
Deployment of Collaborative Web Caching with
Active Networks

Laurent Lefèvre1, Jean-Marc Pierson2, and SidAli Guebli2

1 LIP INRIA RESO, Ecole Normale Supérieure de Lyon
46, allée d’Italie, 69364 Lyon Cedex 07, France

laurent.lefevre@inria.fr
2 LIRIS, INSA de Lyon

7, av. Jean Capelle, 69621 Villeurbanne cedex, FRANCE
jean-marc.pierson@liris.cnrs.fr

Abstract. Deploying ”distributed intelligence” inside the network
through the help of collaborative caches is a difficult task. This paper fo-
cus on the design of new collaborative web caches protocols through the
help of active networks. These protocols have been implemented within
the high performance Tamanoir[6] execution environment. First experi-
ments on local platform are presented.1

1 Introduction

Nowadays, and for almost a decade now, the World Wide Web generates a huge
amount of traffic from the heart of the network down to the home end-users. This
amount of information have to be tackled efficiently in order to achieve global
good response times. We examine in this contribution two tools to increase the
potentiality of the current architectures. On one hand, cache techniques have
been proved efficient since a long time to reduce the latency of the network as
well as its bandwidth consumption. While the basic technique consists in keeping
copies in a cache of the web documents closer to their clients, collaborative caches
give the opportunity for different caches to share their content, increasing the
global efficiency of the system. Efficient collaborative proxy caches have been
deployed worldwide (for instance the well known Squid [12]), and any institution,
company or ISP have deployed one (or many) today. They often consist in a
specialized host either connected to the communication infrastructure (usually
with high speed links) or on-board in the routers or gateways traversed by the
web queries. Limited possibilities to change the behavior of the interconnection
devices make it difficult to propose and deploy new caches inside the network.
On the other hand, active networks allows to dynamically deploy new services
in the networks, without interfering with the commonly used protocols. Their
programming facilities offer new directions for protocol and network designer to
apply new technologies without going through heavy standardization process.
1 The authors wish to thank J.P. Gelas for his help with Tamanoir platform.

N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 80–91, 2004.
c© IFIP International Federation for Information Processing 2004

Deployment of Collaborative Web Caching with Active Networks 81

Our goal in this work is to link those aspects, that is to create a collabora-
tive cache framework and to embedded it in an active network through adapted
and usable services. The idea is to put the management of the collaborative
cache schema in the access layer of the network, and to propose non-intrusive
collaborative services. Some of the difficulty lays in the limited resources of the
active nodes (in terms of CPU, memory and disk). We have thus to propose an
adapted solution taking into account these constraints. The goal of our frame-
work is to add some kind of intelligence in the routing of the web traffic and
document caches replication in the edges of the network. We clearly benefit from
active networks support by transparently deploying active caches through data
path without modifying and re-configuring Web clients and servers. Moreover
active caches services can communicate in point to point way through control
communication channel between active nodes. We propose an implementation of
these web caching active services through the help of the Tamanoir[6] execution
environment and present first experimental results.

The remaining of this article is organized as follows : We first analyze in
section 2 the work done for collaborative caching and we give the characteris-
tics we want to offer. In section 3 we detail some fundamentals of the active
networks and we exhibit the constraints we have to tackle for our framework.
In section 4, we propose an adapted framework for collaborative caching in the
context of active networks. We give in section 5 some implementation issues as
well as results of experimentation on a Tamanoir platform. We finally conclude
in section 6.

2 Collaborative Caching

Caching techniques have been used in many domains of computer science for
several decades, with much work on Web caching [1]. Basically, caches copy data
delivered by a server closer to the potential clients to answer data requests later
in place of the server. The main expectations are the reduction of the data server
load and the improvement of the latency time. A side effect is the reduction of
the network load.

In [13], the authors describe the potential impact of the collaborative scheme
for the benefit of the hit rate, through real proxy data analysis and an analytic
model of web behavior. Several collaboration protocols between caches have been
proposed : Hierarchical caches (like Harvest [4] and Squid [12]), Adaptive caches
[14,8] and Geographical caches [7]. In this latter technique, the server pushes
documents to geographically located proxies that serve groups of users.

Adaptive caching [14,8] explores the idea of creating interleaving meshes with
caches. Caches are grouped to answer cooperatively the requests of the users. In
this system, the groups dynamically adapt to the changes in the network, and
membership of a cache in a group might be revoked if its membership does not
give a sufficient benefit.

Hierarchical caching [4,12] proposes to create a hierarchy between the caches
of the system. The bottom level is composed of caches close to the clients (for

82 L. Lefèvre, J.-M. Pierson, and S. Guebli

instance the caches incorporated in the web browsers). The next level represents
institution caches. The upper level is close to the network backbones, manag-
ing several institution caches. Although some intermediary levels can be added,
Wolman et al. [13] exhibit that using more than two levels do not give extra
performances. In this approach, the basic idea is that a request to a document
go up in the hierarchy until it retrieves the document. As explained in [11], some
features limit their efficient deployment : (1) To grow up a hierarchy, the caches
have to be placed at strategic points of the network, leading to a necessary high
coordination between each peer of the system. (2) Each level introduces an ad-
ditional delay. (3) The upper level of the hierarchy might represent a bottleneck.
(4) Multiple copies of the same document might be present in the system.

All the collaboration schemas need a communication protocol between
caches. The well known ICP (Internet Cache Protocol) [12] focuses on the ef-
ficient inter-cache communication module and mechanisms to create complex
hierarchies. When a document is requested and not present in a cache, ICP
multicasts a query to its neighbors (this neighboring has to be constructed be-
forehand). The extensibility of the protocol is a problem, since the number of
messages increases with the number of collaborative caches in the system. In [5],
Fan et al. show that the network traffic can increase up to 90%.

Other promising techniques for communicating information between caches
are based on creating and maintaining summaries of the contents of these caches,
communicating those, and performing finally a local decision, based on this
knowledge of the distributed contents of the caches. Cache digest [10] and Sum-
mary cache [5] are such examples. While in Cache digest the caches exchange
periodically their summaries (thus generating network load), a push strategy
is used in Summary cache (reducing the traffic). The main problem with these
approaches lays in the consistency of the summaries as compared to the actual
contents of the caches. Indeed, the content of the summary might be partly false
due to the dynamic of the documents in each cache. The challenge is to find the
right parameters (how often to exchange summaries) to have a good consistency
between the summaries and the actual contents of the cache.

One important point in the behaviors of the caches is the replacement strat-
egy of the documents in the cache. While many exist in the literature [3], we will
focus in this paper on the schema of collaboration between caches. Thus we will
use in the experiment a simple LRU strategy (Least Recently Used) where the
oldest document is removed from the cache first 2. Note that this replacement
strategy does not interfere with the remaining of the proposal.

Based on these related works, our proposal will rely on a mix of :

– hierarchical caching (with a limited two levels hierarchy),
– adaptive caching (the community of caches might be dynamic),
– and an adapted communication protocol using summaries.

2 We also design content-aware strategy[9] where usages and contents of documents
are used to determine their time to live in the cache, which is out the scope of this
paper.

Deployment of Collaborative Web Caching with Active Networks 83

taking into account the constraints and benefits of using active networks. Thus,
we now present briefly the active networks and their key features in the frame-
work of this proposal.

3 Using Active Networks for Collaborative Web Caches

In order to efficiently deploy our Collaborative Web cache architecture we need
an open network platform easily manageable and deployable. We based our de-
ployment of Collaborative Web Caching infrastructure on the Tamanoir[6] ex-
ecution environment developed in RESO - LIP laboratory. Its architecture is
designed to be an high performance active router able to be deployed around
high performance backbone. This approach concerns both a strategic deploy-
ment of active network functionalities around backbone in access layer networks
and by providing an high performance dedicated architecture.

Tamanoir Active Nodes (TAN) provide persistent active nodes supporting
various active services applied to multiple data streams at the same time. The
both main transport protocol (TCP/UDP) are supported by the TAN for carry-
ing data. We rely on the user space level of the 4 layers of the Tamanoir architec-
ture (Programmable NIC, Kernel space, User space and Distributed resources)
in order to validate and to deploy our active collaborative cache services.

Some of the difficulty lays in the limited resources we want to deploy on
the active nodes (in terms of CPU, memory and disk). But, we clearly benefit
from active networks support by transparently deploying active caches through
data path without modifying and re-configuring Web clients and servers. Col-
laborative web caches services have been developed in Java (see Fig.2) inside
Tamanoir EE. These active cache services can be dynamically modified (parent,
child) and communicate in point to point way through control communication
channel between active nodes.

4 Framework for Web Caching Services in Active
Networks

The goal of our framework is to add some kind of intelligence in the routing of the
web traffic in the edges of the network, that is in the active nodes. We define a
communication protocol and a cache management schema that is light-weighted
(in terms of CPU consumption and memory usage on the active nodes) and that
does not ask for heavy data transfer (not to overload the network bandwidth).

We will address in the following two major points of our proposal : the
location of the documents cached in the collaborative system, and the delivery
of these documents to the end-user. Two questions will have to find solutions :
(1) Where is a document in the collaborative caches system ? and (2) How do
we exchange documents between caches ? The section 4.2 will address the first
question while the section 4.3 will address the latter.

84 L. Lefèvre, J.-M. Pierson, and S. Guebli

4.1 Overview of the Collaborative Caches

The caches are organized in a hierarchy of two levels. On the lower level are the
so-called children-caches, that play the role of proxies for a community of users.
On the upper level are the parent-caches, that play the roles of coordinators of
a set of children-caches. For the sake of simplicity, we will use in the following
either child-cache or child and parent-cache or parent. We are interested in this
work in the efficient management of the caches in such a cache community, thus
composed of one parent and many children, each child serving a community
of end-users. In such a context, the parent of a cache-community is thought
to handle web requests for a company or an institution, while the children are
basically attached to a department in the company. We work in the framework
of the access to the network, i.e. between the end-users and the backbone of the
network.

We have not investigated in this work the collaboration between parents.
Indeed, we believe that such a collaboration won’t add to the efficiency of the
system because cache parents are to be used in distinct institutions or companies.
The actual price to pay to obtain documents from another cache community will
be the same price than to obtain it directly from the original server.

The hierarchy of this architecture is used to share the knowledge of the
contents of the documents in the caches of the community. We do not intend to
cache the documents at the parent level, but only at the children level. Only the
summaries of the content will have to be stored at the parent level.

4.2 Summary of the Cache Contents : The Mirror Table

Since we aim at providing the cache service on an active node where memory
and disk space might be small, we have to define a compact representation of the
contents of the caches. As in [5] and [10], we use the Bloom filter [2] technique
to spare space with this representation.

Bloom Filter. This method is due to Burton Bloom in 1970 [2]. This prob-
abilistic algorithm aims at testing membership of elements in a set (URL of
documents presents in a cache, in our case) using multiple hash functions and
a simple bit array. This algorithm consumes a fix small amount of memory re-
gardless of capacity or usage of a cache.

Its principle follows : We first determine a size m for the bit array F (the
filter, initially with 0 values) and a number k of independent hi (i ∈ {1...k})
hash functions (those results vary from 0 to m − 1). Adding a new element a to
the filter consists in computing k values {h1(a), h2(a), ...hk(a)}, representing k
positions in the F filter. These positions are then set to 1 in the F filter. Note
here that one particular bit of the F filter might be set to 1 by more than one
element. Note also that whatever number of elements have to be filtered, the
size of the bit array does not vary, thus the compact form of representation is
assured (and controlled).

Deployment of Collaborative Web Caching with Active Networks 85

To test if an element a is present in the set, we first compute the k values
{h1(a), h2(a), ...hk(a)}. If one of the corresponding bits is set to 0, then a is not
in the set (the search is definitely a MISS). If all the positions are set to 1, a is
present with a certain probability (this is common when using hash functions).
That means the bits might be set to 1 while the element is not in the set. In [5],
the authors show that the probability of such an error can be minimized with a
value of k = m

n ln2, where n is the number of elements in the set.
We use the following four definitions in the rest of the paper :

– True HIT : the filter correctly predicts that an element is in the set.
– False HIT : the filter predicts that an element is in the set, but the element

is not actually in the set.
– True MISS : the filter correctly predicts that an element is not in the set.
– False MISS : the filter predicts that an element is not in the set, but the

element is actually in the set.

The False MISS should not occur with the Bloom filter technique when the filter
and the set are strongly linked (for instance when a new document enters the
set, the filter updates its bit array). The False MISS problem occurs when the
filter and the set are not updated together, for instance when they are located
on different hosts, as we will see later in section 4.4.

The False HIT can occur at any time, even with a strong consistency policy.
Thus the problem will be fully addressed in section 4.4 and a specific protocol
organized to maintain at best cost the consistency.

Mirror Tables. The information sent from the children caches to the parent is
compacted in a bloom filter used by the parent to localize the documents in the
collaborative community.

We define a mirror table as a compact structure representing (reflecting) the
content of a child-cache. It contains the following fields : an identifier of the
cache reflected by this mirror table (an IP address for instance), a bit array (for
the bloom filter F), the size of the bit array (m), the number of hash functions
(k) and the number of false HIT.

A parent keeps one such mirror table for each of its children. While it is easy
to add new elements in the filter, to delete an element is impossible. Indeed,
one particular bit may have been set to 1 by more than one element. Thus,
if we put a bit to 0 when an element is suppressed, we may make the filter
inconsistent. Doing nothing is obviously not good : If the element we intend to
suppress was the only one to have set the bit to 1, the cache is inconsistent,
too. A solution here should be to use a counter telling us how much time a bit
has been set to 1, instead of only a meaningless 1. This solution increases the
size of the mirror table but decreases the number of false HIT. Our proposal
is to handle modified mirror tables at the children caches, where the bit array
is replaced by a counter array of the same size m. When a document is added
(resp. suppressed), the counters for each position set by the hash functions are
increased (resp. decreased) instead of setting a simple 1. From this local table,

86 L. Lefèvre, J.-M. Pierson, and S. Guebli

Fig. 1. Inter cache protocol, when the requested document D is in the collaborative
system

the child simply constructs the filter when needed : When the counter is 1 or
more, the corresponding entry in the filter is set to 1.

The parent has copies of the filters present in its children. From the parent
point of view, when the filter becomes inconsistent (the number of false HIT
becomes very high), this parent asks the corresponding child for a new version
of its filter. Conversely, when a child has made a lot of changes in its filter, it
takes the local decision to send it to its parent (see section 4.4). Note here that
only the filter (the bit array) is sent from one child to its parent. With this
mechanisms, only a small amount of information has to be stored at the parent,
and the resulting traffic for update is kept reasonable (the bit array, that means
m bits). On a child, the consistency of the filter is kept relevant at any time.

4.3 Location and Delivery of a Document

Figure 1 illustrates the inter-cache protocol we propose. When contacted by an
end-user browser for a document D, a child C1 examines its own cache. If D
is present locally, C1 serves directly the end-user. Otherwise, C1 forwards the
requests to its parent P . This one checks its mirror tables (step 1) to detect if
one of its other children has the document D (with a certain probability). Two
scenarios can occur :

– if none of the brothers of C1 owns the document (from the parent knowledge,
extracted from the mirror tables), the request is forwarded to the original
server. This one sends D back to P , who forwards it to C1. C1 caches D,
updates its local table and sends D to the end-user;

Deployment of Collaborative Web Caching with Active Networks 87

– if a child C2 seems to have D (from P point of view)3, P sends a control
message to C2 in order to allow the transfer of D from C2 to C1. If C2
really owns D, a peer to peer communication is set up between C2 and C1.
Otherwise, a false HIT occurred : C2 informs P of that false HIT. P increases
the corresponding field in its mirror table, and generates a new check of its
mirror tables (back to step 1), excluding C2 from the search. The peer to
peer communication between C1 and C2 permits to decrease the amount of
work and number of messages involved at the parent level.

4.4 Consistency of the Information

The size of caches are limited, so a replacement schema is used to control them
and delete documents. This behavior, inherent to the techniques of caching,
involves in our case an inconsistency between the mirror tables at the parent
and the actual contents of the caches at the child. This will generate some false
HIT in the system, leading to unnecessary communications between parents and
children.

To minimize this problem, we introduce two mechanisms : at the parent
level, we maintain for each child the number of false-HIT generated during the
communications with it. When this counter reaches a given validating threshold
α, the parent asks the child for a new version of its filter, considering its mirror
table as obsolete. This solution is acceptable in the general case, when the parent
often communicates with its children.

However, when a child is less contacted by its parent, the content of its cache
might evolves locally. In this scenario, the content of the mirror table at the
parent is not consistent. The child must anticipate some possible false MISS and
false HIT and send a new version of its filter to its parent, when the number of
changes in the local table becomes greater than a validating threshold β.

Note also that the problem of the false HIT is inherent to the Bloom filter
technique : it is the price to pay to compact the information. Only a good choice
in its parameters k and m (see section 4.2) can decrease the number of false
HIT.

We propose therefore two protocols (and two parameters α and β) to handle
the consistency of the information at the parent level based on both pull and
push strategies. When either the parent or the child observes a high probability
of dysfunction in the system future, it initiates the refreshing of the filter.

5 Implementation Issues and Experiments

5.1 Functional Architecture of a Collaborative Cache Active Node

Design and implementations of cache techniques have been made trough the
implementation of active services All web browser clients are configured to send
3 Note that more than one child-cache might have D; a LRU (Least Frequently Used)

algorithm is used to load balance the queries among the candidates

88 L. Lefèvre, J.-M. Pierson, and S. Guebli

their HTTP requests through a children cache of our system. This cache deploys
active HTTPHandlerS service to handle this request.

Collaborative caches services are dynamically deployed on Tamanoir active
node depending on cache configuration (parent, child). Figure 2 describes fea-
tures embedded in active node to support cache collaborations.

Fig. 2. Active Web cache architecture

5.2 Construction of the Collaborative Community

In this section we address the different methods to create the collaborative cache
systems. The active nodes dynamically decide if they run a parent-cache or a
child-cache.

In a fully static method, each node in the network willing to join the system
must have some information about it. For instance, a node willing to become
a new child must know one parent and use its JoinparentS service to contact
this parent. Additionally, a parent (which is an active node) can ask another
node to act as a child dynamically, by sending an active packet (thus sending a
JoinparentS service this node can use to join the system). This situation can
occur if the parent receives/sends some web traffic from/to another active node
actually not in the system. This dynamic inscription is made possible by the
active networks characteristics.

In our system, at least one node needs to be configured as a parent-cache.A
full automatic deployment of this system would require that the parent also
might be dynamic or change dynamically in a collaborative community : Indeed,
the first parent-cache node deployed (statically or dynamically) may be a poor
candidate for such a role and another node (better connectivity, more memory,
more CPU) might take this role. This future work will have to be investigated.

5.3 Test Architecture

We experiment our collaborative cache solutions on an active networks platform
based on Tamanoir Execution Environment. Our experiments are based on log

Deployment of Collaborative Web Caching with Active Networks 89

files extracted from a real proxy server4. Different logs are used with different
caches.

Time elapsed remotehost code/status bytes
1035849606.566 394 252.183.145.92 TCP_CLIENT_REFRESH_MISS/200 1160

method Ur rfc931 peerstatus/peerhost type
GET http://br.yimg.com/i/br/cat.gif - DIRECT/200.185.15.91 image/gif

Fig. 3. Log example

5.4 Results

We define Quasi Hit operations in order to evaluate improvement provided by
caching collaborative actions. A quasi hit occurs when a cache is able to download
requested documents from one of its neighbor.

In our following experimental evaluations, we fix the mirror size for all caches.
We choose 4 hash functions for the bloom filter. Filter size is also fixed at the
optimal value of 8000 bits (as explained in section 4.2.1, filter size is derived from
the number of hash functions and the number of documents in the set (1766 in
our experiments)). False hit probability is then 0.11.

We first consider caches with unlimited size (they can cache all data requested
during the experiment). Figure 4 shows the impact of validating thresholds (α
and β) value on updating table operations and communication. α and β fol-
low the same value. Performances increase with threshold value but consistency
between tables is not supported.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 10 100

U
pd

at
in

g
ta

bl
es

 c
om

m
un

ic
at

io
n

Validating threshold

Updating tables

Cache 1
Cache 2
Cache 3

Fig. 4. Updating tables - unlimited cache

 0

 20

 40

 60

 80

 100

 1 10 100

of

 d
oc

um
en

ts

Validating threshold

Quasi hit

Cache 1
Cache 2
Cache 3

Fig. 5. Quasi hit with unlimited cache

We illustrate the impact in terms of table coherence through the Quasi Hit
effect (Figure 5). When the validating threshold increases, quasi hit rapidly
decreases and we lose the benefits of collaborative caches due to a weak con-
sistency of the tables. This experiment is done on 3000 requests on 1766 differ-
ent documents. Local Hit of each cache is constant (cache1=439, cache2=221,
4 Trace logs available on http://www.ircache.net

90 L. Lefèvre, J.-M. Pierson, and S. Guebli

cache3=339). Local hit represents the number of requests to document in the
cache. Note here that the total number of document in the cache might be larger
than this, since some documents might be put once in the cache and never ac-
cessed later on.

Within experiments presented in figures 6 and 7, we deploy collaborative
caches with limited resources (10% of needed storage). We observe cache re-
placement effect through a simple LRU policy. Local Hit decreases compared to
unlimited caches experiments but remains constant (cache1=355, cache2=149,
cache3=291). Quasi hit increases compared to unlimited cache experiment. But
we show that quasi hit results remain low compared to the small available amount
of cache. Due to the limited size of the cache, the local hit decreases as compared
to unlimited caches : Indeed some requested documents , that had been already
requested (thus potentially in the cache), might have been replaced by the re-
placement strategy. The combination of addition and suppression of documents
in the cache allows in the limited cache experiment to update more often the
mirror table than in the unlimited case, leading to more accurate consistency
between parent and children mirror tables.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 10 100

U
pd

at
in

g
ta

bl
e

co
m

m
un

ic
at

io
n

Validating threshold

Updating tables

Cache 1
Cache 2
Cache 3

Fig. 6. Updating tables with limited cache

 0

 20

 40

 60

 80

 100

 120

 1 10 100

of

 d
oc

um
en

ts

Validating threshold

Quasi hits

Cache 1
Cache 2
Cache 3

Fig. 7. Quasi hit with limited cache

We can note on figure 7 that the amount of quasi hit increases compared to
unlimited cache experiments. This result benefits from the updating of mirror
tables after document removal (these updating operations are generated through
depending on the β threshold).

6 Conclusion

Collaborative web caches allow to quickly find a requested document in a com-
munity of distributed caches while avoiding that parent caches keep a copy of
documents. This solution greatly improves performance of document localization
compared to hierarchical caches. In this paper, we present our first step towards
the design of new collaborative web caches protocols. Deploying and maintaining
collaborative caches is pretty difficult in IP networks. With the help of active
networks approach, these caches can be easily managed and the deployment of
cache policy can be dynamically broadcasted.

Deployment of Collaborative Web Caching with Active Networks 91

Caching documents inside a network requires high level and efficient intelli-
gence support inside network equipments with limited resources. Moreover we
needed an high performance network execution environment able to support mul-
tiple services dealing with web streams based on TCP transport layer. Through
the help in terms of dynamicity and easiness of implementing new services, we
benefit from the high performance Tamanoir active node framework. This paper
presents our first experiments in evaluating our collaborative cache protocols. We
are currently more evaluating performance aspects of our cache collaboration.

References

1. G. Barish and K. Obraczka. World wide web caching: Trends and techniques.
IEEE Communications Magazine Internet Technology Series, 38(5):178–184, May
2000.

2. B. Bloom. Space/time trade-offs in hash coding with allowable errors. CACM,
13(7):422–426, July 1970.

3. L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-
like distributions: Evidence and implications. In Proceedings of the INFOCOM ’99
conference, March 1999.

4. A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell.
A hierarchical internet object cache. In USENIX Annual Technical Conference,
pages 153–164, 1996.

5. L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-area
Web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–
293, 2000.

6. Jean-Patrick Gelas, Saad El Hadri, and Laurent Lefèvre. Towards the design of an
high performance active node. Parallel Processing Letters, 13(2), jun 2003.

7. J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In IEEE,
editor, Proceedings Fifth Workshop on Hot Topics in Operating Systems (HotOS-
V), pages 51–55, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1995. IEEE Computer Society Press.

8. T. Lanmbrecht, P. Backx, B. Duysburgh, L. Peters, B. Dhoedt, and P. Demeester.
Adaptive distributed caching on an active network. In IWAN 01, Philadelphia,
USA, 2001.

9. J.M. Pierson, L. Brunie, and D. Coquil. Semantic collaborative web caching.
In Web Information Systems Engineering 2002 (ACM/IEEE WISE 2002), pages
30,39, Singapore, dec 2002. IEEE CS Press.

10. A. Rousskov and D. Wessels. Cache digests. Computer Networks and ISDN Sys-
tems, 30(22–23):2155–2168, November 1998.

11. J. Wang. A survey of Web caching schemes for the Internet. ACM Computer
Communication Review, 25(9):36–46, October 1999.

12. D. Wessels and K Claffy. ICP and the Squid Web cache. IEEE Journal on Selected
Areas in Communication, 16(3):345–357, April 1998.

13. A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and H. M. Levy.
On the scale and performance of cooperative web proxy caching. In Symposium
on Operating Systems Principles, pages 16–31, 1999.

14. H. Zhang, H. Qin, and G. Chen. Adaptive control of chaotic systems with uncer-
tainties. Int. J. of Bifurcation and Chaos, 8(10):2041–2046, 1998.

	Frontmatter
	Introduction
	Introduction

	High Performance and Network Processors
	Challenges in Implementing an ESP Service
	The Role of Network Processors in Active Networks
	Towards High-Performance Active Networking
	Application of Hardware Accelerated Extensible Network Nodes for Internet Worm and Virus Protection

	High-Level Active Network Applications
	Active Routing and Forwarding in Active IP Networks
	A Sustainable Framework for Multimedia Data Streaming
	Deployment of Collaborative Web Caching with Active Networks

	Low-Level Active Network Applications
	A Retransmission Control Algorithm for Low-Latency UDP Stream on StreamCode-Base Active Networks
	TCP Enhancement Using Active Network Based Proxy Transport Service
	DataRouter: A Network-Layer Service for Application-Layer Forwarding

	Self-Organization of Active Services
	SORD: Self-Organizing Resource Discovery Protocol for ALAN
	Self-Configuring Active Services for Programmable Networks
	A Dynamic Neighbourhood Discovery Protocol for Active Overlay Networks

	Experiences with Service Engineering for Active Networks
	Chameleon: Realizing Automatic Service Composition for Extensible Active Routers
	Multiple Language Family Support for Programmable Network Systems
	Dynamic Deployment and Configuration of Differentiated Services Using Active Networks
	A Globally-Applied Component Model for Programmable Networking
	Active Routers in Action: Evaluation of the LARA++ Active Router Architecture in a Real-Life Network

	Management in Active Networks
	A Proactive Management Framework in Active Clusters
	A Policy-Based Management Architecture for Flexible Service Deployment in Active Networks
	Adaptation Planning for Active Networks

	Selected Topics in Active Networks
	Risky Business: Motivations for Markets in Programmable Networks
	Context-Aware Handover Based on Active Network Technology
	Implementation of Adaptive Control for P2P Overlays

	Backmatter

