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Abstract- Fault tolerance can be defined as the capability of a system or a component to continue normal 

operation, despite the occurrence of a hardware or a software fault. Frameworks providing a fault tolerant 
service take advantage of resource redundancy to provide high availability capabilities. One of the critical 
challenges that led to this work is the observation that the existing fault tolerance frameworks are not 
adapted to current and next generation Internet services. Indeed, they do not provide consistent service-
aware failure recovery capabilities. Particularly, little interest has been granted to transport level awareness 
despite its important partaking in improving the reliability of connection oriented services and stateful 
devices. In this paper, we evaluate an active replication based framework for highly available Internet 
services. The proposed framework is fully client/server transparent. Performance evaluations show that it 
incurs minimal overhead to end-to-end conversations during failsafe periods and performs well during 
failures. 

Index Terms— High availability, reliability, transport level awareness, session level awareness, 
connection oriented services, stateful devices. 

 

I. INTRODUCTION 

Fault tolerance can be defined as the capability of a system or a component to continue 
normal operation, despite the occurrence of hardware or software faults. Frameworks 
providing a fault tolerant service take advantage of resource redundancy, to provide high 
availability capabilities. They are based on two key concepts, which are the fault detection on 
the one hand, and the fault recovery on the other hand. Moreover, they are subjected to 
different challenges related to their robustness and performance. One of the critical challenges 
that led to this work is the observation that the existing fault tolerance frameworks are not 
adapted to the current as well as to most next generation Internet services. Indeed, they do not 
provide consistent service-aware failure recovery capabilities. Particularly, little interest has 
been granted to the transport level aware failure recovery capabilities despite their important 
partaking in improving the reliability of the connection oriented services and the stateful 
devices.  

Conversely, Internet servers run typically stateful applications. Services based on TCP 
maintain a server state for each peer involved in the communication. TCP states store all the 
information required to perform error, sequence and flow control. Due to the explicit 
association between a service and its physical location for the wired Internet, a failure of the 
legitimate processing server leads  to loosing the states related to all the active conversations, 
be they transport  level or application level. 

Network level failover techniques [1] are not sufficient to transparently recover TCP based 
services. Conversely, TCP tolerates short periods of disconnection not longer than a few 
RTTs. A typical example is a simple connection to a database server. When the connection 
terminates, all the uncommitted transactions handled over this connection are aborted, 
requiring users to restart the lost connection from scratch. A robust transport level failover is 
then needed to provide reliability to TCP based services. 

In this paper, we evaluate an active replication based service-aware highly available 
framework. The proposed framework is fully client/server transparent. Performance 
evaluations show that it incurs a minimal overhead to the end-to-end communications during 
failsafe periods and performs well during failures. 



Section 2 briefly presents the related works and section 3 describes the general overview 
and design space of our proposal. The architecture details are presented in section 4 and some 
performance evaluation are analysed in section 5. Section 6 concludes this paper and proposes 
some future works. 

 

II. RELATED WORK 
Several research works were proposed to provide Internet servers with reliability 

capabilities. These works can be classified into client-aware solutions, requiring changes to 
the client side, and client-transparent solutions, moving most of the fault tolerance work either 
to the target server or to an intermediate proxy. 

Among the client-aware solutions, we first mention Migratory-TCP (M-TCP) [2]. M-TCP 
transparently migrates the server side endpoint of a live connection and assists the underlying 
server application in resuming its reliable service, following the connection migration. 
SockMi [3] is a similar mechanism which moves both the client and the server endpoints of a 
live connection. MSOCKS [4], Indirect-TCP (I-TCP) [4] and TCP handoff [5] advocate all of 
them split-connection proxy-based architectures which achieve consistency by rewriting all 
the traffic flowing between the clients and the servers. Their major drawback consists in the 
proxy being the major point of failure, and the main source of bottleneck. Reliable sockets 
(ROCKS) and reliable packets (RACKS) [6] are two systems providing means for transparent 
network connection mobility. TCP Migrate [7] offers similar capabilities, assuming both 
connection endpoints to be TCP Migrate aware.  

The major drawback of the client-aware solutions is that they require the cooperation of the 
end server, either with the client side or with an intermediate device. From then, they are not 
adapted to the current client applications, which require to be rewritten accordingly. Secondly, 
at the origin, they were not designed to meet the requirements of true failure situations. 
Indeed, the server side state can be lost before being consistently migrated to a safe server. 

 
Client-transparent fault tolerant frameworks use however replication techniques to backup, 

during failure-free periods, every service state on a number of replicas. Following a node or a 
link failure, the service is recovered on an elected replica. A number of approaches exist to 
coordinate between replicas during failure-free periods. Among these approaches we mention 
the checkpointing approach [8], the message logging approach [9], the active replication 
approach [10] and the hybrid approaches [10]. 

In a previous work [1], we out looked these approaches and showed that the active 
replication offers the best recovery time compared to any other mechanism. Its main idea is to 
have all the servers receive and concurrently process the offered network traffic. However, in 
order to provide efficient failure recovery capabilities, the concept of active replication 
assumes replicas to generate the same consistent service states when provided with the same 
input. We provided also a comprehensive overview of the building blocks of a fault tolerance 
framework. We outlined state-of-the-art failure detection approaches and dealt with service 
replication approaches and issues. We provided an overview of failure recovery techniques, 
used to provide network, flow and session level high availability capabilities. ARP spoofing, 
Virtual Router Redundancy Protocol as well as the Network Address Translation  are well 
known network level failure recovery techniques. They provide an acceptable level of service 
availability for stateless services by enabling a replica with means to takeover the network 
level identity of the failed server. However, they do not provide reliability capabilities to 
stateful services such as stream-based services. In order to avoid restarting the already active 
flows or sessions from scratch, in the event of failure of the legitimate processing server, both 
transport level and session level failure recovery approaches are required. FT-TCP [11], 
transparent connection failover [12] and ST-TCP [13] are representative client transparent 
frameworks providing transport level failure recovery capabilities. In [1], we showed that 
these frameworks reduce the performance of the end-to-end conversations during failure-free 
periods, by leading to smaller throughput or increased delay and legitimate server resources' 
usage. 



 
III. GENERAL OVERVIEW AND DESIGN SPACE 

This proposal is a generalization of a previous work for transparently enhancing the 
reliability of stream based flows [15]. The active replication-based framework that we 
advocate aims to provide high availability capabilities to any stateful device, be it a stateful 
firewall, a deterministic processing server or the entry point to a cluster of less deterministic 
servers. It enhances the service reliability by avoiding the interruption of the already active 
sessions, in case of failure of the legitimate processing server. The framework handles both 
stream-based and connectionless oriented services. 

Let us first have an insight into the framework design space [Fig. 1]. The idea consists in a 
replica non-intrusively tapping the network traffic legitimately flowing between the primary 
node and the clients. The backup node is engineered such that it actively replicates the states 
maintained by the primary node. 

 

 
 

Figure 1. - Design Space of the active replication-based Framework 
 

In order for our infrastructure to cope with a wider range of services, while incurring a 
minimal processing to the backup node during failure-free periods, we chose to share the 
virtual service IP address between replicas. This approach is particularly interesting, for 
instance, in case we actively replicate the entry point of a cluster of non-deterministic 
application servers. The effective association between the service virtual IP address and the 
primary's link level address is provided by means of ARP flooding. In essence, during failure-
free periods, the primary node initiates a gratuitous ARP flooding. The backup node is on the 
other hand engineered such that it ignores any ARP request. In case the primary node is 
subjected to a failure, the backup node takes over the ownership of the network level service 
identity by performing, on its turn, gratuitous ARP flooding. 

A particular processing is required during failure-free periods on the one hand, and during 
failures, on the other hand. First, during failure-free periods, the framework provides the 
means to achieve a consistent and a transparent replication of every service state, be it kernel 
level or application level. Kernel level states are states built and maintained by the kernel for 
each service running in the system, during its lifetime. These states can be the flow level 
states, the connection tracking states, etc. Application level states are however the states 
associated to the application running on the highly available node. 

Our framework ensures service consistency by guaranteeing that only one replica is 
providing the service at once. Otherwise saying, during failure-free periods, the backup server 
is silent: the outgoing traffic it generates consequently to the active replication process is 
dropped. 

Should the primary server fail, the available replica takes over the service network level 
identity. Next, it leaves the silent mode and enters the master mode, where it fully provides 
the service to the end clients. 



 
IV. ARCHITECTURE DETAILS 

The proposed infrastructure is fully client/server transparent. Indeed, no changes are 
required at the client and at the legitimate server. In particular, the active replication 
components are exclusively deployed at the backup node. The advantage of this approach is 
that, during failure-free periods, the primary node suffers neither a worse performance, for 
instance in terms of reduced end-to-end throughput, nor an increased resource's usage.  

 
The key concepts of the proposed service aware highly available framework are based on 

three main components (Figure 2). The first component provides the state replication 
capabilities for the handled stateful services. The second component provides the means to 
detect a potential failure of the highly available service or node. The third component 
provides failure recovery capabilities. 

 
 

Figure 2. - Active Replication Architecture 
 
A. The active replication-based component for state replication 
 
The active replication-based component for state replication is split between a set of user 

and kernel space programs which together provide the backup node with means to receive and 
to process the offered network traffic to the primary node. Our implementation covers UDP-
based and TCP-based services. It distinguishes between three steps. First, packets legitimately 
destined to the primary node are intercepted by the replica's network interface. Second, they 
are filtered at the link level. Only the traffic pertaining to the highly available service(s) is 
delivered to the next engine, which will rewrite it at the link level and inject it into the 
replica's kernel. Since replicas share the same network level address and are similarly 
configured and tuned, the injected traffic is guaranteed to successfully bypass the upper layers 
sanity checks, in particular at the network level. 

 
The steps of intercepting and filtering the legitimate traffic are fundamental to the active 

replication process. We used the BSD packet filter-based Libpcap capabilities [14] to tap the 
traffic flowing between the clients and the legitimate server. Firstly, Libpcap puts the Ethernet 
interface into the promiscuous mode to enable non-intrusive copies of the legitimate packets 
to be obtained. These packets are then filtered according to our settings, based for instance, on 
the transport level service identity. In order to reduce the replica's load and help it lower its 
drop rate, only the relevant subset of the captured packets is copied to a Libnet-based user 
space program for traffic modification and rewriting. Libnet [14] is a powerful portable open 
source C-library for creating and injecting network traffic. It supports packet creation at all 
the TCP/IP network levels and provides a granular access to the network packets at each level 



of the protocol stack. The user space module for traffic modification smartly parses and 
rewrites each packet protocol header. The resulting traffic is then delivered to the backup's 
network stack and completes its journey up to the application layer for processing. 

 
A.1. State synchronization for stream-based services 
 
The initial sequence number used by the server is the fundamental source of non-

determinism at the TCP level. Other sources of TCP level non-determinism can be handled by 
similarly tuning the replica's TCP/IP stacks, particularly, at the transport level. In order to 
guarantee similar flow states over the replicated servers, we chose to synchronize replicas at 
the three-way-handshake rather than synchronizing the replicated TCP states all along the 
TCP flow's lifespan. 

The early TCP state synchronization requires the backup node to non-intrusively intercept 
the primary's outgoing traffic. In particular, it intercepts segments having their SYN/ACK 
flags set. A client/server-like package is deployed at the backup node(s) to perform the early 
state synchronization. The client side of the package is a user space application which 
intercepts and analyses the primary's outgoing SYN/ACK segments. From the intercepted 
traffic, it builds a minimal connection state, described in figure 3. 

 

 
Figure 3. - Structure of the Connection Synchronization Message 

 
This minimal state is then sent to a peer kernel space module through a Netlink socket. The 

Netlink-based kernel module is responsible for performing the TCP early state 
synchronization of the replicated flows.  

 
A.2. Service consistency during failure-free periods 
 
In order to ensure that only one server is processing client requests at once, all the data 

generated by the backup are dropped at the network level using Netfilter-based rules. In 
addition, to improve effectiveness, we used the sysctl interface to similarly tune the replica's 
TCP stack parameters such as the read and write buffer sizes, the options, etc. 

 
B. The failure detection component 
 
Two properties are desirable for the failure detection component. First, it should detect 

failures as soon as they occur so as to rapidly trigger the resumption of the service on an 
available backup. Second, it should be robust enough to ensure that only one error free 
instance of the service is running at once. Our infrastructure provides failure detection 
through the explicit and the secure exchange of heartbeat messages between replicas, over 
redundant links. The used failure detection mechanism obeys the push model, described in the 
previous chapter. In essence, each replica monitors its peer by sending a Hello message each 
fixed time interval over a unicast channel, while expecting the receipt of an acknowledgement 
within a timeout period. Both the timeout and the time separating the sending of consecutive 
regular heartbeat messages are adjustable. 

 
 
 
 



C. The failure recovery component 
 
The failure recovery component is triggered by the failure notification of the primary 

server. It aims to achieve a transparent failure recovery of the service. The network level 
identity takeover provides service availability. Reliability capabilities consist however in 
avoiding the interruption of the already active sessions during the resumption of the service 
on the available replica. 

The main operations of this component are summarized as follows. First, the replica 
disables all the modifications required by its kernel during the failure-free period. It disables 
the routing and the link level customizations, such as enabling ARP and disabling all the 
active replication related filtering rules. It also stops all the active replication related 
processes, such as traffic interception, filtering, modification and rewriting. Next, it leaves the 
silent mode by disabling the filtering rules triggered on its outgoing traffic. Finally, it takes 
over the ownership of the network level identity, by carrying out an ARP gratuitous flooding, 
similarly to what the legitimate server performs at the framework's start-up, to confirm its 
ownership of the service virtual address. 

 
V. PERFORMANCE EVALUATION 

An implementation of the above-described active replication-based framework is provided 
for the Linux 2.6.18 kernel. The prototype is checked using typical services having different 
communication patterns. In this section, we quantitatively evaluate the performance of the 
implemented prototype in enhancing the high availability capabilities of interactive stream 
oriented service. It consists in a client and a server reliably exchanging messages over a TCP 
channel. The echo conversation has similar communication patterns to the telnet and the 
secure shell applications. 

 
A. Experiment setup 
 
We run the experiments on the stream oriented services using the test bed described in 

figure 1. Both replicas run the same stream oriented service during the experiments. At the 
backup server, we additionally deployed the active replication related user and kernel space 
modules. The primary and the backup nodes are 2089 MHz AMD Athlon XP 2800+ PCs, 
with 512 KB of cache memory and 512 MB of SDRAM. At both machines, the Linux 2.6.18 
kernel is running. The generic client is a 1.60 GHz Pentium(R) Laptop with 512 MB of 
memory. It also runs Linux although it could be running any other OS and TCP/IP stack. The 
client used a Broadcom NetXtreme Gigabit Ethernet card. Each replica uses three 100/1000 
Ethernet PCI cards. The three machines are connected to the same LAN using a 100 Mb 
Ethernet port mirroring capable Catalyst 3500 series XL CISCO switch. In order to allow the 
backup node to tap the full traffic flowing between the clients and the legitimate node, we 
enabled the full duplex port mirroring on the port to which the primary server is connected. 
To increase effectiveness, the replica's kernels were tuned similarly. In particular, the replica's 
TCP stacks were set to use their optimal values, such as the TCP buffers, the memory limits, 
etc. Finally, replicas are synchronized through the NTP service. 

 
B. Results and discussion 
 
The conducted experiments consist of a backup node non-intrusively intercepting the 

legitimate traffic destined to the primary server. The backup node actively replicates the states 
maintained by the primary server, both kernel level and user level. Should the primary node 
fail, the backup node takes over the newly offered sessions, as well as the already active ones, 
while avoiding the interruption of the ongoing conversations. We perform various sets of 
measurements. The first set measures the performance of the prototype during failure-free 
periods. The second set of tests evaluates the performance of the prototype during failures. 



All the measurements are repeated at least three times and their average value is considered in 
the results. 

 
B.1. Performance during failure-free periods 
 
State replication effectiveness  
This test aims to check the effectiveness of the active replication modules, enabled at the 

backup node. The incoming traffic is properly rewritten to the backup's kernel. It completes 
its journey in the TCP/IP stack up to the application layer, which generates responses and 
delivers them back to the transport layer. The bottom-up processing results in the kernel 
maintaining all the related service states. 

 
Delay overhead incurred to the incoming and to the outgoing traffic 
Recalling the definition of the delay as the time from when a client issues a packet to the 

time this packet is received by the destination, we define the delay overhead as the additional 
time incurred to a legitimate frame before it reaches the backup's kernel. This overhead is 
measured at the backup node and is due to the link level packet rewriting. 

In the case of the stream-based experiment, this overhead is incurred only to the incoming 
traffic. Figure 4 depicts the average packet rewriting latency incurred to the stream-based 
traffic as a function of the received frame identifier. The mean size of the traffic flowing over 
the TCP stream is 75 bytes. The mean overhead is evaluated to almost 6 ms. 

As we can see, in the event of failure of the legitimate node, the average contribution of the 
packet rewriting operation in a possible QoS degradation is fairly low compared to the 
perceived end-to-end delay value. 

 
Netlink communication performance 
The Netlink-based communication is used during failure-free periods to synchronize flow 

states among replicas. In essence, in order for any fake mini-socket, maintained at the backup 
node, to be successfully promoted to the ESTABLISHED state, it is of prime importance that 
its state is updated before the backup node receives the final TCP ACK, issued by the client to 
complete the TCP three-way-handshake. Otherwise saying, the time needed by the backup 
node to intercept the minimal legitimate state, added to the time required by the Netlink-based 
kernel module to update the fake connection state, must be less than the average round trip 
time delay. 

 
Figure 4. Delay Overhead Incurred to the Offered Stream-based Traffic 

 
We define the kernel-to-user Netlink Delay as the time required by the kernel space 

synchronization module to receive the minimal legitimate connection state, sent by its peer 
user level program, added to the time required to update the fake connection state 



accordingly. Figure 5 shows that the kernel-to-user netlink delay remains on average less than 
the average round-trip time. 

 

 
Figure 5. - Average Kernel-to-User Space Netlink Delay versus Average Round Trip Time Delay 

 
These measures considered the worst case, i.e. where clients and servers share the same 

100 Mb Ethernet network. Knowing that the round trip time delay is fairly more important 
over the Internet, it turns out that the fake mini-sockets maintained at the backup node are 
sure to be promoted to the ESTABLISHED state. Moreover, similarly tuning the replica's 
TCP stacks is of prime importance so that they exhibit the same behavior over time. 

 
B.2 Performance during failures 
 
Failure recovery latency 
In this experiment, we aim to measure the effect of the failure detection granularity on the 

failure recovery latency. We define the failure recovery latency as the time needed to detect 
and to recover from a failure of the legitimate processing server. It is the sum of the fault 
detection latency and the takeover latency. The fault detection latency measures the time 
separating the failure occurrence and the failure detection. The fault recovery latency is 
defined as the time required by the elected replica to takeover both the network and the 
service level identities of the failed primary. 

Table 1 summarizes the collected average failure recovery latencies, for different failure 
detection time intervals (FDTI). 

As we can notice, the takeover time is only few hundreds of ms. During that period of 
time, any offered data to the legitimate server is lost. However, from an end-to-end point of 
view, the effect of this loss remains insignificant since most client applications retransmit the 
lost data. Also, as one could have expected, the finer is the granularity of the failure detection 
process, the faster is the traffic takeover operation. 

 
 
 
 
 
 
 
 
 

 
 

Table 1 - Average Failure Detection and Average Takeover Latencies 

FDTI 
(sec) 

Average 
Failure 

Detection 
Latency 

(micro sec) 

Average 
Takeover 
Latency 

(micro sec) 

Average 
Recovery 

Time 
( micro sec) 

1 2 153 039 0 359 052 2 512 091 
3 3 655 465 0 371 398 4 026 863 
5 5 141 020 0 374 115 5 515 135 



VI. CONCLUSION AND FUTURE WORKS 

In this paper, we have advocated an off-the-shelf active replication-based framework, 
which enhances the reliability capabilities of Internet servers and stateful devices. The 
framework is fully client/server transparent and provides the means to achieve a consistent 
service state replication of the handled services during failure-free periods. The conducted 
performance evaluations have shown that the framework provides a sustained performance, 
during both failsafe and failure periods. 

As future works, we are interested in covering a wider range of applications and in 
handling highly non-deterministic applications. While combining different replication 
techniques is a possible alternative for addressing this issue, we believe that providing truly 
client/server transparent frameworks, remains an interesting perspective to operators. 
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