
A RECORD&REPLAY MECHANISM USING PROGRAMMABLE NETWORK
INTERFACE CARDS

Dieter Kranzlmüller
GUP (Institute of Graphics and Parallel Processing)

Joh. Kepler University Linz
Altenbergerstr. 69, A-4040 Linz, Austria

kranzlmueller@gup.jku.at

Laurent Lefèvre
INRIA /LIP (UMR CNRS, INRIA, ENS, UCB)

Ecole Normale Supérieure de Lyon
46 allée d’Italie, 69364 Lyon Cedex 07, France

laurent.lefevre@inria.fr

ABSTRACT
Nondeterministic program behavior leads to different re-
sults in successive program executions, even if the same
input data is provided. For this reason, re-executions of a
program (as needed during cyclic debugging) are only pos-
sible, if certain precautions are taken. The most common
solution is provided by record&replay mechanisms, where
an initial record phase is used to extract characteristic be-
havioral data, which is afterwards used to control equiva-
lent executions during subsequent replay phases. With the
novel record&replay mechanism on Myrinet network inter-
face cards (NIC)1, program perturbations during the record
phase are avoided by performing the initial monitoring ac-
tivities directly on the NIC. This approach ensures, that the
CPU of the computing nodes is not affected by the mon-
itoring activities, while subsequent re-executions can still
be controlled with the data collected on the NICs.

KEY WORDS
nondeterminism, program analysis, record&replay, moni-
toring.

1 Introduction

Software development for parallel and distributed systems
introduces a series of challenges for the programmers, who
have to cope with multiple, concurrently executing and
communicating tasks and the associated increased com-
plexity of the development process and the resulting code.
Among others, one of these challenges stems from the pos-
sibility of nondeterministic behavior, which is quite com-
mon in parallel and distributed code.

Nondeterministic program behavior occurs if two ex-
ecutions of a given program may yield different results,
even if the same input data is provided. Thus, deviations
in results may be observed, although the input and the pro-
gram code remains the same. The reasons for this behav-
ior are nondeterministic choices in the code, which may
be determined by scheduling decisions of the processor or
the operating system, cache contents, cache conflicts, and

1This work is partially supported by the French ”Programme d’Actions
Integrees Amadeus” funded by the French Ministry of ForeignAffairs and
the Austrian Exchange Service (ÖAD), WTZ Program Amadeus under
contract no. 13/2002

memory access patterns, network throughput and network
conflicts, or nondeterminism on the interconnection net-
work.

The consequences of nondeterminism for the program
developer are described with three different effects:

� Irreproducibility problem [1]: A particular program
execution, even if observed by the user, cannot be re-
peated at will, since the program may never exhibit
the same behavior. This prohibits the application of
cyclic debugging techniques, where a program is ex-
ecuted over and over again to locate the origin of an
observed program failure or incorrect results.

� Completeness problem [2]: Some errors may occur
only sporadically or may never be observed, since cer-
tain situations in nondeterministic programs may sel-
dom or never take place. Testing all possible execu-
tions of a particular program may be impossible, even
for one given set of input data, no matter how many
executions are actually performed.

� Probe effect [3]: The observation of a program may
actually result in modifications of its behavior. Due to
the delays introduced by the monitoring code and the
memory required by the monitor, the observed pro-
gram behavior may be different compared to an exe-
cution without a monitoring tool attached.

The approach described in this paper focuses on par-
allel programs using a communication library compliant to
the Message Passing Interface standard MPI [4]. In such

Process 0

Process 2

Process 1

time

�
�
�
�

�
�
�
�

Figure 1. Racing messages in a simple parallel program



programs, nondeterminism is introduced e.g. by utilizing
the MPI ANYSOURCEparameter at wild card receives,
which means that the calling process receives the next mes-
sage from an arbitrary sender process. A simplified exam-
ple of such a situation is given in Figure 1. Two processes,
process 1 and process 2, are each sending a message to
process 0. Process 0 specifies a wild card receive, thus al-
lowing each of the two messages to be accepted.

Obviously, it may be possible that different messages
are received during subsequent executions of the program,
leading to the results and consequences described above.
For example, in Figure 1, if the message from process 1
is received before the message from process 2, process 0
may compute different results than if the messages arrive
in reverse order.

The wild card receive represents a so-called race con-
dition, and the messages are usually called racing mes-
sages. While wild card receives are only one source of
nondeterministic behavior, we believe that our principal ap-
proach may be applicable to other kinds of race conditions
as well. (Another example is the access to shared variables
in shared memory systems, where the access order may de-
termine the contents of the shared variable.)

A main characteristic of our approach is to perform
the program monitoring on the network interface cards
(NICs) [5]. The optimization of the Record and Replay
mechanism to fit onto the NIC required some fundamen-
tal analysis of the communication mechanism, with spe-
cial attention to the overtaking mechanisms This approach
should minimize the probability of the probe effect, while
still guaranteeing reproducibility of a program’s execution.
(Solutions to the completeness problem are possible with
our approach using event manipulation techniques as de-
scribed in [6], but are omitted in this paper due to space
constraints.)

The paper is organized as follows: Section 2 describes
related solutions in this area, including their drawbacks
compared to our approach, which is introduced in more de-
tail in Section 3. Details about the actual implementation
of our approach as well as some results are given in Sec-
tion 4, before conclusions and an outlook on future work
summarizes the paper.

2 Related work

While the problem of nondeterminism in parallel and dis-
tributed programs occurred with the first parallel machines
several decades ago, there still exists no optimal solution
today for every possible situation. However, all of the avail-
able solutions can be divided into the following two distinct
categories:

� Controlled execution techniques

� Record&replay techniques

The former group represents all those approaches,
where the execution of the target program is controlled by

an external entity, which may either be the human user or
some kind of algorithm or intelligent code. To enforce this
method of controlled execution, code is included in the pro-
gram’s source to override its original behavior. Instead,
whenever places of nondeterministic behavior are executed
by the target program, the actual outcome of the race con-
dition is determined by the external entity.

The approaches by [7] and [8] offer possibilities to
specify the intended communication behavior of a pro-
gram: Whenever a race condition would occur in the orig-
inal program, the outcome of the race condition is defined
by a rule set as enforced by the controlled execution mech-
anism.

The macro step approach as described in [9] replaces
the specification with a graphical user interface, where the
human user is able to control the program’s execution at
race conditions during run time. Whenever a process ar-
rives at a nondeterministic event, the user has to decide
which action should be taken. (This approach is well-suited
for debugging purposes, but may be a bit limited for real-
world applications.)

While each of the controlled execution techniques
represents a possible solution to both, the irreproducibil-
ity effect and the completeness problem, their high amount
of overhead represents a substantial drawback with re-
gards to the probe effect. This characteristic is improved
with record&replay techniques, which actually represent
the majority of solutions to the nondeterministic problems
described above.

Within record&replay approaches, the execution of
the target program is distinguished in two phases. Dur-
ing the initial record phase, the execution of a program is
(passively) observed, obtaining only minimal information
about the nondeterministic choices taken. The resulting
trace data is then used during multiple, subsequent replay
phases to enforce the same program behavior as previously
observed. By tracing only a minimal amount of informa-
tion during the initial record phase, the perturbation of the
program’s execution and consequently the probe effect is
expected to be less critical [10]. The replayed execution
may then be delayed as much as desired to collect addi-
tional data about a program’s execution, since the logical
execution order of the program is controlled with the initial
trace data. Implementations of this approach are described
in [11] and [12].

One of the first implementations of record&replay has
been proposed with Instant Replay [13], where the relative
order of events in a parallel system is traced and subse-
quently enforced during replayed executions. Instant Re-
play has been the starting point for a series of other tools,
such as IVD [14], PDT [15], and DDB [16]. However, most
of these solutions focus only on the irreproducibility effect
and the probe effect. With event manipulation as described
in [6], record&replay can also be applied to address the
completeness problem.

The record&replay technique proposed in this paper
is comparable to other record&replay techniques and even



Memory CPU 0

Process 0

MPI_Send

CPU 1

Process 1

Message

Memory

MemoryMCPMemory MCP

DMA DMA
MPI_Recv

of current message

Host

NIC

File

Move trace from NIC
upon buffer overflow

Trace sender ID

Store to trace file
upon program termination

Trace

Figure 2. Operational scheme of the record phase using the Myrinet NICs

permits event manipulation, but introduces even less mon-
itoring overhead during the initial record phase. The idea
is to use a hybrid approach through minimal invasive in-
strumentation and exploitation of additional hardware. By
offloading the monitoring code onto additional hardware
units, the CPU is not affected by the monitoring operations
compared to the original program.

Well-known hardware-based approaches for program
monitoring include the exploitation of hardware coun-
ters, such as the Performance Counter Library PCL [17]
and the Performance Application Programming Inter-
face PAPI [18] or dedicated hardware monitors such as
ZM4 [19] and the SMiLE monitor [20].

The advantages of each of these solutions are that they
induce only relatively little intrusion on the observed pro-
gram. The biggest drawback of these solutions is that they
are usually highly system dependent, including the hard-
ware environment (e.g. CPU type) and the operating sys-
tem. In addition, it is much more difficult or even impos-
sible to extract high-level information about the program’s
execution, since the sensors attached to the code are oper-
ating on a rather low-level. The latter is not very critical to
our approach, since only event ordering information needs
to be provided during the initial record phase.

3 Overview of approach

The record&replay technique described in this paper fo-
cuses on programmable network interface cards (NIC). In-
stead of performing the monitoring functionality on the
host CPU of the running processes, the initial record phase
is offloaded to the NICs. Of course, this requires that mod-
ification to the code executed on the NIC are permitted.
Among the vendors providing programmable NIC, we have
chosen Myrinet NICs [21] as utilized in many high perfor-
mance clusters around the world, including our own clus-
ters at ENS Lyon [22] and GUP Linz2.

For this project, we used Myricom’s M3F-PCIXD-2
cards, which use fiber optics for interconnecting the nodes
with the Myrinet switch. The cards are equipped with a 200

2http://www.gup.uni-linz.ac.at/cluster

MHz LANai 9.2 RISC processor, which supports a limited
set of efficiently implemented instructions. Additionally,
2 MBytes of local memory and a PCI DMA bridge for com-
munication with the host CPU are available on the NIC.

Exchanging data between host CPU and Myrinet card
is achieved with one of two possibilities: Programmed In-
put/Output (PIO) or Direct Memory Access (DMA). PIO
offers dedicated commands to access memory locations
and to extract the status of the NIC. DMA allows to per-
form the transfer between the host CPU and the NIC CPU
independently from the host CPUs operation. Whenever
a DMA operation is completed, the host and the NIC are
informed via a dedicated interrupt.

The software on the Myrinet NICs is called GM. It
consists of a dedicated software library, a kernel module,
and the Myricom Control Program MCP. More advanced
communication libraries, such as implementations of the
Message Passing Interface standard MPI [4], are imple-
mented on top of the communication library.

With this system architecture available, our
record&replay mechanism is deployed as follows:

During the initialization step, the Myrinet NIC is pre-
pared to perform the initial record phase. This is achieved
by modifying the MCP code executed on the NIC. With
the NIC code modifications in place, the program is ex-
ecuted by the user (without any additional user interven-
tion). While the program executes, the NIC generates the
event ordering data and stores it to temporary memory on
the NIC. Whenever this memory is filled up or immedi-
ately before the program terminates, the data produced by
the NIC is moved from the NIC to the host memory and
afterwards stored to a trace file. With this data available,
arbitrary numbers of re-executions can be initiated, which
will then use the information stored in the trace files to con-
trol the program’s execution.

Please note, only the initial execution requires mod-
ifications to the NIC code. The replayed executions are
performed solely by the CPU, and do not require any ser-
vice (apart from the regular communication services) from
the NIC.



4 Actual implementation and results

The initialization required by our record&replay technique
requires the preparation of the Myrinet NIC to collect the
necessary event order information. This is achieved by per-
forming the following steps:

(1) A modified MCP is loaded onto the NIC.

(2) The MPI Program is instrumented by including a
modified MPI header file.

(3) The program is compiled and linked with the modified
MPI library.

The most important part is the execution of the modi-
fied MCP to perform the monitoring activities on the NIC.
While this may seem adventurous for the inexperienced
user, it was relatively straight forward using the program-
ming environment provided by Myricom. On contrary, it
is much more difficult to design the MCP’s operation such
that the amount of overhead on the NIC is as minimal inva-
sive as possible. In our record&replay approach, the MPC
performs the following steps:

(4) During the initialization of the MPI program, the
buffer memory for the monitoring data is reserved.
The amount of buffer memory required by the mon-
itoring operations should be as small as possible to fit
into the 2 MB limitation of the NIC and to avoid in-
fluencing the NICs regular operation.

(5) During the program’s execution, the buffer is used to
store the order of incoming messages. This operation
does not affect the operation of the host CPU.

(6) Upon buffer overflow or program termination, the data
is transferred from the NIC to the main memory.

(7) Upon program termination, the monitoring data is
stored to a trace file.

The last step (7) can be rather time-consuming, de-
pending on the amount of data generated by the MCP. How-
ever, since the regular computational tasks of the target pro-
gram are already finished, it is no longer critical.

The most critical part of this scheme is step (5), which
has to be carried out for every communication operation.
In order to minimize the amount of work performed in this
step, we applied the following optimization:

Based on the MPI Standard 1.1, Section 3.5, “Seman-
tics of point-to-point communication”, messages in MPI
are non-overtaking. This means, that the delivery of two
successive messages from one process to the other, if both
messages match the same receive, will always arrive at the
receiver in the same order, in which they have been submit-
ted by the sender. Thus, it is sufficient to store the order
of incoming messages at the receiver node, which must af-
terwards be guaranteed during the replay by the receiving
process. If the same order of the racing messages at wild

card receives can be enforced, equivalent program behavior
will be observed [6].

Figure 2 contains a graphical sketch of the opera-
tion of our technique. Two MPI processes, process 0 and
process 1, being executed on two different CPUs, CPU0
and CPU1, are shown. Process 0 sends a message using
MPI Send to process 1. The message transfer is initiated
on the Myrinet NIC attached to CPU 0, which transfers
the message data (using DMA) from the host memory to
the destination NIC. At the destination, the Myrinet NIC
traces the sender ID of the incoming message - which is
afterwards used during the replay phase - and hands the
message over to process 1 running on CPU 1, whenever
process 1 calls MPIRecv. The trace data is stored locally
on the Myrinet NIC of CPU1. Whenever the trace buffer is
filled or the program terminates, the trace data is moved to
the CPUs memory using DMA transfer.

After program termination, the trace data of the ob-
served program execution is moved to a trace file and thus
available for subsequent replay phases. In contrast to the
initial record phase, where the amount of overhead should
be as small as possible, the overhead during the record
phase is no longer critical, since the replayed execution will
be managed based on the trace data. For this reason, the re-
play is implemented in the user code as executed by the
target process instead of modifying the Myrinet MCP. In
addition, this allows to implement much more monitoring
functionality due to less critical time and space constraints.

With the trace data available, the program’s execu-
tion is controlled during replay at every wild card re-
ceive operation. This is achieved by replacing every
MPI ANYSOURCEparameter with the actual source pro-
cess as observed during the initial record phase. By per-
mitting only the first of the incoming messages from each
process, the same racing messages will be taken by the re-
ceive during replay as during the record phase.

As with traditional record&replay techniques, the
subsequent replay phases are used to extract more data and
provide this data for program analysis to the user. Exam-
ples of the application of our approach are given in Fig-
ure 3 with three screenshots of different analysis activities
within the DeWiz program analysis tool [23]. Each of these
graphical displays shows data obtained during the replayed
execution.

The top-most screenshot of Figure 3 shows a typical
event graph, also known as space-time diagram, of the pro-
gram’s execution. Time is on the horizontal axis, while the
processes are arranged vertically. The graph contains the
relations between communicating processes. A similar dis-
play is shown on the bottom- left, where more performance
relevant information, such as the states of the executing
processes, are displayed. The display on the bottom right
offers statistical data about characteristics of the program,
which have also been sampled during the replay phase.



Figure 3. Event graph, time graph, and counter statistics ofa program execution as obtained during subsequent record phases

5 Conclusions and future work

Record&replay techniques represent the usual approach
to dealing with nondeterministic program behavior. Un-
fortunately, these approaches suffer from the sometimes
large amount of monitoring overhead and the associated
probe effect. To reduce the impact of the monitoring ac-
tivity on the running program, we implemented a dedi-
cated record&replay approach executed on Myrinet pro-
grammable network interface cards.

Major parts of the initial record phase are carried out
independently by the code on the NIC without interfering
with the target CPU. For this reason, the amount of pertur-
bation (and thus the probe effect) induced onto the target
program should be neglectable, and the traced data should
represent observation data from a progam run without at-
taching a standard monitoring tool. The resulting trace data
is used during subsequent execution of the same program
to enforce an equivalent execution, thus eliminating the re-
producibility effect.

Since the subsequent replay phases do not suffer from
perturbations by the monitoring code, we are able to attach
even highly invasive debugging tools, such as gdb. The
delay introduced by gdb will only affect the execution time
of the replayed execution, but does not perturb the order
of event occurrences. Thus, the logical control flow of the
program will be the same as during the initial execution.

The next step in this project is the evaluation of mon-
itoring functionality in programmable (Myrinet) network
switches (complementary to the NIC) and the integration
of event manipulation features, where the order of events
can artificially be modified by the debugging user. Through

enforcing a different event ordering than previously ob-
served, investigations of the consequences at nondetermin-
istic choices can be investigated.

In addition, we plan to enable a transparent integra-
tion of the record&replay mechanism into the execution
environment of the parallel system. Since the record phase
does not interfere with the program’s behavior, it may be
turned on all the time, storing the trace data in some hidden
memory on the users hard disk. Upon request, e.g. by pro-
viding a corresponding command line parameter, the user
may thus be able to replay the most recent program execu-
tion, and thus investigate the recently observed behavior.

Acknowledgments We would like to express our grat-
itude to the French Ministry of Foreign Affairs and the
Austrian Exchange Service (ÖAD) for supporting this
project under the joint ”Programme d’Actions Integrees
Amadeus”, contract no. 13/2002.

Several of our colleagues at GUP Linz and ENS Lyon,
especially Martin Maurer, Eric Lemoine, and Reinhard
Brandstädter, contributed to this work. We are most thank-
ful for their input.

References

[1] D.F. Snelling and G.-R. Hoffmann,A Comparative
Study of Libraries for Parallel Processing, Proc. Intl.
Conf. on Vector and Parallel Processors, Computa-
tional Science III, Parallel Computing, Vol. 8 (1–3),
pp. 255–266 (1988).



[2] H. Krawczyk and B. Wiszniewski,Analysis and Test-
ing of Distributed Software Applications, Research
Studies Press Ltd., Baldock, England (1998).

[3] J. Gait, The Probe Effect in Concurrent Programs,
IEEE Software - Practise and Experience, Vol. 16,
No. 3, pp. 225–233 (March 1986).

[4] Message Passing Interface Forum: MPI: A
Message-Passing Interface Standard - Version 1.1,
http://www.mcs.anl.gov/mpi/ (1995).

[5] M. Maurer. Fehlersuche in nichtdeterministischen
parallelen Programmen mit Unterstützung von pro-
grammierbaren Netzwerkkarten. Diploma thesis,
GUP Linz, Joh. Kepler University Linz, Austria,
(June 2004) [in German].

[6] D. Kranzlmüller, Event Graph Analysis for De-
bugging Massively Parallel Programs, PhD thesis,
GUP Linz, Joh. Kepler University Linz, Aus-
tria, http://www.gup.uni-linz.ac.at/
˜dk/thesis (September 2000).

[7] K.C. Tai, R.H. Carver, R.H.,Testing Distributed Pro-
grams, in: Zomaya, A.Y., (Ed.), ”Parallel and Dis-
tributed Computing Handbook”, McGraw-Hill, New
York, Chapter 33 (1996).

[8] M. Oberhuber, Elimination of Nondeterminacy for
Testing and Debugging Parallel Programs, Proc.
AADEBUG ’95, 2nd International Workshop on Au-
tomated and Algorithmic Debugging, Saint Malo,
France, pp. 315–316 (May 1995).

[9] P. Kacsuk, Systematic Testing and Debugging of
Parallel Programs by a Macrostep Debugger, Proc.
DAPSYS ’98, 1998 Workshop on Distr. and Parallel
Systems, Budapest, Hungary, pp. 105-112 (1998).

[10] A. Fagot and J. Chassin de Kergommeaux,System-
atic Assessment of the Overhead of Tracing Paral-
lel Programs, Proceedings EUROMICRO PDP ’96,
4th EUROMICRO Workshop on Parallel and Dis-
tributed Processing, IEEE Computer Society Press,
Braga, Portugal, pp. 179–186 (January 1996).

[11] E. Leu and A. Schiper,Execution Replay: A Mecha-
nism for Integrating a Visualization Tool with a Sym-
bolic Debugger, In: Y. Roberts, L. Bouge, M. Cos-
nard, D. Trystram, (Eds.), Proc. CONPAR 92 - VAPP
V, Springer, LNCS, Vol. 634 (1992).

[12] F. Teodorescu and J. Chassin de Kergommeaux,On
Correcting the Intrusion of Tracing Non-deterministic
Programs by Software, Proc. EUROPAR’97, 3rd Intl.
Euro-Par Conference, Springer, LNCS, Vol. 1300,
Passau, Germany, pp. 94–101 (1997).

[13] T.J. LeBlanc, J.M. Mellor-Crummey,Debugging Par-
allel Programs with Instant Replay, IEEE Transac-
tions on Computers, Vol. C-36, No. 4, pp. 471-481
(April 1987).

[14] M. Mackey, Program Replay in PVM, Technical
Report, Concurrent Computing Department, Hewlett-
Packard Laboratories (May 1993).

[15] C. Clemencon, J. Fritscher, R. Rhl,Visualization,
Execution Control and Replay of Massively Paral-
lel Programs within Annai’s Debugging Tool, Proc.
High Performance Computing Symposium, HPCS
’95, Montreal, Canada, pp. 393-404 (July 1995).

[16] J. Sienkiewicz, T. Radhakrishnan,DDB: A Dis-
tributed Debugger Based on Replay, Journal of High
Performance Computing, National University of Sin-
gapore, Vol. 4, No. 1, pp. 37–45 (December 1997).

[17] R. Berrendorf and H. Ziegler,PCL - The Perfor-
mance Counter Library: A Common Interface to Ac-
cess Hardware Performance Counters on Micropro-
cessors, Technical Report FZJ-ZAM-IB-9816, Re-
search Center Jülich (October 1998).

[18] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci,A Portable Programming Interface for Per-
formance Evaluation on Modern Processors, The In-
ternational Journal of High Performance Computing
Applications, Vol. 14, No. 3, pp. 189–204 (Fall 2000).

[19] R. Klar, P. Dauphin, F. Hartleb, R. Hofmann, B. Mohr,
A. Quick, and M. Siegle,Messung und Modellierung
paralleler und verteilter Rechensysteme, B.G. Teub-
ner, Stuttgart, Germany (1995) [in German].

[20] W. Karl, M. Schulz, and J. Trinitis Multilayer
Online-Monitoring for Hybrid DSM systems on top
of PC clusters with a SMiLE, In: Proceedings
of the 11th Intl. Conference on Modeling Tech-
niques and Tools for Computer Performance Evalu-
ation, Springer, LNCS, Vol. 1786, Chicago, IL, USA
(March 2000).

[21] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C.
Seitz, J. Seizovic and W. SuMyrinet: a gigabit
per second local area networkIEEE-Micro, 15(1)
(February 1995).

[22] E. Lemoine, C. Pham and L. LefèvrePacket Clas-
sification in the NIC for Improved SMP-based Inter-
net Servers” IEEE Proceedings of the International
Conference on Networking (ICN 2004), Guadeloupe,
French Caribbean (Feb. 2004).

[23] D. Kranzlmüller, Michael Scarpa, Jens Volkert,
DeWiz - A Modular Tool Architecture for Parallel
Program Analysis, Proc. Euro-Par 2003, 9th Interna-
tional Euro-Par Conference, Springer Verlag, Lecture
Notes in Computer Science, Vol. 2790, Klagenfurt,
Austria, pp. 74-80 (August 2003).


