it is often the most
power-hungry component [5]. Server energy consumption
inherently generates heat [14]. Increased server utilization
leads to higher energy consumption, which in turn results in
greater heat production [15]. Consequently, some research has
leveraged this principle to estimate server energy consumption
by incorporating temperature as a variable [12].

Wang et al. [8] found that the temperature of the air inlet had
a strong influence on the energy consumption of the machines,
as well as on the accuracy of the models. They proposed
an improvement to the linear model by incorporating this
parameter. Jin et al. [16] propose a model based on intake
air temperature measurements and CPU utilization for more
accurate prediction of server energy consumption. Finally, In
a previous study [4], we demonstrated the feasibility of a non-
intrusive method for estimating the energy consumption of
liquid-cooled bare metal servers, with an accuracy comparable
to intrusive approaches.

The energy consumption of a computer system can also
be estimated on the basis of its hardware configuration. In
general, the more powerful the components, the higher the
power consumption. The Boavizta working group develops
tools [17] for estimating the carbon emissions and energy
impact of a server based on its hardware configuration and
utilization rate.

III. INDUSTRIAL CONTEXT

This research is done in collaboration with OVHcloud, a
server hosting company which operates over 450,000 servers
in its data centers worldwide. A large proportion of these
servers are leased in bare metal mode. In this model, the
customer rents a physical machine, to which all resources
are dedicated until the contract is terminated. The customer
manages the software independently, from installation of the
operating system of their choice to application maintenance.
The hosting provider, for its part, guarantees the hardware
platform and provides the machine’s power supply, cooling
and network connection. The hosting provider supervises the
infrastructure non-intrusively, using external physical sensors.

To monitor temperature conditions, servers are generally
equipped with sensors placed close to the most thermally
demanding components. The measurements taken by these
sensors are accessible via [IPMI, enabling the hosting provider
to access the data remotely without intrusion into the cus-
tomer’s system. With the growing importance of energy issues,
new server models are now equipped with power consumption
sensors integrated into the motherboard or PSU (power supply
unit). For the hosting provider, these sensors make it easier to
monitor energy consumption in real time and identify the most
energy-hungry equipment. For customers, they provide better



visibility of their own consumption and help optimize their
energy and carbon footprint.

Complete coverage of individual measurements in a data
center can only be achieved once the machines are completely
renewed. To bridge the gap, power consumption sensors
have been integrated into intelligent PDUs. However, their
large-scale deployment is costly and difficult to implement.
Installing these devices on an existing infrastructure requires
electrical modifications involving the temporary shutdown of
several machines. In the case of bare metal, the hosting
provider has little room for manoeuvre, as rental contracts
impose a continuous level of machine availability. A scheduled
intervention with all the customers concerned is necessary,
but is so complex to organize that it is often not considered.
Another alternative would be to wait until the end of the rental
contracts for the machines concerned, but this process can take
several years.

To overcome these technical constraints, modeling ap-
proaches are being considered to estimate energy consumption
without physical sensors. As mentioned in Section II, various
methods exist and exploit different relational data. In the
bare metal context, the hosting provider cannot use estima-
tion mechanisms based on machine usage data. In previous
work, we have used CPU temperature sensor measurements
to estimate server power consumption [4]. This approach
has proved particularly effective, especially in infrastructures
cooled by a direct-to-chip liquid cooling system. This type
of cooling has been used in production by OVHcloud for
over 20 years, and equips almost all its servers. This cooling
technology allows OVHcloud to achieve good results for the
environmental indicators: a Power Usage Effectiveness (PUE)
of 1.26, a Water Usage Effectiveness (WUE) of 0.37 L/kWh
IT, a Carbon Usage Effectiveness (CUE) of 0.16 kgCO2e/kWh
IT and a Renewable Energy Factor (REF) of 92%!'. For the
purposes of this study, we had access to IPMI sensor readings
from 1,076 production servers.

IV. IPMI SENSOR READINGS COLLECTION

IPMI (Intelligent Platform Management Interface) [18] is a
standardized protocol for monitoring, managing and diagnos-
ing servers independently of the operating system. It is based
on a dedicated hardware module, the BMC, which collects
data such as temperature and power consumption. The BMC
provides reliable access to information even when the server
is switched off. Servers have various built-in sensors, essential
for monitoring critical hardware parameters to enable proactive
management and sensor measurements are contained in the
Sensor Data Repository (SDR).

A. OVHcloud acquisition system

The acquisition system extracts these measurements by
interrogating each server’s BMC via IPMI. The data collected
from the SDR is then centralized and stored in a dedi-
cated database. Each server’s SDR contains the most recent

Thttps://corporate.ovhcloud.com/en/sustainability/environment/

measurements collected from the sensors. To guarantee real-
time monitoring of variations in hardware parameters, our
acquisition system regularly polls each machine.

The collection system is based on a distributed architecture
where each node is responsible for collecting measurements
for around 10,000 servers. This guarantees optimum scalability
and efficient data management. The collected measurements
are integrated into a high-performance time series database,
WARPI10, to facilitate real-time analysis and training of pre-
dictive models.

B. Collected data

We have access to data from 132,011 bare metal servers
from OVHcloud. Of these, 1,076 are equipped with power
sensors at PSU level. In the remainder of this article, these
servers will be referred to as PM servers (Power Monitored
Servers).

IPMI data from the PM servers was collected between
November and December 2024. For each server, the data col-
lected includes : CPU temperature time series (1 measurement
every 2 minutes), and time series of electrical power at PSU
input (1 measurement every 2 minutes).

In addition to these IPMI measurements, we have collected
detailed hardware configuration specifications for all 132,011
servers, including the following: number of CPU sockets,
number of cores per CPU, CPU TDP, total number of storage
devices, number of storage devices by type (HDD, SSD,
NVMe), and total memory capacity.

Fig.1 shows the hardware configuration distributions for all
servers and for PM servers. It should be noted that all servers
are equipped with a single processor socket.

Given the heterogeneity of hardware configurations, we
partition the entire server fleet into three distinct hardware
tiers: low-end, mid-range, and high-end. These tiers are es-
tablished in a data-driven manner using K-Means clustering
(k = 3) and based on the collected hardware characteristics.
The hardware tier analysis reveals a notable disparity: the All
Servers fleet is predominantly low-end, while PM Servers are
concentrated in the high-end tier. This is likely due to high-end
energy-intensive servers more commonly having integrated
PSU power sensors. The median server is a 6-core/95W TDP
machine with 32 GiB RAM and 2 storage devices, contrasting
with the median PM Server (24-core/180W TDP, 192 GiB
RAM, 6 devices). The PM Servers cover configurations whose
energy consumption is not solely dominated by the processor,
such as machines equipped with a up to 40 storage devices.
However, some configurations are missing, such as processors
with less than 8 cores or more than 36 cores.

V. PPEM-BM METHODOLOGY

This section details the Portable Power Estimation Method-
ology for Bare Metal servers (PPEM-BM). Our approach
is designed as a generalization of the existing PowerHeat
method [4]. We will first briefly describe the original method
before detailing the key processes we introduced to ensure its
portability and generalizability.
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Fig. 1. Distribution of hardware configuration and tiers for collected servers
(Al servers and Power Monitored servers)

A. Underlying foundations

A server’s energy consumption varies according to its uti-
lization. The higher the utilization rate, the higher the power,
the higher the heat dissipation.

In previous work, we presented PowerHeat: a sensor-driven
modeling method for estimating the electrical power of water-
cooled servers PowerHeat [4]. This method establishes a
correlation between a server’s CPU temperature and its overall
power consumption, using a Gradient Boosting regression
algorithm. Equation 1 defines the input and output of each
model.

ABS_TEMP; : Tepy, — Pi (1)

Where ABS_TEMP; is the power model of server i, T¢y,,
are the temperature measurements of server ¢, and P; are the
power measurements of server ¢. The ABS_TEMP model uses
exclusively CPU temperature data collected via IPMI as input.
The target of the model is the electrical power measured at
the input of the power supply or at the output of the PDU,
enabling the relationship between CPU temperature variations
and energy consumption to be accurately modeled.

Gradient Boosting, implemented using the XGBoost li-
brary [19], proved particularly effective for this task. This ma-

chine learning technique is well-suited to regression problems,
capturing the complex relationships between temperature data
and energy consumption with a high degree of accuracy.
Although effective, PowerHeat is not, by design, generaliz-
able to other servers. Each model is capable of estimating the
power of a single server on which the model has been trained.

B. Generalizing the approach

Generalizing a server power model means making it capa-
ble of accurately estimating power consumption for a wider
variety of servers than the one on which it was initially trained.

To generalize the PowerHeat approach, we have introduced
a key process called cross-evaluation. This process tests the
ability of a model trained on one server to estimate the
power consumption of another server. To achieve this, each
model is used to predict the power consumption of the other
servers. The accuracy of each model’s estimates is assessed
by comparing the estimated power with the power actually
consumed by the machine.

This process is repeated for each power monitored server
and defined by Equation 2.

Vi €8 N
Vi €8 P! = M;(T;) 2
i FJ

Where S is the set of servers ¢, M is the power model of
server j, T; is the cpu temperature measurement of server ¢,
and 1517 is the estimated power of server i using the power
model of server j.

At the end of this process, a ranking of models from best to
worst is produced for each server. This ranking not only iden-
tifies the best models by server, but also the best-performing
models overall. These models are the most generalizable and
are likely to give the best power estimates for servers that

don’t have power sensors.

C. Selecting the right model for the right server

Once the best models have been identified, the goal is to use
them to estimate the power of servers that don’t have power
sensors. However, one question remains: How to identify the
most appropriate model for each target server?

To address this issue, we introduce the selection function
(SF). Its aim is to identify the model likely to offer the best
performance for estimating the energy consumption of a given
server. We have chosen to implement this selection function
using a Learning to Rank (LTR) approach. LTR models are
machine learning algorithms specialized in ordering elements
according to an order relation learned from training data.

We opted for this paradigm for several reasons. First, the
core of our problem is fundamentally one of ranking: the
goal is to identify the best-performing model from a set of
candidates, rather than to predict the precise error value for
each. Second, learning a relative order (model A is better
than model B for this server) is often more robust and
less sensitive to noise than regressing an absolute metric.
By framing the model selection as a ranking problem, we



align our methodology with established practices in fields like
information retrieval and recommender systems, where LTR
is a standard and proven approach for similar selection tasks.

This type of supervised learning requires training data. The
selected features have been shown to correlate with power
consumption: server configuration specifications and CPU heat
dissipation statistics. The model is defined by Equation 3,
which formalizes the relationship between server character-
istics, model performance and ranking.

SF : (T),0(Ty), Hi — M 3)

Where SF is the selection function, T; is the CPU tem-
perature measurement of server ¢, u calculates the average, o
calculates the standard deviation, H; is the hardware config-
uration of server i, and M is the top-ranked model (rank 1)
obtained by the LTR model.

The LTR model establishes a ranking of models based on
the target server. SF returns M the top-ranked model.

D. Summary of the generalized approach

The approach presented allows the generalization of individ-
ual power models. In the remainder of this article, the approach
will be referred to as PPEM-BM: Portable Power Estimation
Methodology for Bare Metal servers.
The stages of the approach are as follows:
1) Power Model Training: training a power model for each
server

2) Cross-Evalutation: evaluate the performance of each
model with each server

3) Selection Function Training: training of a ranking
model to select the appropriate model for each server
Using this approach for servers that are not equipped with
a power sensor is as follows:
1) CPU temperature acquisition: Acquisition of CPU tem-
perature history via IPMI

2) Model Selection: power model selection using the selec-
tion

3) Power Estimation: Power estimation using the power
model based on CPU Temperature

VI. EXPERIMENTS

This section experiments with the application of estimation
models on the PM servers. We compare the application of 4
approaches for estimating server power :

« BOAVIZTA [17], an open tool for estimating typical power
consumption according to hardware configuration and
utilization rate.

« H-PACE, a model for estimating typical power consump-
tion based on hardware configuration but trained on a
portion of the target infrastructure’s measurement history.

o POWERHEAT [4], the individual power estimation ap-
proach based on CPU temperature presented in .

« PPEM-BM (Section V-B), which provides a Generaliza-
tion of the PowerHeat approach.

The following paragraphs provide further information on the

application and implementation of each of the methods used.

A. BOAVIZTA

Power estimates are obtained using the BOAVIZTA-API
[17], an open API for estimating the environmental impact
of digital products and services based on their configuration
and use. One of the underlying capabilities is the estimation
of the average power consumed by a server. According to
our observations, this power is calculated from the number of
CPUs and the corresponding TDP, the total amount of memory
and the overall utilization rate.

In our case, the utilization rate is not known information,
we have chosen to estimate it on the basis of observed power
measurements and a linear model defined by Equation 4.

o Prean — P5%
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Where u is the estimated utilization rate, P,,cqr, 1S the mean
observed power, Psy is the Sth quantile, representing near-
idle consumption, and Pys, is the 95th quantile, representing
near-peak consumption.

Estimates of the 1,076 PM servers are obtained by the API
and compared with the average power actually consumed by
the servers.

B. H-PACE

As a baseline for comparison, we introduce the Hardware-
Profiled Average Consumption Estimator (H-PACE) ap-
proach. This method is based on the general rule that a server’s
hardware profile dictates its power consumption; the more nu-
merous and powerful the components, the more electricity the
server consumes. Figure 2 illustrates this positive correlation
between the increase in various hardware specifications such
as the number of CPU cores, CPU TDP, storage devices, and
memory capacity and the overall server power consumption
observed on the 1,076 PM servers.

The H-PACE approach utilizes a machine learning model
to estimate the average power consumption of a server based
on its detailed hardware specifications. To train and evaluate
this model, the data from the PM servers are divided into two
distinct subsets: a training set comprising 80% of the servers,
and a test set with the remaining 20% for validation. The
predictive model is a regression based on a gradient boosting
algorithm, implemented using the XGBoost library [19]. In-
deed, this algorithm has proved to be particularly effective
in estimating power consumption of servers compared to
other classical machine learning algorithms (i.e. multiple linear
regression, multi-layer perceptron regressor, long short-term
memory algorithms) [20].

Once trained, the model is used to predict the average power
consumption for the servers in the test set, and these predic-
tions are compared against the actual measured power values.
Although this method is relatively simple to implement, its
main limitation is that it ignores a critical dimension: a server’s
power consumption depends significantly on its usage [6],
[21]. This omission can lead to consequent estimation errors,
as a model trained on under-utilized servers will underestimate
power for heavily used ones, and vice-versa.
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Fig. 2. Server power consumption by hardware configuration

C. POWERHEAT

The approach relies on training a individual power con-
sumption prediction model for each of the 1,076 PM servers.
To do this, each model is trained exclusively using the histor-
ical time series of power consumption and CPU temperature
measurements specific to the respective server.

For each server, its individual chronological data are split
into two distinct subsets, while maintaining temporal order: A
training set, comprising the first 80% of available measure-
ments, is used for model training; a test set, comprising the
last 20% of measurements, is used to evaluate the model’s
performance on unseen future data.

Each individual model is a regression model based on the
gradient boosting algorithm, implemented using the XGBoost
library [19]. To prevent overfitting, an early stopping mecha-
nism is integrated into the training process. This mechanism
interrupts training if no significant performance improvement
is observed for 50 consecutive iterations.

The evaluation of each individual model is then performed
using its respective test set. The model is used to estimate
power consumption over this period, thereby simulating the
prediction of future measurements. For each server, the pre-
diction error is quantified by comparing the series of power
consumption values estimated by the model with the series of
actually measured power consumption values.

Finally, the individual prediction errors obtained for each
server are aggregated to derive a global performance indicator,
allowing for the assessment of the overall effectiveness of the
POWERHEAT approach across the entire server fleet.

D. PPEM-BM

This new approach aims to extend the capabilities of POW-
ERHEAT by evaluating the generalization ability of individual
power models to other servers. This evaluation is performed
through a cross-evaluation process, the results of which are
used to train a LTR model.

To implement this methodology, the entire set of PM servers
was divided into two subsets: A server training set: comprising
80% of the servers (860 servers). A server test set: consisting
of the remaining 20% of servers (216 servers).

During the cross-evaluation process, each of the 860 model
instances (one for each server from the training set) is used
to estimate the power consumption of the other 859 servers.

— M PowerHeat— [ PPEM-BM— [ H-PACE— M Boavizta

e 2 =
> o o

@
o

Proportion of servers
o
N

o
o

Low-end

Mid-end

High-end [ ..

- ————
, n

! !

0.0 0.2 0.4 0.6 0.8 1.0

Power estimation error rate

Fig. 3. Performance comparison of the different methods

For each target server, this process resulted in a ranking of the
models from the other servers, from best-performing (lowest
error) to worst-performing.

These rankings form the fundamental training data for
the LTR model. For each training instance, the following
characteristics are used as features:

« Hardware configuration specifications: of both the
target server and the source server (whose model is being
evaluated).

« CPU temperature statistics: of both the target and
source servers, indicating operating conditions (mean,
standard deviation, min, max, and quartiles).

The target variable for the LTR model is the rank of a source
server’s model when applied to a target server, as determined
by the cross-evaluation. This LTR model is implemented using
XGBRanker and LambdaMART algorithm from the XGBoost
library [19].

Finally, the selection function, derived from the trained LTR
model, is utilized for the practical task of selecting the most
appropriate power model for each of the 216 servers in the
server test set.

VII. RESULTS AND DISCUSSION

This section provides a comparative performance analysis
of the different power consumption estimation approaches.



TABLE I
COMPARISON OF ESTIMATION METHODS

Method H Generalizable H Usage-based H Observed error
BOAVIZTA 4 4 37.8%
H-PACE 4 X 14.6%
POWERHEAT X v 2.7%
PPEM-BM v v 11.5%

Fig. 3 puts these performances into perspective, with each
approach evaluated on the specific server set relevant to its
testing context. Concurrently, Table I succinctly summarizes
each methodology and presents the key resulting error metric.

The BOAVIZTA approach shows the lowest performance
with an average error rate of 37.8%. A more detailed analysis
of the results indicates a pronounced tendency towards power
overestimation: for 561 servers, power was overestimated
by an average of nearly 50%, representing a considerable
discrepancy. To dissociate the impact of utilization rate on
this estimation error, a specific analysis of BOAVIZTA’s per-
formance at idle was conducted. For this, we compared the
estimation provided by BOAVIZTA at zero utilization (0%)
with the power consumption actually observed at near-idle
on our servers (Psy). This analysis revealed an even more
average error rate of 78.0%, this time with a marked tendency
towards underestimation for 969 servers.

These performance discrepancies between BOAVIZTA’s es-
timations and actual consumption are likely attributable to
significant hardware differences between OVHcloud’s servers
and those forming Boavizta’s community database, which was
used to train their model. Although common factors such
as CPU and memory play a predominant role in energy
consumption, other hardware configuration components exert
a non-negligible influence. Among these, the quantity and type
of storage devices, a crucial aspect identified in our analysis
of H-PACE (see Section VI), do not appear to be explicitly
considered by the BOAVIZTA model.

Despite not explicitly accounting for instantaneous uti-
lization rates, the H-PACE approach demonstrates superior
performance, with an average error rate of 14.6%. We attribute
this improvement to greater hardware homogeneity and more
similar usage profiles within OVHcloud’s server fleet on which
H-PACE was trained and tested. This intrinsic similarity
simplifies the model’s task of accurately estimating the average
power consumed by a server of the same type or used by
comparable load profiles.

The POWERHEAT approach, which relies exclusively on
CPU temperature data to model consumption, demonstrates
the best performance, with an average error of 2.7%. Notably,
the worst-performing server within this set exhibits an error
of 23.4%. These results underscore the effectiveness of such
an estimation approach when deployed in a production envi-
ronment with machine-specific models.

However, it is important to highlight an inherent limitation
of POWERHEAT: each model is specific to the server on which
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it was trained. Consequently, this approach, as it stands, does
not allow for estimating the consumption of other servers for
which a dedicated model has not been previously generated.

This generalization challenge is solved here by PPEM-BM
approach which shows an average error of 11.5%.

The performance degradation of PPEM-BM compared to
POWERHEAT’s theoretical optimum is primarily attributable
to imperfections inherent in the training and application of
the LTR model. Fig. 4 illustrates the evolution of the aver-
age estimation error as a function of the rank assigned to
models by the LTR. The blue curve, representing the ideal
performance achieved during cross-evaluation, serves as an
optimal baseline. The green curve, on the other hand, depicts
the performance of models as ranked and selected by the
LTR model to make a prediction. Although the LTR model
generally succeeds in identifying and following the trend,
a notable gap is observed for the very top-ranked models.
The LTR does not always manage to place the absolute
“best” model in the first position for a given target server,
which explains this performance degradation compared to the
theoretical optimum achievable.

Overall, the PPEM-BM approach achieves a performance
level deemed acceptable for practical applications, marking
a noticeable improvement over H-PACE approach. Neverthe-
less, the analysis suggests that a priority area for improvement
lies in optimizing the LTR’s ranking of top-tier models. Future
research could focus on enriching the features used by the
LTR, exploring alternative ranking algorithms, or specific
calibration techniques for the best candidates, to reduce this
gap with optimal performance.

Performance analysis by hardware tiers shows that the ap-
proaches are generally stable. PowerHeat achieves a very low
and consistent error rate across all server tiers, confirming its
effectiveness as a modeling method. Generalizable approaches
exhibit a slightly more variable performance. PPEM-BM
achieves a slightly lower average error rate for low-end servers
and a slightly higher error dispersion for high-end servers.
Models based solely on hardware configuration, H-PACE and
Boavizta, show more dispersed error rates across all tiers,
illustrating their lack of ability to capture the consumption
dependence with the actual server usage.

It is important to acknowledge a limitation concerning the
training dataset. As shown in Figure 1, the PM servers, on



which our models are trained and evaluated, are not fully
representative of the entire server fleet, tending to have higher-
end hardware configurations. Consequently, while the reported
11.5% error rate is valid for the server profiles tested, the
model’s generalization capability on under-represented hard-
ware configurations is not guaranteed. However, the core prin-
ciple of PPEM-BM —using an LTR model to select a source
model based on hardware and thermal feature similarity—
is designed to mitigate such gaps by identifying the ’least
dissimilar’ available model. Therefore, a crucial direction for
future work is to expand the set of monitored servers to include
these lower-end configurations. This would not only allow for
a more comprehensive validation of PPEM-BM across the
entire fleet but also enrich the training data, likely improving
the LTR model’s selection accuracy.

VIII. CONCLUSION

Accurately estimating the power consumption of bare-metal
servers at scale represents a major challenge for industrial
hosting providers, especially in the absence of dedicated power
sensors across the entire fleet. This paper introduced PPEM-
BM, a novel sensor-driven modeling methodology to estimate
server power consumption based on CPU temperature data and
hardware configuration.

Our experiments, conducted on a set of 1,076 production
servers equipped with power sensors, demonstrate that PPEM-
BM achieves an average error rate of 11.5%. This performance
significantly surpasses existing approaches that primarily esti-
mate average consumption based on hardware configuration.

PPEM-BM overcomes this limitation by generalizing the
POWERHEAT approach. It achieves this by first training indi-
vidual consumption models based on CPU temperature, then
using a cross-evaluation process and a Learning to Rank (LTR)
model to select the most appropriate power model for a target
server not equipped with a sensor.

Future work will move beyond optimizing the LTR model
to address the broader challenges of fleet-wide deployment.
Our primary focus will be on strategically expanding our set
of power-monitored servers to include the under-represented,
lower-specification configurations. This will not only provide a
more comprehensive validation of PPEM-BM but also enrich
the training corpus to enhance its generalization capabilities.
Additionally, other LTR learning algorithms can be compared
to LambdaMART in order to assess whether a better choice
can reduce the performance gap with the optimal selection.
Finally, we will investigate the temporal robustness of our
models by studying the impact of concept drift, developing
strategies for continuous retraining to account for hardware
aging and evolving usage patterns.
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