Deploying OS filtering capabilities for the
improvement of software active routers

Jean-Patrick Gelas, Jérome Guilloux, Laurent Lefevre
RESAM laboratory - INRIA Action RESO
Ecole Normale Supérieure de Lyon
46, allée d’Italie, 69364 LYON Cedex 07, France
Jean-Patrick.Gelas@ens-lyon.fr, Jerome.Guilloux@ens-lyon.fr, Laurent.Lefevre@inria.fr

Abstract Achieving high performance with soft-
ware active routers remains a great challenge. Re-
cent versions of Linux OS provide networking func-
tionalities for packet filtering (NetFilter). We take
advantage of these features to provide more per-
formant software active routers. We deploy ac-
tive services from high level execution environment
to kernel modules. We focus our experiments on
the Tamanoir execution environment over a recent
Linuz kernel implementation. We describe results
of performance obtained with this approach.!

Keywords: NetFilter, Linux, active networks,
Tamanoir

1 Introduction

In active routers, a service (personalized func-
tion) is applied on all transported active IP
packets. In software active routers, all active
(and even passive) packets must be processed
by the active execution environment (running
in a application level, mainly in a JVM). This
operation is one of the main key limitating fac-
tor in terms of performance.

Within software based active routers, oper-
ating systems play an important role. Recent
version of Linux provide possibilities to sup-
port filtering functionalities in the kernel (Net-
Filter module). With hooks linked to specific
packet actions, users can run personalized ap-

!This work is supported by the RNRT VTHD++
project and by ANVAR Active Network platform.

plications.

The Tamanoir system is an active Execu-
tion Environment which allows users to effi-
ciently deploy personalized services inside the
network. We propose to deport simple active
services from high level JVM to low level Net-
Filter modules. Our goal is to provide new lev-
els of performance to software active routers.

The paper is organized as follows. In sec-
tion 2, the NetFilter module is briefly intro-
duced. Section 3 describes the Tamanoir ar-
chitecture developed in our laboratory. Sec-
tion 4 presents the deport of active services
from JVM to NetFilter modules and perfor-
mance gains we obtained are described in sec-
tion 5. We finish by some conclusions and fu-
ture directions for the improvement of software
active routers.

2 Linux Filtering Capabili-
ties : NetFilter architecture

2.1 NetFilter architecture

Recent versions of the Linux kernel (2.4.x)
are well furnished with networking function-
alities and protocols : QoS, Firewall, rout-
ing and packet filtering. For packet filter-
ing, kernels 2.0 had IpFwadm, kernels 2.2 had
IpChains and IpMasqadm, and kernels 2.4 pro-
poses IpTables with NetFilter. NetFilter is
a framework for packet modification, outside
the normal Berkeley socket interface (see [1]).
With IPv4 communication protocol, NetFil-

ter provides 5 hooks, which are defined points
on the IP packet way. These hooks are (see
fig. 1) : NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN,
NF_IP_LOCAL_OUT, NF_IP_FORWARD and
NF_IP_POST_ROUTING.

NF_IP_PRE_ROUTING

e e O
Local
Process

NF IP LOCAL IN NF IP LOCAL OUT

NF_IP_FORWARD NF_IP_POST_ROUTING

Figure 1: NetFilter Hooks

Through these 5 hooks, NetFilter is able to
filter IP packets in order to provide firewall
functions, perform Network Address Transla-
tion (NAT), modify, drop and generate pack-
ets. ..

NetFilter is able to realize all these func-
tions thanks to IpTables : a packet selection
system which has been built over the NetFil-
ter framework. NetFilter includes three tables
which correspond to the three principal func-
tions seen previously :

e Filter table : contains all filtering rules;

e NAT table : defines all NAT functions,
just as well of the source as of the desti-
nation;

e Rule table : contains the packet modifying
rules.

2.2 Filtering : Filter table

Filter table contains three “firewall chains”,
the chain INPUT, OUTPUT and FORWARD
(see Fig. 2). Unlike IpChains, chains INPUT
and OUTPUT are not used that if packets are
destined to a local process. IpChains use IN-
PUT and OUTPUT for the body of the traffic.

When a packet arrives through the network
card, the kernel first looks the destination of
the packet (routing functionality); If it’s des-
tined for this box, the packet passes down-
wards in the diagram, to the INPUT chain.

NF_IP_FORWARD

Route @
CHAIN
FORWARD
CHAIN CHAIN

INPUT OUTPUT

Local
Process

NF IP LOCAL IN NF IP LOCAL OUT

Figure 2: NetFilter Hooks : Filter table

If it passes this, any processes waiting for that
packet will receive it. Otherwise, if the kernel
does not have forwarding operation enabled,
the packet is dropped. If forwarding is enabled
and the packet is destined for another network
interface, the packet goes rightwards on fig-
ure 2 to the FORWARD chain. If accepted, the
packet is sent out. Finally, a program running
on the box can send network packets. These
packets pass through the QUTPUT chain im-
mediately, then the packet continues out to the
destined interface.

2.3 Network Address Translation :
NAT table

NetFilter is a very powerful software tool for
Network Address Translation(Fig. 3). NAT ta-
ble allows to perform on the fly address trans-
lation in order to offer several networking ser-
vices : address masquerading of local network,
sending packets on another host, deploying
transparent proxies. ..

NF_IP_PRE_ROUTING

CHAIN
PRE-ROUTING
"D-NAT"

NF_IP_POST_ROUTING

(-

CHAIN
POSTROUTING
"S-NAT"

CHAIN
OUTPUT
"D-NAT"

\2 Local
Process

NF IP LOCAL OUT

Figure 3: NetFilter Hooks : NAT table

The table of NAT rules contains three lists
called ‘chains’: each rule is examined in or-
der until one matches. Two most important
chains are called PREROUTING (for Desti-
nation NAT, as packets first come in), and

POSTROUTING (for Source NAT, as pack-
ets leave) (see Fig. 3). At each of the points
above, when a data packet arrives, it is associ-
ated with the corresponding connection.

3 Tamanoir Architecture

The integration of new and dynamic technolo-
gies into the shared network infrastructure is
a challenging task, and the growing interest in
the active networking field[2] might be seen as
a natural consequence.

In our active networking vision, routers and
any network equipments (like gateways, prox-
ies,...) can perform computations on user
data in transit, and end users can modify
the behavior of the network by supplying pro-
grams, called services, that perform these com-
putations. These routers are called active
nodes (or active routers), and propose a greater
flexibility towards the deployment of new func-
tionalities, more adapted to the architecture,
the users and the service providers require-
ments.

The Tamanoir[3, 4] (see Fig. 4) suite is a
complete software environment to deploy ac-
tive routers and services inside the network.
Tamanoir Active Nodes (TAN) provide persis-
tent active routers which are able to handle
different applications and various data stream
(audio, video,...) at the same time. The both
main transport protocol (TCP/UDP) are sup-
ported by the TAN for carrying data. We
use the ANEP (Active Network Encapsulated
Protocol)[5] format to send data over the ac-
tive network.

&, TAMA NO | Rd Service #1 x stream channel
JE—

E— Service #2 | Al ==
e Service #3
hash table T T
E Service #n

(Active Node Manager)

service channel

Figure 4: A Tamanoir Active Node (TAN)

We choose to use a portable language for
the active networks users be able to define
and write their own services. Thus, the
TAMANOIR execution environment is writ-
ten entirely in JAVA [6]. JAVA provides a
great flexibility and is shipped with standard
library. Unfortunately, the execution environ-
ment provided by the JVM (Java Virtual Ma-
chine) gives a very high level of abstraction,
through which applications have some difficul-
ties to obtain good performances.

4 Tamanoir and NetFilter ar-
chitecture

4.1 From high level active services to
low level kernel active services

Our main purpose is to efficiently deport active
functionalities from the high level execution en-
vironment (JVM) into the OS kernel (Kernel
and Ezecution Environment layers in Fig. 5).

Distributedd
Ressources™

Executiond

Environmentd

Kerneld

NIC (Programmable)d

o U

Data Streams

Figure 5: TAN Architecture

The hooks provided by NetFilter allow us
to develop modules on the kernel level. The
function nf register_hook is used to attach a

personalized function to a specific hook. When
a packet knocks the hook, it is automatically
transmitted to this personalized function.

4.2 Configuring NetFilter from a
Tamanoir Service

The various modules which are set up into the
OS kernel can be modified dynamically by ac-
tive services. A Tamanoir active service, run-
ning inside the JVM, can configure the NetFil-
ter module by sending a control message (see
Fig. 6). This message is captured by the Net-
Filter module and used to parameterize actions
provided by NetFilter (forward, packet mark-
ing, drop. ..). This configuration on-the-fly al-
lows to dynamically deport personalized func-
tion inside the kernel (see section 5.2).

service

control- -+ ---,

TAMANOIR

user space

kernel space

Figure 6: NetFilter module runs in kernel
space. Tamanoir service runs in user user space
and controls “switches” of the NetFilter mod-
ule to switch “active packets”.

5 First experiments

To efficiently measure the latency of an ANEP
packet crossing a TAMANOIR router, we place
a start time function (do_gettimeofday ,equiv-
alent of gettimeofday on the user space)in the
PRE_ROUTING and a stop time function in
the POST_ROUTING hook. The experimen-
tal platform consists of Bi-Proc. SMP Pentium
IIT 1Ghz, with Fast Ethernet cards.

5.1 Results with UDP and TCP pro-
tocol

We experiment the deport of active forward-
ing service inside the kernel for TCP and UDP
active packets (Fig. 7 and 8).

Time of crossing of ANEP packet according to the Payload packet

10000 |] —

1000 | = UDP - KERNEL LINUX ——
- UDP - SUN SDK 1.3 -

UDP - IBM SDK 1.3 -
UDP - GCJ 3.0

100

Time of crossing (us)

10 | k!
r. OO

. . . .
0 5000 10000 15000 20000 25000
ANEP Payload size (bytes)

Figure 7: Crossing time for ANEP packets us-
ing UDP protocol

Packets crossing the Tamanoir active node
remaining in the Linux kernel layer spend
around 7 microseconds for basic forwarding op-
erations with TCP or UDP (Fig. 7 and 8). On
the kernel level, the size of ANEP packet does
not really affect performances. This is due to
the fact that in our function, we have zero-copy
protocols. Indeed, packets are simply redi-
rected towards the hook of exit by changing on-
the-fly destination address. We can note that
there are no real differences of performance for
TCP or UDP packets in the kernel level.

As we expected, when a packet is forwarded
by the execution environment in the JVM
level, performances are really impacted. Re-
sults obtained with standard Java Virtual Ma-
chines (SUN [7], IBM [8]) are quite similar
(around 1.6 ms for 4KB UDP ANEP pack-
ets). Compiled execution environment ob-
tained with GCJ [9], also running in user space,
do not improve performances (around 7.9 ms
for KB UDP ANEP packets). This surprising
low performances are due to the lack of opti-
mized native code provided by GCJ compiler.

With TCP transport (Fig 8), lower perfor-
mances obtained with small packets are around

Time of crossing of ANEP packet according to the Payload packet

10000 | T 1
- -
2
o 1000 | TCP - KERNEL LINUX —— E
= TCP - SUN SDK 1.3 -
2 TCP - IBM SDK 1.3 -
5 TCP - GCJ 3.0
5 100 + E|
[
£
=
10 b E
e —

0 5000 10000 15000 20000 25000
ANEP Payload size (bytes)

Figure 8: Crossing time for ANEP packets us-
ing TCP protocol

16 ms (<4096 Bytes). Meanwhile we obtain
better results with bigger packets (around 4.4
ms for 4KB TCP ANEP packets with JVM
and around 10.5 ms with GCJ version). This is
due to the policy of small packets aggregation
originally designed for improving data trans-
mission.

5.2 Communications between Net-
Filter and Tamanoir active ser-
vice

First experiments of deported services show
the dynamicity of configuring the NetFilter
module from Tamanoir Service. Figure 9 de-
scribes the case of an active service which needs
to propagate half of data packets to the Exe-
cution Environment. By using standard mes-
sages, we can easily configure and active Net-
Filter module to dynamically support low level
services (forward, packet marking, intelligent
drop...) in the kernel.

Figure 10 describes performances obtained
from a forwarding and packet marking service
previously executed in the Execution Environ-
ment and moved inside a NetFilter module (af-
ter 500 packets).

6 Related works

Our execution environment (EE) run over
standard operating system (OS) to deploy ac-

UDP Flow: the even packets stay in the kernel, others pass into the JVM
10000 T T

Packel‘s ANEP Payload ‘1 Byte
Packets ANEP Payload 200 Bytes 4-------

Patkets ANEP Payféad 4096 Bytes

1000

100

Time of crossing (us)

10

20 22 24 26 28 30
ANEP packets which are crossed the actif node

Figure 9: A packet on two goes up in the JVM,
others are forwarded by the kernel

UDP flow: 500 packets cross the JVM, the 500 following stay into the kernel, ...

10000 b

0006

1%%¢kets ANEP Payload 20000 Bytes
Packets ANEP Payload 1 Byte ------—|

Time of crossing (us)

10 | 3]

.
100 200 300 400 500 600 700 800 900 1000
ANEP packets which are crossed the actif node

Figure 10: First 500 packets are processed in-
side the JVM, the following remain in the ker-
nel

tive routing functionalities. But for accessing
router memory, communication hardware and
computational resources in an efficient way, it
should be better to use an OS interface espe-
cially designed for the requirements of an Ac-
tive Node. This interface is generally called a
NodeOS, mapped between the EE and the OS
which defines a set of functions to access and
manage the active node resources.

One of the most famous project in this do-
main is CANEs (Composable Active Network
Elements) [10]. CANEs is actually, an EE
currently running over Bowman which imple-
ments a subset of the NodeOS interface ser-
vices and can support other EEs in addition
to CANEs. Bowman incorporates an efficient
and flexible packet classification algorithm,
supports multi-threaded per-flow processing,
and utilizes real-time processor scheduling to
achieve deterministic user-space performance.

Larry Peterson et al.[11] report their expe-
riences in implementing an OS interface, for
Active routers over three different OS envi-
ronments (Scout, OSkit, and exokernel). The
first implementation is layered on top of Scout
which encapsulate flow of I/O data in an ex-
plicit path like NodeOS specifications, they
take advantage of this similitude to implement
both the traditional and active forwarding us-
ing exactly the same mechanism. The second
is JANOS (Java-oriented Active Network Op-
erating System) which aims to give resource
management and control, and first class for
untrusted active application written in Java.
It is implemented above OSkit and includes a
resource-aware, multi-heap Java Virtual Ma-
chine, and an active network protocol EE who
is an extension of ANTS called ANTSR. The
last one is AMP layered on top of ezokernel. Its
goal is to provide a secure platform upon which
EEs and active applications can run, without
unduly compromising efficiency. It uses also
ANTSR.

OS interface run in user space. It should
be more efficient to provide adapted services
in kernel space for performance reasons. But
writing a specific OS is a hard and complex
task. We think it is better to keep a well known

standard Operating System, like Linux, espe-
cially because it is today shipped with mod-
ules, providing very high flexibility for access-
ing low level layers in the kernel area.

7 Conclusion and future

works

The research described in this paper is the first
step in the design of high performance soft-
ware active routers. While most of existing
projects in active networks use an OS inter-
face running in user space, we propose solu-
tions to efficiently deport services and func-
tionalities in the kernel without changing it.
By using filtering capabilities of the OS, we
greatly improve performances for active pack-
ets transport. First experiments show impor-
tant gains (from 10 ms to 7 us) for low level ac-
tive services (forwarding, packet marking...).
Of course, low level routing functionalities are
better performed with hardware support. A
latency of 5 us is still too important for Giga-
bit high performance routing. But in the case
of Active Networks providing dynamic services,
our approach allows new possibilities for active
transport without modifying OS or deploying
hardware support.

Our next step will consist on fully integrate
and evaluate active services in NIC and kernel
implementation. We focus our research on pro-
grammability of network interface cards (like
Myrinet [12], Ramix [13]) to efficiently deport
active functionalities near the wire, inside the
network cards.

References

[1] Rusty Russell. Linux filter hacking
howto. NetFilter description and usage,
july 2000.

[2] David Tennenhouse and David Wether-
all. Towards an active network architec-

ture. Computer Communications Review,
26(2):5-18, April 1996.

3]

[10]

Jean-Patrick Gelas and Laurent Lefevre.
Tamanoir: A high performance active net-
work framework. 1In C. S. Raghaven-
dra S. Hariri, C. A. Lee, editor, Ac-
tive Middleware Services, Ninth IEEE In-
ternational Symposium on High Perfor-
mance Distributed Computing, pages 105—
114, Pittsburgh, Pennsylvania, USA, Au-
gust 2000. Kluwer Academic Publishers.
ISBN 0-7923-7973-X.

Jean-Patrick Gelas and Laurent Lefevre.
Mixing high performance and portability
for the design of active network frame-
work with java. In 3rd International
Workshop on Java for Parallel and Dis-
tributed Computing, International Paral-
lel and Distributed Processing Symposium
(IPDPS 2001), San Fransisco, USA, April
2001.

Scott D. Alexander, Bob Braden, Carl A.
Gunter, Alden W. Jackson, Angelos D.
Keromytis, Gary J. Minden, and David
Wetherall. Active network encapsulation
protocol (anep). RFC Draft, Category :
Experimental,
http://www.cis.upenn.edu/switchware/ANEP/,
July 1997.

Java programming language.
http://java.sun.com/.
SUN. Sun java development kit.

http://java.sun.com/.

IBM.
Ibm java development kit. http://www-

106.ibm.com/developerworks/
java/jdk/linux130/.

GCJ. The GNU Compiler for the Java
Programming Language.
http://sourceware.cygnus.com/java/.

S. Merugu, S. Bhattacharjee, Y. Chae,
M. Sanders, K. Calvert, and E. Zegura.
Bowman and canes: Implementation of
an active network. In 87th Annual Aller-

ton Conference, Monticello, IL, Septem-
ber 1999.

[12]

[13]

[11] Larry Peterson, Yitzchak Gottlieb, Mike

Hibler, Patrick Tullmann, Jay Lep-
reau, Stephen Schwab, Hrishikesh Dan-
dekar, Andrew Purtell, and John Hart-
man. An os interface for active
routers. IEEE Journal on Selected Ar-
eas of Communication, 19(3), march 2001.
http://www.cs.utah.edu/flux/janos/.

Nanette Boden,
Danny Cohen, Robert Felderman, Alan
Kulawik, Charles Seitz, Jkov Seizovic, and
Wen-King Su. Myrinet : a gigabit per
second local area network. IEEE-Micro,
15(1):29-36, February 1995.

Ramix network programmable cards.
http://www.ramix.com.

