
Towards the Hierarchical Group Consistency for DSM systems : an efficient way to share data
objects

Laurent Lefèvre and Alice Bonhomme
LIP / INRIA RESO, ENS-Lyon, France
laurent.lefevre@inria.fr

Abstract

We present a formal and graphical comparison of consistency models, based on the programmer point of view. We
conclude that most consistencies can be categorized into 3 models depending on their flexibility degree (none, 1 or
2). We propose a new consistency model that provides these 3 flexibility degrees : the Hierarchical Group Consistency
(HGC) and present its deployment inside the DOSMOS DSM system.

Keywords : Distributed Shared Memory, consistency models, DOSMOS

1. Introduction

DSM systems are now a well recognized alternative for the deployment of large class of applications. Their main
challenge is to manage data consistency while keeping good performances. During last decade, a lot of consistencies
have been proposed [2,3,7,10]. However, their definition is made from the designer or hardware point of view. Each
definition is thereby often dependent on the DSM designer context. By using large scale clusters (hundred or thousand
of nodes), DSM have to face the scalability problem. How to provide scalable solutions for applications needing
a virtual shared space with a large number of computing nodes? In particular, one issue that DSM systems have to
address concerns minimizing replication (ie reducing the number of messages required to keep the memory consistent)
and maximizing availability (ie increasing the number of local accesses) of shared data (objects).

Our goal is to propose a new taxonomy for consistency models, that can be used by a programmer that deals with
the implementation of a distributed application on top of a cluster of machines. This taxonomy is programmer-centric.
For this, we use the framework introduced by Hu et all. [9], and we show, that from the programmer point of view,
there are only 3 main consistency models. The other ones are just various implementations of those models.

Based on this observation, we propose a graphical representation of those models. This representation is based on
different degrees of flexibility of the consistency : flexibility about consistent moment (like Release Consistency) or
about consistent data (like Entry Consistency). This representation outlines that so far, there is no consistency model
with flexibility about consistent processes.

Hence, we suggest the Hierarchical Group Consistency (HGC). Consistency is only maintained inside a group of
processes rather than between all processes. Furthermore, for each group, various consistency rules can be applied,
depending on the type of sharing performed inside a group. This group structure is particularly interesting for hete-
rogeneous clusters and allows the programmer to adapt the consistency management to the application (depending
on the sharing degree, for example) and to the execution cluster (depending on the communication performances,
for example). The Hierarchical Group Consistency has been implemented in the DOSMOS system [5,12]. Like in
most DSM systems based on weak consistency, DOSMOS provides Acquire and Release operations to set critical sec-
tions. However, with HGC, DOSMOS also allows the programmer to specify which data to share and between which
processes.

This paper is organized as follows : Section 2 rapidly presents the programmer-centric framework used to define
consistency models, and introduces a formal comparison of existing models. Then Section 3 is devoted to a graphical
3D representation of the 3 consistency models. Next, Section 4 presents the Hierarchical Group Consistency model.
Section 5 describes the hierarchical group deployment in the DOSMOS system. Section 6 concludes this paper and
presents future directions.

1

2. Three Memory Consistency Models from the Programmer Point of View

Research on data consistency has always been a hot topic because of its central position between parallelism,
operating systems, distributed systems, etc. However, if lot of consistencies have been defined, the formal context of
the consistency concept has not been clearly specified. As a consequence, comparing consistencies remains a difficult
challenge [1,8]. In this section, we focus on the consistency concept based on the programmer point of view. That
means that a consistency model is defined based on how it is perceived by the programmer rather than how it is
managed or implemented by the system. We base our work on the formal framework introduced by Hu et all. [9] in
order to compare different models. Section 2.1 introduces this framework and defines the most well known consistency
within this framework. Section 2.2 shows how to compare these models with this framework.

2.1. Formal definition of consistency models
In their article [9], Hu et all define a memory model as follows :

Definition 1 A memory consistency model M is a two-tuple (CM , SY NM) where CM is the set of possible
memory accesses (read, write, synchronization) and SY NM is an inter-processes synchronization mechanism to order
the execution of operations from different processes.

The execution order of synchronization accesses determines the order in which memory accesses are perceived by
a process. Accordingly, for each program, there are several possible executions. A program execution is defined as
follows.

Definition 2 An execution of the program PRG under consistency model M, denoted as E M (PRG), is defined as
an ordering of synchronization operations of the program.

With the ordering of synchronization operations, the execution of all related operations are also ordered. Thus, we
define the synchronization order of an execution.

Definition 3 The synchronization order of an execution EM (PRG) under consistency model M , denoted as
SOM (EM (PRG)), is defined as the set of ordinary operation pairs ordered by the synchronization mechanism
SY NM of M .

Hence, for any consistency model M , we can define CM and SOM (EM (PRG)). CM deals with how the program-
mer has to program, and SOM gives the rules used to generate the result.

The basic Atomic Consistency (AC), the Sequential Consistency (SC) [11], the Release Consistency (RC) [7], the
Lazy Release Consistency (LRC) [1], the Eager Release Consistency (ERC) [6], the Entry Consistency (EC) [3] and
the Scope Consistency (SsC) [10] can all be defined within this framework. Furthermore, based on those definition, we
easily outline that RC, LRC and ERC have the same definition. That means that LRC and ERC are different implemen-
tation of the RC model. In effect, from the programmer point of view, the results are the same for both implementation.
Similarly, we state that SsC is a particular case of EC. As a result, in the following, we only consider AC, SC, RC and
EC models.

Finally, Hu et all. define a correct program as follows :

Definition 4 A program PRG is said correct for the consistency model M , iff for any possible execution EM (PRG),
all ordinary conflicting accesses pairs are ordered by either the program order (PO) or by the synchronization order
of execution SOM .

2.2. Formal Comparison of consistency models
In order to compare consistency models, we define the concept of models equivalence.

Definition 5 M1 and M2 are said equivalent iff :
- CM1 = CM2 ,

2

- a correct program PRG for M1 is also correct for M2,
- if 2 compatible executions EM1(PRG) and EM2(PRG) give the same result.

EM1(PRG) and EM2(PRG) are said compatible executions if there does not exist (u, v), 2 synchronization opera-
tions such that (u, v) ∈ EM1(PRG) and (v, u) ∈ EM2(PRG).

Theorem 1 The Atomic Consistency model and the Sequential Consistency model are equivalent.
Proof : By definition, CAC = CSC . Furthermore, AC and SC provide a global order for all read/write operations.

Consequently, they are both correct for any program. Finally, for any execution E AC , all accesses are ordered. Yet,
ESC only orders operations concerning data accessed several times during the execution. Thus, E SC is included into
EAC . For the remaining operations that are in EAC and not in ESC , they concern distinct data. The result is therefor
the same whatever the execution order. AC and EC are equivalent. More generally speaking, we refer to them as the
Strong Consistency Model.

Theorem 2 The Release Consistency model and the Entry Consistency model are not equivalent.
Proof : Let us give a counterexample.
Let us consider the program and execution shown here. If for EC, x is not associated to l 1, then PRG is correct for

EC (accesses to x are ordered by the synchronization order), and gives the result (a = 0, b = 1). However, for RC,
PRG is also correct, but the result is (a = 1, b = 1). EC and RC are not equivalent.

Corollary 1 The Strong Consistency model, the Release Consistency model and the Entry Consistency model are
three different consistency models.

Proof : The strong consistency model does not define any synchronization variables. It is consequently not equiva-
lent to EC or RC.

3. Graphical comparison of the three consistency models

Once we have outlined 3 distinct models, we suggest to compare them with a graphical taxonomy based on user point
of view. Considering a correct program for a model M , this taxonomy allows us to answer the following question :
At each moment t of a program execution, if a given process p i accesses a shared data d, will he read the last value
written in the shared memory by another process pj? In case of a positive answer, we say that at moment t, process p i

is consistent with the process pj about the data d.

When

Who

What

Critical sections
between Acquire and Release

barriers
Accesses between

Processes linked
with synchronization

Other processes

Memory SpaceMemory Objects linked
with synchronization

All the Time
Time remaining

All Processes

All Memory Space

FIG. 1 – When, who, what axis.

Then, we represent each model with a 3D visualization of the answer
to this question by using various parameters (t, d, p). Hence, each model
is represented by a volume made up of the triplets (t, d, p) for which the
answer is yes. Basically, (t, d, p) is defined with respect to 3 axes :

When (t) : for times intervals of running application;
What (d) : for shared memory space;
Who (p) : for application processes.

As shown in Fig.1, the axis discretization is based on shared objects pat-
tern accesses.

Accordingly, if we normalize the axes, a plain cube means that a process, for all running execution, for all shared
data, reads last value written by any other process. The strong consistency model perfectly fits in that definition and
graphical representation (Fig. 2). Figures 3 and 4 graphically represent weak consistencies. With Release Consistency,
an access performed between Acquire and Release operations is consistent with other processes on all accessible data.
In a barrier case, all the processes have the same view of the shared memory. For the remaining execution, there are
some conflict risks for any accessible data. The Entry Consistency model gives a slightly different result from the
previous one. In effect, if for the barriers, the behavior is the same, it is rather different for an access in a critical
section surrounded by an Acquire and Release operation. The process is consistent with the other processes only for

3

the shared data associated to this synchronization.

Who

When

What

FIG. 2 –. Strong consistency

Who

What

When

FIG. 3 –. Release consistency

Who

What

When

FIG. 4 –. Entry consistency

4. Towards a new consistency model? The Hierarchical Group Consistency (HGC)

What

Who

When

FIG. 5 – Graphical representation
of a new model with 3 flexible axes

Moving from a strong towards a weak consistency consists of the When axis
decrease. The Entry Consistency model also relaxes the What axis. At this stage,
only one dimension remains fixed : the processes one. It would be pertinent to
make this axis flexible. For an application, all processes do not use all shared
data. Moreover, in order to provide scalable solutions, it could be interesting to
synchronize with barriers a subset of running processes.

Thus, we propose a new consistency model which groups together processes
working on same synchronization variables. Such a model has the graphical
representation shown in Figure 5.

Basically, the HGC model is similar to EC since data are associated to a syn-
chronization variable. Furthermore, processes are also associated to this synchronization variable. Thus, let consider a
data modification performed inside a critical section managed by the synchronization variable l. Then, those modifi-
cations are forwarded only if they concern data associated to l, and only to processes associated to l. Furthermore, in
the HGC model, it is possible to perform some synchronization barrier for only a subset of the processes. Thus, the
HGC model can be defined as follows :

Definition 6 The Hierarchical Group Consistency model is defined by :
- CHGC = {read(x), write(x), Acq(l), Rel(l), Sync(l)}

- (u, v) ∈ SOHGC(EHGC(PRG)) iff ∃ a synchronization variable l to which u and v are associated such that:
u is performed before Rel(l) and v is performed after Rel(l).

OR u is performed before Sync(l) and v is performed after Sync(l).

Theorem 3 The Hierarchical Group Consistency model is not equivalent to the Release Consistency model, nor to
the Entry Consistency model.

Proof : HGC introduces a new synchronization operation (the barrier restricted to a synchronization variable) conse-
quently, CHGC �= CRC and CHGC �= CEC . Thus, those models are not equivalent.

HGC limits coherence management costs of a shared data to some dedicated and explicitly associated processes.
Global communications are restricted to processes really needing to have up to date copies of shared data.

By this way, the Hierarchical Group Consistency allows to mix high availability of shared data combined with weak
replication [4].

4

5. Implementation aspect

We implement the Hierarchical Group Consistency inside the DOSMOS framework (Distributed Shared Objects
MemOry System). DOSMOS is based on 3 kind of processes : Application Processes (run application code), Memory
Processes (manage memory access and consistency inside a group) and Link Processes (manage memory consistency
between groups)..

The policy of DOSMOS system is to manage the consistency of an object only within the group of processes that
frequently use this object. Thus DOSMOS introduces a hierarchical view of one’s application processes by creating
groups of processes that frequently share the same object.

We define a group as a pair (G, O) where O is a set of objects and G a set of Application Processes sharing those
objects. Each group has a group manager (Link Process : LP) responsible for the inter-group communications. Each
group management is independent from the others.

Concerning read and write operations to shared data, we classify the accesses into two categories : the intra-group
accesses (the accessing process belongs to object’s group) and the inter-group accesses between two distinct groups.
Figure 6 shows an example of object accesses using group consistency. In this example, we have 2 sites A and B.
In each site, processes share the same object (Y for site A and X for site B). The objects X and Y do not have the
same consistency management : Release Consistency for Y and Lazy Release Consistency for X . In this context, we
describe three different actions : First, one process of site A writes Y , then this process sends the new value of Y to
the other members of the site A. The second action illustrates an inter-group access. One process of site B wants to
read the object Y . Since it does not belong to Y ’s group, it sends its request to its group manager that forwards it to the
group manager of site A. This one forwards again the request to the right process in the group that sends the Y value
to the requesting process. The last action concerns an acquire of X : since X is managed in Lazy Release Consistency,
the acquirer asks the last acquirer for the new value of X .

P

P

P

P

P

P

P

P

LP LP

SITE A SITE B

Y

Release Consistency

Object Y Object X
Lazy Release Consistency

Ask for X

X

Y

Y

Action 3

R
ead Y

Read Y
Read Y

Y

Action 1

Action 2

FIG. 6 –. Three actions supporting the group consistency : an intra-write in Release Consistency (action 1), an inter-
read (action2), and an acquire in Lazy Release Consistency (action 3)

For an intra-group access, we distinguish two cases :

– If it is the first access for the process to that object, the group manager sends it a copy of this object;

– Else, the process already has a local copy. Then, depending on the consistency implementation of the group, the
process will directly work on this copy or not.

For an inter-group access, the accessing process doesn’t have a copy and will never have one during the whole

5

execution of the application. It simply asks for the value of this object (for a read) or sends the new value (for a write)
to the group manager.

6. Conclusion

This paper presents an original taxonomy of memory consistencies based on the programmer approach. This clas-
sification shows the interest of a new consistency relaxing un-useful memory management costs. The Hierarchical
Group Consistency proposes to group together processes that frequently access the same shared data. This model
allows a gain of performances without denying DSM programmability. The Group Consistency model implemented
in DOSMOS is an original approach for improving DSM Systems. It allows the system to be adapted to the envi-
ronment under which it performs (type of processors, communication network, applications patterns, objects size....)
Depending on the environment, the policy concerning replication of objects will not be the same and consequently the
group structure will be different. The hierarchical Group Consistency is well suited for large scale systems and could
perfectly fit for multi-cluster and Grid applications. This model fits perfectly the requirements of various kind of net-
works. Depending on the latency, the bandwidth or other criteria, we can design an accurate group structure in order
to reach the best compromise between replication and availability suited for the studied network. We are currently
dynamic hierachical groups which should easily permit load balancing.

REFERENCES

[1] S. V. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. A comparison of entry consistency
and lazy release consistency implementations. In Proc. of the 2nd IEEE Symp. on High-Performance Computer
Architecture (HPCA-2), pages 26–37, February 1996.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE Computer, 29(12):66–76,
December 1996.

[3] Brian N. Bershad, Matthew J. Zekauskas, and W. A. Sawdon. The midway distributed shared memory system. In
38th IEEE International Computer Conference (COMPCON Spring’93), pages 528–537, February 1993.

[4] Alice Bonhomme and Laurent Lefèvre. How to combine strong availability with weak replication of objects ?
In ECOOP98 : 12th Conference on Object Oriented Programming : Workshop on Mobility and Replication,
Bruxelles, Belgium, July 1998.

[5] Lionel Brunie, Laurent Lefèvre, and Olivier Reymann. High performance distributed objects for cluster com-
puting. In 1st IEEE International Workshop on Cluster Computing (IWCC ’99), pages 229–236, Melbourne,
Australia, dec 1999. IEEE Computer Society Press.

[6] John B. Carter, John K. Bennet, and Willy Zwaenepoel. Implementation and performance of MUNIN. ACM -
Operating Systems Review, 25(5):152–164, 1991.

[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In 16th Annual Symposium on Computer Architecture, pages
15–26, May 1989.

[8] L. Higham, J. Kawash, and N. Verwaal. Defining and comparing memory consistency models. In Proc. of the
10th Int’l Conf. on Parallel and Distributed Computing Systems (PDCS-97), October 1997.

[9] W. Hu, W. Shi, and Z. Tang. A framework of memory consistency models. Journal of Computer Science and
Technology, 13(2), March 1998.

[10]L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release consistency and entry consistency.
In Proc. of the 8th ACM Annual Symp. on Parallel Algorithms and Architectures (SPAA’96), pages 277–287, June
1996.

[11]L. Lamport. How to make a multiprocessor that correctly executes multiprocess programs. IEEE Trans. on
Computers, C-28(9):690–691, September 1979.

[12]Laurent Lefèvre and Olivier Reymann. Combining low-latency communication protocols with multithreading for
high performance dsm systems on clusters. In 8th Euromicro Workshop on Parallel and Distributed Processing,
pages 333–340, Rhodes, Greece, Jan 2000. IEEE Computer Society Press.

6

