
CPU Frequency Aware Power Modeling
for IoT Edge Nodes

Vladimir Ostapenco∗, Loı̈c Guégan†, Salma Tofaily†, Issam Raı̈s†, Laurent Lefèvre∗
∗EnsL, UCBL, CNRS, Inria, LIP, University of Lyon, Lyon, France

†Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
Corresponding authors: vladimir.ostapenco@ens-lyon.fr, {loic.guegan,salma.tofaily}@uit.no

Abstract—The Internet of Things (IoT) is used for various
domains such as monitoring the environment, health care, and
smart cities. Monitoring and measuring energy consumption of
these systems is a crucial step in making them energy efficient.

External Hardware-based power monitoring is not always
available for IoT edge nodes. An alternative is to create an
accurate power model that relates easy-to-monitor parameters
(e.g., instructions count, cache misses, node temperature, etc) to
externally monitored power. This relationship helps to estimate
the power drawn by the nodes.

IoT edge nodes have several power optimization leverages like
Dynamic Voltage and Frequency Scaling (DVFS). When models
calibration does not consider these leverages, the gap between
power estimation and actual power usage increases.

In related works, several power models and corresponding
Software-defined power meters do not consider CPU frequency
on IoT edge nodes. These Software-defined power meters provide
regression-based power models for IoT edge nodes. This work
compares predictions made by these state of the art power
models to accurate external power monitoring. We show that not
considering CPU frequency can result in incorrect estimations.

We investigate and compare several methodologies for building
power models, considering the CPU frequency, power, and energy
leverage. Different performance metrics and regression methods
are explored to estimate power usage. We demonstrate that linear
and polynomial regression-based models are able to account for
various CPU frequencies on IoT edge nodes. Using these models,
we can predict the power consumed by IoT edge nodes running
a specific workload, with a MAPE of 2% compared to accurate
Hardware-based power meters.

Index Terms—sustainability, power monitoring, power models,
energy efficiency, edge, DVFS

I. INTRODUCTION

The Cloud has expanded beyond data centers. Fog and
Edge paradigms leverage the capabilities of technological
improvements such as smaller and cheaper node’s hardware
to answer timely challenges. IoT edge nodes are located at
one end of these networks. All together, they form what is
called “Internet of Things” [1], [2]. IoT edge nodes are small
nodes that can range from simple micro-controllers to more
complex single board computers. They can be (i) connected to
sensors and actuators, (ii) connected to the cloud to send and
receive data/tasks, (iii) close to the end-users, (iv) powered by
wall sockets, or batteries.

IoT edge nodes can be powered by the electrical grid or by
batteries. In the common case, they are close to the end users
and have plenty of energy [3]. In the worst case, they can be
deployed for long periods in remote locations where human

intervention or energy harvesting are not possible [4]. Provid-
ing sustainable IoT systems by reducing energy consumption
and carbon footprint is essential [5]. To build these energy
efficient systems, achieving accurate quantification of power,
energy consumption and remaining lifetime is crucial.

Measuring [6] and predicting [5] power is needed for
developing energy efficient solutions. Several IoT edge nodes
architectures do not have internal power sensors. Having
power monitoring hardware [7] for a large scale distributed
IoT edge system is challenging [8] due to cost, setup, and
maintenance. Moreover, it is challenging to monitor individ-
ual processes running together using external hardware-based
power meters [9].

Besides external power measurements, power can be esti-
mated with power models [10]–[13]. Software-defined power
meters use these models to estimate power usage of physi-
cal [9], [14], [15] and simulated [16]–[18] nodes.

To perform accurate studies, power models have to reflect
the behavior of nodes. Modern Systems on Chip (SoC) multi-
processors, used in IoT edge nodes, offer adaptive frequency
for energy efficiency [19]. Dynamic Voltage and Frequency
Scaling (DVFS) permits to adapt the frequency and the supply
voltage of nodes at run time [20]. It is a feature that impacts
the energy consumption of IoT edge nodes [21], [22].

However, most power models and software-defined power
meters do not consider CPU frequencies [23]–[25]. Up to
our knowledge, this paper is the first one considering CPU
frequencies when building power models for single-board
computer based IoT edge nodes.

First, this paper compares a state of the art software-defined
power meter predictions to real power measurements for CPU
and RAM intensive workloads at different CPU frequencies.
All experiments and calibrations are conducted on a testbed,
comprising IoT edge nodes monitored by accurate external
hardware-based power meters. Second, an empirical analysis is
conducted to build accurate power models for IoT edge nodes.
Models are built considering CPU frequency, temperature,
and multiple hardware counters. The impact of these various
system metrics on models accuracy is studied.

This paper presents the following contributions:
• Demonstrating how existing software power meters for

IoT edge nodes (e.g., PowerJoular) can have major inac-
curacies in predictions due to overlooking available node
configurations or power modes. We compare a state of the

1

art software-defined power meter and an accurate external
power monitoring, on IoT edge nodes.

• Building power models by comparison of different pre-
diction methods, considering several system metrics and
regression methods. By taking into account CPU fre-
quency changes for IoT edge nodes, we thus propose CPU
frequency aware power models.

The paper is structured as follows. Section II presents
the state of the art. Section III introduces the experimental
setup. Section IV details the experimental protocol. Section V
analyzes the results of software power meters estimations
with DVFS. Section VI presents results analysis of model
training and evaluation. A discussion about the work is given
in Section VII. Finally, Section VIII concludes the work.

II. STATE OF THE ART

Multiple energy efficiency leverages exist in the litera-
ture [26]. DVFS is one of the most widely used. In op-
position to its wide adoption in supercomputers and cloud
literature [27], DVFS is still an open and promising leverage
for IoT edge nodes [21], [22], [28]–[30].

A. DVFS energy leverage at the edge

At the edge, nodes can spend an important time ON but
operating at low CPU utilization (e.g., edge caching [31], me-
dia steaming [32]. In [20], authors study power management
strategies for IoT edge nodes with long idle periods. Low CPU
utilization and workload fluctuations make DVFS promising
for energy efficiency. DVFS is becoming available on an
increasing number of micro-controllers [33] and single board
computers [21]. It is an important leverage that is gaining
interest in IoT and edge systems [21], [28], [34]. It is suitable
for memory bound workloads and for workloads with long
idle periods and target deadlines [17], [20].

In the IoT edge context, DVFS is studied to optimize energy
consumption [21], [35], but additional research is needed in
such context [20].

In [28], authors co-optimize DVFS and offloading param-
eters via deep reinforcement learning to improve the energy
efficiency of IoT edge nodes. Experiments are conducted on
several physical NVIDIA IoT edge nodes supporting DVFS.
Authors from [34] show how DVFS performs on IoT edge
nodes with common governors (on-demand and conserva-
tive) by performing experiments on Jetson Nano and Rasp-
berry Pi 4B. The relation between CPU utilization and power
usage is explored for one CPU frequency. However, important
details about the experimental protocol are not described. The
power monitoring setup and important experimental parame-
ters (e.g., benchmark, etc) are not detailed.

Related works stress the need to study DVFS to preserve
quality of service while saving energy for IoT edge nodes [35].
Accurate tools are needed to facilitate such studies.

B. Power models and CPU frequency

In [36], a self-calibrating software-defined power meter
(SelfWatts) is proposed for estimating energy consumption of

processes and containers of heterogeneous High Performance
Computing nodes. It is based on CPU and DRAM power
models. These models are built using nodes energy counters
in Intel’s Running Average Power Limit (RAPL) and hard-
ware performance metrics. This is done at runtime to allow
continuous energy predictions for dynamic workloads or node
configurations. Calibration is not needed. Several IoT edge
nodes do not have RAPL support. Up to our knowledge, there
is no similar methodology that automatically selects system
metrics for training and self calibration for IoT edge nodes.

In [24], an automated power modeling approach is proposed
for generating and sharing power models of IoT edge nodes.
Benchmarks are run on a set of Raspberry Pi. These mea-
surements are used to generate power models by polynomial
and linear regression. For all nodes, the error percentage
using linear regression is higher than the error percentage
using polynomial regression. However, the models overlook
important node configurations like CPU frequency, and the
experimental protocol for the models validation is not detailed.

In [25], power models are built for several IoT edge
nodes (e.g., CubieBoard3, Odroid-C2, and Raspberry Pi 3B).
Different node components are modeled.

In [37], a framework called WattEdge is proposed to analyze
energy consumption of Raspberry Pi 3B+. Energy measure-
ments are collected and used in linear regressions to build
energy models. Models are validated by comparing real power
measurements to model predictions.

In [15], a software-defined power monitoring (PowerJoular)
is proposed for several platforms, including single-board com-
puters. It is based on power models for CPU and GPU
components. Power models are proposed per node types. For
Raspberry Pi, power models are built using polynomial regres-
sion. The work reports that PowerJoular automatically detects
computer configuration. Although multiple CPU frequencies
are supported on the nodes, CPU frequency is overlooked in
benchmarking experiments.

In [23], authors investigate building unified power models
for Raspberry Pi 3B and 3B+. The work shows that repre-
senting maximum CPU frequency in the model can increase
its portability. Different statistical modeling methods (Support
Vector Regression, Gaussian Regression, Kernel Ridge Regres-
sion, and Linear Regression) are compared. Linear regression
is considered as a baseline. Hardware counters and power
measurements are collected while executing two benchmarks:
NAS and RODINIA. Collected hardware counters are L2 Data
Cache Misses, L2 Data Cache Access, Storage Instructions,
Branch Instructions, Total Instructions, and Total Executed
Cycles. SVG has the minimum mean error. But its maximum
error is higher than the linear regression one. However, the
experimental protocol is not fully described (e.g., kernel used
in NAS is not specified). Node configurations such as CPU
frequency are overlooked. The importance of using differ-
ent hardware metrics on model accuracy is not investigated.
In [11], power models for micro-controller edge node (ESP32)
are contributed. CPU instructions are used to build the model.
Benchmarking experiments are done for several components,

2

including CPU and RAM. Experiments are conducted for
multiple CPU frequencies and utilization levels. Two methods
are compared to build the models: polynomial regression and
random forest. Reported random forest model accuracy is
slightly higher than polynomial models accuracy. However, the
variables used in the polynomial models are not fully detailed
in the paper. No experimental artifacts are given, making it
difficult to reproduce and compare.

In [38], a power model is proposed for an ARM11 micro-
processor. The work acknowledges that cache misses are
widely used in literature to build power models. CPU Pipeline
stalls are collected instead of cache misses. No comparison is
made between using pipeline stalls and cache misses.

Multiple studies in the state of the art aim at building and
improving power models for IoT edge nodes. Several works
overlook important node configurations like CPU frequency.
In an IoT edge system, errors in power estimations can be
cumulative. Unexpected error in predictions can have a major
impact on energy budgets [6], [39].

III. EXPERIMENTAL SETUP

A. Hardware environment

The IoT-to-Extreme-Edge testbed is used as an experimen-
tal environment [7]. This testbed comprises Single Board
Computer (SBC) nodes along with external power meters. In
this work, 10 Raspberry Pi model 4 revision 1.4 (detailed
in Table I) are used for our experiments. Each node runs
Debian 11 (Bulleyes). These nodes are monitored by INA260
power meters. During experiments, power measurements are
collected at regular intervals through I2C by BeagleBone Black
SBCs. The effective delay between measurement samples is
less than 10ms. More details about the power monitoring
architecture and features are given in [7].

To ensure proper time synchronization between experimen-
tal phases and power measurement samples, nodes of the
testbed are synchronized through NTP (via chrony) before
each round of the experiment. The time reference is provided
by a local node being part of the testbed (the front-end).

B. Software tools

This work uses PowerJoular, a state of the art software
power meter in the context of IoT edge nodes under DVFS. In
addition, to build the proposed CPU frequency aware power
models, a metric collector software is developed to gather
various system metrics exposed by the Linux kernel. The
following system metrics are gathered: 1) Temperature from
sysfs 2) CPU Usage (global and per core) from procfs 3) Cores
frequencies from sysfs 4) Performance events from the Linux
kernel perf subsystem (PERF_COUNT_HW_INSTRUCTIONS
and PERF_COUNT_HW_CACHE_MISSES).

Cache misses stall the CPU and cause memory access. They
thus impact power and execution time. They are highly used in
literature to build power models [38]. Total instructions count
provides an overview of conducted computation in the CPU.

This subset of critical metrics is gathered to limit the
impact of the metric collector on the energy consumption.

These system metrics are collected repeatedly at an average
frequency of 10Hz (one retrieval of all system metrics every
100ms). This metric collector is available online [40].

C. Workloads

Two types of workloads are considered in this work. The
first one consists of two kernels and one pseudo application
from the NAS Parallel Benchmarks v3.4.2: 1) Embarrassingly
Parallel (EP), computationally intensive 2) Multi-Grid (MG),
memory intensive 3) Lower-Upper Gauss-Seidel solver (LU),
common computational kernel with computations and memory
accesses. In several related works, power models are built
using several benchmarks, including NAS benchmark on IoT
edge nodes [23].

The second workload is a C program developed to ac-
curately stress CPU cores at a specific load (percentage)
for a specific duration. This tool executes a user specified
computation (e.g., square root, multiplication, or sum) while
aiming for a targeted CPU load. The approach used to maintain
a steady CPU load is to alternate between carefully timed
compute and rest phases. These phases execute during CPU
Loader slots from Figure 1(b) (yellow boxes).

IV. EXPERIMENTAL PROTOCOL

A. Performance metrics

To evaluate software power meters, various metrics are used.
The first is the average power given by the average value of
n power measurements during a benchmark on a given node:

P̄ =
1

n

n∑
i=1

Pi (1)

From n power measurements, the energy consumption of
nodes can be estimated using the trapezoidal rule:

E =

∫ t

0

P (t) ≈
n−1∑
i=1

(ti+1 − ti)(Pi + Pi+1)

2
(2)

To evaluate the power predictions given by the regression
models, the mean absolute percentage error (MAPE) between
the predictions Ppredicted and the measurements Pmeasured.
MAPE is defined as follows:

MAPE =
100

n

n∑
i=1

∣∣∣∣Pmeasured − Pestimated

Pmeasured

∣∣∣∣ (3)

B. Power prediction models

This work investigates the power prediction capabilities of
two common regression models, namely: 1) Linear 2) Poly-
nomial of degree two. These predictions are made according
to various system metrics that provide information about the
workload and the current operating CPU frequency.

Linear regression is simple to implement and interpret, as
it looks for simple linear relationship between independent
variables. Polynomial regression is more complex but provides
more flexibility as it can fit more closely to data with non-
linear relationship.

3

F1 F2A A10s60s10s120s
time

Frequency change

Sleep Benchmark run

iteration

(a) Experiment phases for the NAS parallel bench-
marks.

AF1 F2 A10s60s10s120s
time30s 30sL2L1

CPU Loader

iteration

(b) Experiment phases for the CPU Loader bench-
marks.

Fig. 1. Experiment protocol occurring on a node for the NAS parallel
benchmark and CPU loader workloads. The protocol is composed of multiple
frequency iteration that represents a benchmark run (in blue) after setting a
new frequency (in green). It also contains resting periods (in orange).

C. Experiment 1: Software Power Meters overlooking CPU
frequencies

As discussed in section II, most of the software power
meters overlook CPU frequencies. We take PowerJoular as
an illustrative example of a software power meter that does
not take into account CPU frequencies. The first experiments
evaluate the software power meter called PowerJoular v0.7.0,
while varying CPU frequency. The workload consists of the
three NAS parallel benchmarks introduced previously (EP, MG
and LU). To be able to dynamically change the core frequen-
cies, the governor of each core is set to performance. For
each benchmark, the core frequencies are varied from 600MHz
to 1 800MHz by steps of 100MHz using the scale freq max
parameter. During the experiments, power measurements are
collected from the software power meter (i.e., PowerJoular)
and the hardware-based power meters (i.e., INA260). Both are
compared to evaluate the accuracy of PowerJoular in contexts
where CPU frequency varies. Each experiment is executed
10 times on each node to account for results variability. The
experiment protocol is detailed in Figure 1(a).

D. Experiments 2: Model training and evaluation

To build our CPU frequency aware power models, offline
training is performed. System metrics need to be collected
during the execution of the benchmarks. The system metrics
used to train the models are fetched by the metrics collector
(detailed in Section III-B). The benchmarks used to build the
models are the NAS parallel benchmarks and the CPU loader
detailed in Table I. For the CPU loader experiments, cores
are loaded gradually up to 100%, one after the other, until
all cores are fully loaded. Each step lasts 30s. A cool down
period of 30s is added between each step (see Figure 1(b)).

Three datasets are built to evaluate the models, each con-
taining the system metrics collected from the following sce-
narios: (i) compute and memory intensive: with NAS parallel
benchmark, (ii) varying load: with the created CPU loader and
(iii) hybrid: a fair share distribution of data collected, where

TABLE I
OVERVIEW OF EXPERIMENTAL PARAMETERS

Hardware

Node count 10
Nodes hardware Raspberry Pi 4 model B Rev 1.4

Hardware-based power meter INA260

CPU Frequency

Scaling governors performance
Cores scale freq min 600MHz

Cores scale freq max 600MHz-1 800MHz
by 100MHz

Workload

NAS parallel benchmarks EP, MB and LU

CPU load targets range 1%-10% by 1%
10%-100% by 10%

half of the workload comes from (i) and half from (ii). Each
of these datasets is used to train and test the models. These
datasets are split into training (80%) and test (20%) sets.

V. RESULTS ANALYSIS OF SOFTWARE POWER METER
ESTIMATIONS, USING VARIOUS CPU FREQUENCIES

Following the experimental protocol described in IV-C,
the software power meter estimations, when modifying CPU
frequency, are analyzed in this section.

Figure 2 shows the results for the three NAS parallel
benchmarks while varying CPU frequencies. The execution
time, power measurements, power predictions (PowerJoular)
and energy consumption are reported. Each point on the graphs
is an average of 10 runs. Standard deviation is also shown.

Figure 2(a) focuses on the execution time of each bench-
mark (see Table I). Overall, average execution time decreases
when frequency increases. Because of the property of each
benchmark (computational and memory intensive), the slopes
of the curves are different since the impact of CPU frequency
varies across benchmarks.

Figure 2(b) shows the average power for each NAS bench-
marks with both PowerJoular predictions and the INA260
measurements. For the three benchmarks, average power mea-
sured increases as the CPU frequency increases. However,
power estimations given by PowerJoular show high and stable
values. It shows that PowerJoular do not account for the CPU
frequency changes on the node to make power predictions.

Figure 2(c) shows the average energy consumption for
each benchmark with PowerJoular and the INA260. Energy
consumption estimated by PowerJoular and measured by exter-
nal monitoring differ for all benchmarks. PowerJoular energy
consumption estimations always decrease. It is not the case
for energy consumption derived from the measured power.
For example, with LU.A.x benchmark, energy consumption
measured by external power monitoring decreases at start as
CPU frequency increases (up until 1.5 GHz), then increases.

For EP.B.x benchmark, at the highest frequency, measured
and estimated energy consumption do not intersect (but are
close to each other). In studied scenarios, execution time is

4

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Frequency (GHz)

20

30

40

50

60

70

Av
er

ag
e

Ti
m

e
(s

)
node-pi-1

ep.B.x
lu.A.x
mg.B.x

(a) Execution time

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Frequency (GHz)

3

4

5

6

Av
er

ag
e

Po
we

r (
W

)

node-pi-1

ep.B.x
ep.B.x (PJ)
lu.A.x
lu.A.x (PJ)
mg.B.x
mg.B.x (PJ)

(b) Average power

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Frequency (GHz)

100

150

200

250

300

350

400

450

Av
er

ag
e

En
er

gy
 (J

)

node-pi-1
ep.B.x
ep.B.x (PJ)
lu.A.x
lu.A.x (PJ)
mg.B.x
mg.B.x (PJ)

(c) Energy consumption

Fig. 2. Experiments run on one IoT edge node with different CPU frequency for the three NAS parallel benchmarks. Power is measured by external monitoring
and estimated by PowerJoular. Each point is an average over 10 runs. The standard deviation is also reported.

relatively small (lower than 60s). In other scenarios where
execution time is higher, this difference in energy could be
more significant.

Figure 3 shows execution time, average power and energy
consumption for 10 nodes. Each point on the graphs is an
average of 100 runs (10 per nodes). The standard deviation
is also reported. These aggregated results show that Figure 2
is an accurate overview of the nodes average power, energy
consumption and benchmarks execution times. Trends and
values are similar and thus same conclusions can be derived.

For the entire set of experiments, the MAPE between values
given by PowerJoular and external monitoring is 39.62%.
PowerJoular gives inaccurate results in this context.

Most power estimators for IoT edge nodes like PowerJoular
do not consider CPU frequency changes, thus differ from ex-
ternal power meter measurements. Extracting accurate knowl-
edge about energy efficiency of an edge system when CPU
frequency changes is not possible. Having CPU frequency
aware power prediction models would allow to study edge
system scenarios where CPU frequency is used as leverage
(e.g. for energy efficiency).

VI. MODEL TRAINING AND EVALUATION RESULTS

A. Single system metric based models

Results for models trained with a single system metric are
presented in Figure 4 for temperature (T), CPU frequency (F),
CPU usage (U), Instruction count (I) and Cache misses count
(C) metrics (introduced in III-B).

The figure shows results for both models trained on three
datasets as mentioned in Table I. The mean and median of the
MAPE are given for each model (linear and polynomial). The
standard deviation is also represented.

The results with the NAS parallel benchmarks dataset show
that using the cores CPU frequency alone gives the largest
error between the predicted power and the measured one.
Similarly, temperature is not the best system metric to predict
power, with an average median error of 10% with the real
measurements. In this case, CPU usage and instruction count
provide the lowest MAPE.

For the CPU Loader workload, cores CPU frequency and
cache misses system metrics lead to the largest error. As this

workload is purely compute-bound, CPU frequency gives a
lower mean and median MAPE compared to the NAS dataset.
On the other hand, cache misses give larger errors compared to
the NAS dataset. The compute-bound nature of the workload
makes the instruction count system metric the most accurate
for power estimation with a MAPE of 5%.

For NAS benchmarks, using CPU usage or instructions
count to build the models gives similar MAPE. However, for
CPU Loader workload, using instructions count gives lower
MAPE than using CPU usage. The relevance of the metrics to
train the models can thus change depending on the workload.

Combining both datasets provides a trade-off between the
results of each dataset (NAS and CPU loader). This is the case
for each system metric. Still, CPU frequency, temperature, and
cache misses lead to the largest error.

Overall, the linear regression model has a higher MAPE
compared to the polynomial. This difference is in the order
of 3%. The median MAPE is smaller than the mean one in
most cases. This is because the mean MAPE captures potential
outliers, leading to a larger error. Standard deviations are
low, indicating that, overall, the reported MAPE is a good
indicator of the model predictions MAPE over the various
training and test phases. To try to improve prediction accuracy,
multivariate regression must be investigated. The following
section investigates the use of multiple system metrics to train
the model.

B. Combined system metrics based models
Figure 5 depicts the MAPE of power predictions with

models trained on different combinations of system metrics.
For space reasons, only a subset of all possible system metric
combinations is reported.

Results for the NAS dataset show that combining temper-
ature and frequency achieves a lower MAPE than frequency
alone, but worse than temperature alone. More generally, as
the number of relevant system metrics used to train the model
increases, the model MAPE decreases. Combining all system
metrics produces a median (and mean) MAPE less than 2%,
for the polynomial model.

Combining system metrics with CPU loader workload
shows similar trends. Overall, the MAPE is smaller with this
workload, as it is purely compute-bound.

5

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Frequency (GHz)

20

30

40

50

60

70

Av
er

ag
e

Ti
m

e
(s

)

All nodes
ep.B.x
lu.A.x
mg.B.x

(a) Execution time

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Frequency (GHz)

3

4

5

6

Av
er

ag
e

Po
we

r (
W

)

All nodes

ep.B.x
ep.B.x (PJ)
lu.A.x
lu.A.x (PJ)
mg.B.x
mg.B.x (PJ)

(b) Average power

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Frequency GHz)

100

150

200

250

300

350

400

Av
er

ag
e

En
er

gy
 (J

)

All nodes
ep.B.x
ep.B.x (PJ)
lu.A.x
lu.A.x (PJ)
mg.B.x
mg.B.x (PJ)

(c) Energy consumption

Fig. 3. Experiments run on 10 nodes with different CPU frequency for the three NAS parallel benchmarks. Power is measured by external monitoring and
estimated by PowerJoular. Each point is an average over 100 runs (10 per nodes). The standard deviation is also reported.

Using the dataset with both workloads (NAS and CPU
loader) compared to CPU loader dataset alone, the MAPE in-
creases when combining temperature and frequency. However,
by combining all system metrics (referred to in Figure 5 as
T U F I C) to train the models, a MAPE of around 2% can
be achieved. This suggests that adding more metrics could help
to generalize the models to other workloads while maintaining
a low MAPE. But, combining numerous metrics could lead
to overhead in monitoring and low improvement of MAPE
compared to scenarios with at least the temperature, CPU
usage, and CPU frequency system metrics (referred in Figure 5
as T U F), highlighting a trade-off that needs to be studied.

VII. DISCUSSIONS

A. CPU frequency aware power model

In the literature, DVFS is a commonly used leverage to save
energy. Accounting for CPU frequency change in software
power meters is thus crucial. The results presented in this work
demonstrate that predicting the power draw of an IoT edge
node under various CPU frequencies with a regression model
is possible. Depending on the dataset used to train the model
and the combination of system metrics used, a reasonable
MAPE is achieved. The results show that using datasets from
various workloads could help to generalize the models.

Tuning the proportion of each workload present in the
training dataset is important. In this work, the training dataset
was evenly split between NAS and CPU loader workload.
Training the model on multiple workloads and fine-tuning the
proportion of data for each workload, to ensure accuracy and
appropriate generalization, are strong improvement areas.

B. Metric collection overhead on IoT edge node

IoT edge nodes are usually limited in computing resources.
Monitoring many metrics concurrently, and at high frequency,
can induce overhead. This work does not study the overhead of
the metric collection process. Studying this point would help
in the assessment of the prediction’s accuracy. To mitigate
the impact of the metric collection process, reducing the
frequency at which system metrics are collected is important.
A potential trade-off between overhead, chosen metrics, and
metric collection frequency could be found.

C. Power estimation overhead on IoT edge node

Power estimation itself has an impact on the IoT edge
node when done locally. The power estimation requirements in
terms of computation vary depending on the estimation model
type and the number of metrics used. Polynomial models
provide better accuracy than linear models but require more
computation, not only when training them but also when using
them. Even though polynomial models produce better results
in the vast majority of cases, linear models can be useful
in environments where power estimation overheads must be
kept as low as possible. Power estimation should have low
impact on node energy consumption, especially in energy
frugal contexts.

Additionally, the metrics considered by power estimation
models have an impact on accuracy. But this accuracy does
not increase linearly with the addition of metrics. As a result,
an optimal set of metrics can be identified to provide a trade-
off between power estimation accuracy and overhead.

This work does not study the overhead of the power
estimation process. To reduce this overhead, the estimation fre-
quency, model used, and metrics considered can be adjusted,
and a trade-off between them must be found.

VIII. CONCLUSION

With the importance of IoT edge systems in today’s in-
frastructures, being able to study IoT edge nodes energy
consumption is crucial to design energy frugal systems. To
the best of our knowledge, most of the software-defined
power meters do not account for CPU frequency, which is
an important energy leverage. This work demonstrates that a
state of the art software power meter for IoT edge nodes does
not account for potential fluctuations of CPU frequency. In
scenarios with varying CPU frequencies, this leads to wrong
power estimations for IoT edge nodes.

We demonstrate that linear and polynomial regression-based
power prediction models are able to account for various
CPU frequencies on IoT edge nodes. Results show that
polynomial regression provides better accuracy compared to
linear regression-based models. By using the correct system
metrics, these models can predict the power of IoT edge nodes
running a specific workload with a MAPE of 2% compared

6

T F U I C
Metrics Used

0

5

10

15

20

NAS Benchmarks

T F U I C
Metrics Used

CPU Loader

T F U I C
Metrics Used

NAS Benchmarks and CPU Loader

Linear model mean error

Linear model median error

Polynomial model mean error

Polynomial model median error

M
A

P
E

Fig. 4. Mean and median MAPE while training model with different system metrics: Temperature (T), CPU Frequency (F), CPU Usage (U), Instruction
Count (I), Cache Misses Count (C).

T_
F

T_
U

T_
U_F

T_
U_F

_C

T_
U_F

I
C

Metrics Used

0

2

4

6

8

10

12

NAS Benchmarks

T_
F

T_
U

T_
U_F

T_
U_F

_C

T_
U_F

I
C

Metrics Used

CPU Loader

T_
F

T_
U

T_
U_F

T_
U_F

_C

T_
U_F

I
C

Metrics Used

NAS Benchmarks and CPU Loader

Linear model mean error

Linear model median error

Polynomial model mean error

Polynomial model median error

M
A

P
E

Fig. 5. Mean and median MAPE while training model with different combination of system metrics: Temperature (T), CPU Frequency (F), CPU Usage (U),
Instruction Count (I), Cache Misses Count (C).

to accurate hardware-based power meter measurements. The
models designed in this work are available online [40].

Future works include investigating accurate generalization
of the models to different workloads, further experiments with
other ML models, and evaluating their accuracy. Studying
the trade-offs between models accuracy, sample rate at which
the metric collector operates, number of metrics used, and
estimation overhead is also planned.

IX. ACKNOWLEDGMENT

This joint work is supported by the Aurora Mobility Pro-
gram from the French Ministry of Europe and Foreign Affairs
(MEAE) and the French Ministry of Higher Education and
Research (MESR) and the Research Council of Norway.

REFERENCES

[1] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “Enorm:
A framework for edge node resource management,” IEEE transactions
on services computing, vol. 13, no. 6, pp. 1086–1099, 2017.

[2] L. Kong, J. Tan, J. Huang, G. Chen, S. Wang, X. Jin, P. Zeng, M. Khan,
and S. K. Das, “Edge-computing-driven internet of things: A survey,”
ACM Computing Surveys, vol. 55, no. 8, pp. 1–41, 2022.

[3] M. Kamal, M. Atif, H. Mujahid, T. Shanableh, A.-R. Al-Ali, and
A. Al Nabulsi, “Iot based smart city bus stops,” Future Internet, vol. 11,
no. 11, p. 227, 2019.

[4] M. J. Murphy, M. Tveito, E. F. Kleiven, I. Raı̈s, E. M. Soininen,
J. M. Bjørndalen, and O. Anshus, “Experiences building and deploying
wireless sensor nodes for the arctic tundra,” in 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2021, pp. 376–385.

[5] P. Dibal, E. Onwuka, S. Zubair, E. Nwankwo, S. Okoh, B. A.
Salihu, and H. Mustaphab, “Processor power and energy consumption
estimation techniques in iot applications: A review,” Internet of
Things, vol. 21, p. 100655, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2542660522001366

[6] S. Tofaily, I. Raı̈s, and O. Anshus, “Quantifying the variability of power
and energy consumption for iot edge nodes,” in 2023 19th International
Conference on Distributed Computing in Smart Systems and the Internet
of Things (DCOSS-IoT). IEEE, 2023, pp. 577–584.

[7] L. Guegan, S. Tofaily, and I. Raı̈s, “Design and Evaluation of Single-
Board Computer Based Power Monitoring for IoT and Edge Systems,”
in 2023 IEEE International Conferences on Internet of Things (iThings)
and IEEE Green Computing & Communications (GreenCom) and
IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE

7

https://www.sciencedirect.com/science/article/pii/S2542660522001366
https://www.sciencedirect.com/science/article/pii/S2542660522001366

Smart Data (SmartData) and IEEE Congress on Cybermatics (Cyber-
matics). Danzhou, China: IEEE, Dec. 2023.

[8] M. Kasioulis, M. Symeonides, G. Pallis, and M. D. Dikaiakos, “Power
estimation models for edge computing devices,” in Euro-Par 2023: Par-
allel Processing Workshops, D. Zeinalipour, D. Blanco Heras, G. Pallis,
H. Herodotou, D. Trihinas, D. Balouek, P. Diehl, T. Cojean, K. Fürlinger,
M. H. Kirkeby, M. Nardelli, and P. Di Sanzo, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 257–269.

[9] G. Fieni, R. Rouvoy, and L. Seinturier, “Smartwatts: Self-calibrating
software-defined power meter for containers,” in 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, 2020, pp. 479–488.

[10] F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and
modeling the power consumption of the raspberry pi,” in 39th Annual
IEEE Conference on Local Computer Networks. IEEE, 2014.

[11] E. O. Lange, J. M. Jose, S. Benedict, and M. Gerndt, “Automated
energy modeling framework for microcontroller-based edge computing
nodes,” in Advanced Network Technologies and Intelligent Computing,
I. Woungang, S. K. Dhurandher, K. K. Pattanaik, A. Verma, and
P. Verma, Eds. Cham: Springer Nature Switzerland, 2023, pp. 422–437.

[12] F. Kaup, S. Hacker, E. Mentzendorff, C. Meurisch, and D. Hausheer,
“Energy models for nfv and service provisioning on fog nodes,” in
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1–7.

[13] L. Ardito and M. Torchiano, “Creating and evaluating a software power
model for linux single board computers,” in 2018 IEEE/ACM 6th
International Workshop on Green And Sustainable Software (GREENS),
2018, pp. 1–8.

[14] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A.-C. Orgerie, and
B. Fichel, “An experimental comparison of software-based power me-
ters: focus on cpu and gpu,” in 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE,
2023, pp. 106–118.

[15] A. Noureddine, “Powerjoular and joularjx: Multi-platform software
power monitoring tools,” in 2022 18th International Conference on
Intelligent Environments (IE), 2022, pp. 1–4.

[16] L. Guegan, I. Raı̈s, and O. Anshus, “Validation of esds using epidemic-
based data dissemination algorithms,” in 2023 19th International Con-
ference on Distributed Computing in Smart Systems and the Internet of
Things (DCOSS-IoT). IEEE, 2023, pp. 277–284.

[17] M. A. Awan and S. M. Petters, “Race-to-halt energy saving strategies,”
Journal of Systems Architecture, vol. 60, no. 10, pp. 796–815, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1383762114001295

[18] S. Tofaily, I. Raı̈s, and O. Anshus, “Representing power variability of an
idle iot edge node in the power state model,” in 2023 IEEE International
Conferences on Internet of Things (iThings) and IEEE Green Computing
& Communications (GreenCom) and IEEE Cyber, Physical & Social
Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE
Congress on Cybermatics (Cybermatics). IEEE, 2023, pp. 540–546.

[19] E. Nogues, M. Pelcat, D. Menard, and A. Mercat, “Energy efficient
scheduling of real time signal processing applications through combined
dvfs and dpm,” in 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), 2016.

[20] A. Di Mauro, H. Fatemi, J. P. de Gyvez, and L. Benini, “Idleness-aware
dynamic power mode selection on the i.mx 7ulp iot edge processor,”
Journal of Low Power Electronics and Applications, vol. 10, no. 2,
2020. [Online]. Available: https://www.mdpi.com/2079-9268/10/2/19

[21] S. K. Panda, M. Lin, and T. Zhou, “Energy-efficient computation
offloading with dvfs using deep reinforcement learning for time-critical
iot applications in edge computing,” IEEE Internet of Things Journal,
vol. 10, no. 8, pp. 6611–6621, 2023.

[22] T. Zhou and M. Lin, “Deadline-aware deep-recurrent-q-network gover-
nor for smart energy saving,” IEEE Transactions on Network Science
and Engineering, vol. 9, no. 6, pp. 3886–3895, 2022.

[23] J. M. Paniego, L. Libutti, M. P. Puig, F. Chichizola, L. De Giusti,
M. Naiouf, and A. De Giusti, “Unified power modeling design for
various raspberry pi generations analyzing different statistical methods,”
in Argentine Congress of Computer Science. Springer, 2019, pp. 53–65.

[24] H. Kanso, A. Noureddine, and E. Exposito, “Automated power modeling
of computing devices: Implementation and use case for raspberry pis,”
Sustainable Computing: Informatics and Systems, vol. 37, 2023.

[25] F. Kaup, S. Hacker, E. Mentzendorff, C. Meurisch, and D. Hausheer,
“The progress of the energy-efficiency of single-board computers,” Tech.
Rep. NetSys-TR-2018-01, 2018.

[26] I. Raı̈s, “Discover, model and combine energy leverages for large scale
energy efficient infrastructures,” Ph.D. dissertation, Université de Lyon,
2018.

[27] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of gpu
dvfs on energy conservation,” Digital Communications and Networks,
vol. 3, no. 2, pp. 89–100, 2017.

[28] Z. Zhang, Y. Zhao, H. Li, C. Lin, and J. Liu, “Dvfo: Learning-
based dvfs for energy-efficient edge-cloud collaborative inference,” IEEE
Transactions on Mobile Computing, 2024.

[29] H. Ali, U. U. Tariq, L. Liu, J. Panneerselvam, and X. Zhai, “Energy
optimization of streaming applications in iot on noc based hetero-
geneous mpsocs using re-timing and dvfs,” in 2019 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019.

[30] J. L. Bez, E. E. Bernart, F. F. dos Santos, L. M. Schnorr, and P. O. A.
Navaux, “Performance and energy efficiency analysis of hpc physics
simulation applications in a cluster of arm processors,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 22, 2017.

[31] J. Xu, K. Ota, and M. Dong, “Saving energy on the edge: In-memory
caching for multi-tier heterogeneous networks,” IEEE Communications
Magazine, vol. 56, no. 5, pp. 102–107, 2018.

[32] H. Ali, U. U. Tariq, L. Liu, J. Panneerselvam, and X. Zhai, “Energy
optimization of streaming applications in iot on noc based hetero-
geneous mpsocs using re-timing and dvfs,” in 2019 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019.

[33] Y. H. Yassin, M. Jahre, P. G. Kjeldsberg, S. Aunet, and F. Catthoor, “Fast
and accurate edge computing energy modeling and dvfs implementation
in gem5 using system call emulation mode,” Journal of Signal Process-
ing Systems, vol. 93, no. 1, pp. 33–48, 2021.

[34] T. Zhou, H. Wang, X. Li, and M. Lin, “Profiling and understanding
cpu power management in linux,” in 2023 IEEE Smart World Congress
(SWC). IEEE, 2023, pp. 1–8.

[35] M. H. Alsharif, A. H. Kelechi, A. Jahid, R. Kannadasan, M. K. Singla,
J. Gupta, and Z. W. Geem, “A comprehensive survey of energy-efficient
computing to enable sustainable massive iot networks,” Alexandria
Engineering Journal, vol. 91, pp. 12–29, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1110016824001091

[36] G. Fieni, R. Rouvoy, and L. Seiturier, “Selfwatts: On-the-fly selection
of performance events to optimize software-defined power meters,” in
2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). IEEE, 2021, pp. 324–333.

[37] M. S. Aslanpour, A. N. Toosi, R. Gaire, and M. A. Cheema, “Wattedge:
A holistic approach for empirical energy measurements in edge com-
puting,” in Service-Oriented Computing: 19th International Conference,
ICSOC 2021, Virtual Event, November 22–25, 2021, Proceedings 19.
Springer, 2021, pp. 531–547.

[38] W. Wang and M. Zwolinski, “An improved instruction-level power
model for arm11 microprocessor,” High Performance Energy Efficient
Embedded Systems (HIP3ES), 2014.

[39] T. Trathnigg, M. Jürgen, and R. Weiss, “A low-cost energy measurement
setup and improving the accuracy of energy simulators for wireless sen-
sor networks,” in Proceedings of the workshop on Real-world wireless
sensor networks, 2008, pp. 31–35.

[40] V. Ostapenco, L. Guégan, S. Tofaily, I. Raı̈s, and L. Lefèvre, “Models Git
Repositories,” https://gitlab.com/manzerbredes/aurora-team-2023, [Ac-
cessed 18-12-2024].

8

https://www.sciencedirect.com/science/article/pii/S1383762114001295
https://www.sciencedirect.com/science/article/pii/S1383762114001295
https://www.mdpi.com/2079-9268/10/2/19
https://www.sciencedirect.com/science/article/pii/S1110016824001091
https://gitlab.com/manzerbredes/aurora-team-2023

	Introduction
	State of the art
	DVFS energy leverage at the edge
	Power models and CPU frequency

	Experimental Setup
	Hardware environment
	Software tools
	Workloads

	Experimental protocol
	Performance metrics
	Power prediction models
	Experiment 1: Software Power Meters overlooking CPU frequencies
	Experiments 2: Model training and evaluation

	Results analysis of Software Power Meter estimations, using various CPU frequencies
	Model training and evaluation results
	Single system metric based models
	Combined system metrics based models

	Discussions
	CPU frequency aware power model
	Metric collection overhead on IoT edge node
	Power estimation overhead on IoT edge node

	Conclusion
	Acknowledgment
	References

