
Incremental Monitoring
on Programmable Network Interface Cards

Extended Abstract

Laurent Lefèvre
INRIA /LIP (UMR CNRS, INRIA, ENS, UCB)

Ecole Normale Supérieure de Lyon
46 allée d’Italie, 69364 Lyon Cedex 07, France

laurent.lefevre@inria.fr

Dieter Kranzlmüller, Martin Maurer
GUP, Joh. Kepler University Linz

Altenbergerstr. 69, A-4040 Linz, Austria
kranzlmueller@gup.jku.at

Abstract
Monitoring of program behavior is a basic necessity for
performance tuning and debugging. A major problem
is the overhead associated with the monitoring tasks,
which influences the program’s behavior and affects the
observation results. At the same time, a certain amount
of data is needed for the program analysis activities.
For this reason, monitoring approaches have to bal-
ance the amount of overhead with the amount of ex-
tracted information. The proposed incremental moni-
toring approach provides a solution implemented to run
on programmable network interface cards (Myrinet),
which perturbs the program’s execution as little as pos-
sible1. The resulting data is then used to control the
program during subsequent executions, while at the
same time incrementally increasing the amount of mon-
itoring. With this multistep approach, any amount of
trace data can be extracted without substantial intru-
sions onto the program’s execution.

Keywords: monitoring, program analysis, perturba-
tion, programmable network interface cards

1 Introduction

Program analysis is an important task to achieve
and guarantee a certain level of software quality,
which is determined by characteristics such as ef-

1This work is partially supported by the French ”Pro-
gramme d’Actions Integrées Amadeus” funded by the French
Ministery of Foreign Affairs and the Austrian Exchange Ser-
vice (ÖAD), WTZ Program Amadeus under contract no.
13/2002

ficiency and reliability. The corresponding tasks
are denoted as performance tuning and error de-
bugging, respectively.

The input for these kinds of program analy-
sis activities is usually state data about the pro-
gram’s behavior during runtime. This data is ac-
quired at program execution with so-called mon-
itoring activities, which are performed addition-
ally to the program’s original behavior. Obvi-
ously, this additional code introduces perturbations
to the observed program, which, in the worst case,
may even invalidate the observation results. For
this reason, software tool developers implement-
ing monitoring tools try to minimize the overhead
generated during program observation in order to
avoid the so-called probe effect [4], which defines
the intrusion of observation onto the target.

A solution for reducing the effects of the moni-
tor overhead while providing a flexible enough sys-
tem to do arbitrary tracing is presented in this pa-
per. The general idea is to perform monitoring in
several consecutive executions, where each step in-
creases the amount of extracted observation data.
In fact, the first execution step delivers only the
minimal information required to perform an equiv-
alent re-execution during follow-up steps.

The monitoring of only minimal information
generates the smallest possible overhead, while at
the same time guarantees that re-executions of the
program will exhibit the same program behavior.
Therefore, it is possible to subsequently increase
the amount of monitoring while still obtaining the
same behavior as during the initial step.



This paper is organized as follows: Section
2 provides an overview of monitoring strategies
and how related approaches address the monitor
overhead problem. Afterwards, the idea of our
approach is briefly introduced with some details
about its implementation on Myrinet network in-
terface cards. Conclusions and an outlook on fu-
ture work in this project summarize the paper.

2 Monitoring Approaches

The monitoring overhead and the related probe ef-
fect manifest themselves in two possible dimen-
sions:

• Time: The functionality introduced through
instrumentation delays the occurrence time
of events during the execution of the pro-
gram. Compared to the original program, the
monitored code performs additional activities,
which lead to increased runtime.

• Space: The monitor itself requires a certain
amount of memory for storing intermediate
results and trace data. Depending on the
amount of information required for the analy-
sis activities and the chosen interval for event
buffering, monitoring may require a substan-
tial amount of space which may otherwise be
used by the target application.

As a second order perturbation, the delay in-
troduced through monitoring may also modify the
actual behavior of the program. Due to the dif-
ferences in occurrence times, relations between
events and thus the event ordering may be sub-
stantially different from the un-monitored program
run [7]. This is especially important for nondeter-
ministic programs, where the actual behavior of the
program depends on the relative order of events. In
parallel and distributed programs, this situation oc-
curs whenever race conditions are included in the
code. Different timings of events at race conditions
may yield different results, even if the same input
data is provided.

A typical example for race conditions in par-
allel systems is the access to shared variables by

two (or more) processes. With the message pass-
ing paradigm, race conditions occur whenever two
(or more) messages race towards a receive event,
which permits either of these messages to be ac-
cepted at the receiving process. Depending on the
process that accesses the shared memory first or
on the (racing) message that arrives at the receiv-
ing process first, different program behavior may
be observed [7].

In order to overcome these probe effect prob-
lems, most of todays tools address the monitor
overhead with either or both of the following two
characteristic solutions:

• Minimization of monitor overhead through
minimal invasive instrumentation:
The idea of these approaches is to introduce
only as little code as possible into the ob-
served program, both on the number of instru-
mented code points as well as on the amount
of instrumentation per code point.

• Minimization of monitor overhead through
exploitation of additional hardware:
The primary idea is to offload the monitor-
ing activities onto additional hardware com-
ponents, such that the CPU is not affected
from additional operations compared to the
original program.

The idea of tracing only the minimum amount of
information required to allow re-execution of pro-
grams is described in [8] and [12]. By perturbing
the initial execution only slightly, it is considered
to be a sufficient approximation of an unperturbed
execution [3]. Afterwards replayed executions are
used to apply performance tracing and generate ad-
ditional timing information.

Examples for the hardware oriented approaches
are the exploitation of hardware counters, such as
the Performance Counter Library PCL [1] and the
Performance Application Programming Interface
PAPI [2] or dedicated hardware monitors such as
ZM4 [6] or the SMiLE monitor [5].

While each of these solutions are able to induce
only a relatively low intrusion on the observed pro-
gram, there are some limitations. Both approaches
are highly dependent on the target system, includ-
ing CPU architecture, operating system and sim-



ilar things. In addition, the user has to balance
the amount of monitoring concerning intrusion and
amount of extracted data. While hardware moni-
toring is generally only little intrusive, extraction
of high-level information is usually not possible.

3 Need of programmable network
cards

Based on these observations above, we developed
the monitoring approach described in this paper. A
basic necessity of our approach is the availability
of programmable network interface cards (NICs),
which allow to modify the communication behav-
ior by changing the code executed on the NIC.

Today, only few vendors provide possibili-
ties to program their NIC products. In our
case, we have chosen the Myrinet NICs [11] uti-
lized in clusters at both, ENS Lyon [13, 9] and
GUP Linz 2. Myrinet is a well-known high-
performance, packet-communication and switch-
ing technology that is widely used to interconnect
clusters of workstations for achieving high perfor-
mance through distributed computing.

The Myrinet cards used for this implementation
are Myricom M3F-PCIXD-2 cards, which use fi-
bre optics for interconnecting the nodes with the
Myrinet switch. The processor on these cards is
a 200 MHz LANai 9.2 RISC CPU, which sup-
ports only a limited set of efficiently implemented
commands. In addition, the NIC contains among
other components 2 MB of local memory and a
PCI DMA bridge for communication with the host
CPU.

In order to exchange data between the hosts
CPU and the Myrinet card, two possibilities are
available:

• Programmed Input/Output (PIO)

• Direct Memory Access (DMA)

With PIO, dedicated commands are used to read
and write memory address spaces, and to extract
the status of the network cards. With DMA, trans-
fer of data between host memory and NIC memory

2http://www.gup.uni-linz.ac.at/cluster

is performed independently from the host CPU and
the NIC CPU. After the transfer is completed, host
and NIC are informed via interrupt.

The software used to run on Myrinet cards is
called GM which consists of three parts:

• Software library

• Kernel module

• Myricom Control Program (MCP)

On top of this Myrinet software layer, more ad-
vanced communication libraries, such as the Mes-
sage Passing Interface standard MPI, are imple-
mented. In our case, the MPICH Implementation
provided by Myricom has been applied.

4 Monitoring on Myrinet NICs

Based on the system architecture described above,
our monitoring system is implemented as follows:

1. Preparation and instrumentation

2. Initial record phase

3. Repeated replay and analysis phases

The first step is required to prepare the Myrinet
NIC for collecting monitoring information. In con-
crete, the following tasks have to be performed:

• Loading a modified MCP onto the network
card.

• Instrumenting the MPI Program by including
modified MPI header file.

• Compiling the program with the modified
MPICH library.

The modified MCP includes the code to perform
the monitoring on the NIC. This is the most impor-
tant and delicate part, since debugging on the NIC
is rather difficult. However, with the programming
environment provided by Myricom, including the
monitoring functionality on the NIC is not too dif-
ficult.

An important part of the monitoring tool design
is to minimize the amount of overhead on the card
by optimizing the tasks performed by the MCP. In
concrete, the following steps are performed:



• Upon initialization of the MPI program, a cer-
tain amount of buffer memory is reserved to
hold the monitoring data. (This has to be done
with care since only 2 MB of memory are
available on the card).

• During execution, the order of incoming mes-
sages is stored in the above reserved memory.
Please note, that the tracing is performed con-
currently to the MPI process, which received
the message.

• If the buffer is full, the data from the NIC has
to be transferred to the main memory. This
transfer is also performed, when the compu-
tation on the host finishes.

• Upon finalization of the program, the data as
provided by the NIC is stored to a tracefile
which serves as the input for the follow-up re-
play phases. This time consuming task does
not influence the program’s behavior, since
the working tasks of the host program are al-
ready concluded at this point in time.

The optimization of the MCP code is based on
the fact that overtaking of messages in MPI is not
permitted 3 Based on this rule it is sufficient to
store the order of incoming messages at the re-
ceiver nodes. If the same order is enforced during
subsequent replay phases, the same behavior will
be observed.

Thus, with the trace data from the initial record
phase, arbitrary numbers of equivalent executions
of the program can be initiated. Please note, that
the replay will be controlled by code added to the
MPI process and not to the Myrinet MCP. The rea-
son to perform this on the host process is twofold:
On the one hand, enforcing the correct message or-
der on the MCP would require substantial changes
to the MCP code (compared to the changes of the
MPI process). On the other hand, the overhead oc-
curring on the MPI process is no longer an issue,
since the order is controlled by the minimal per-
turbed initial record phase.

In order to perform equivalent execution, the re-
ceive operations of MPI have been modified. In-

3See MPI Standard 1.1, Section 3.5 “Semantics of point-
to-point communication”.

stead of using the specified MPI ANY SOURCE as
a filter for the incoming message, the actual source
process as observed during the initial record phase
is provided to the receive operation.

In addition to enforcing the correct message or-
der, the replay phases are also used to extract ad-
ditional information. Depending on the users re-
quirements, arbitrary data can be extracted with-
out substantially affecting the program’s behavior
in terms of event ordering. In practice, the first sub-
sequent replay phase is usually applied to extract a
complete event graph of the program as shown in
Figure 1.

Figure 1: Event graph of program execution as ob-
tained during follow-up replay phase

The display shown in Figure 1 represents a
screenshot of the debugging tool DeWiz, with pro-
cesses arranged vertically and time on the horizon-
tal axis. Events (e.g. MPI operations) occurring
during program execution are displayed as nodes
in this space-time diagram, with arcs connecting
corresponding pairs of communication events (e.g.
send and receive operations).

While this display provides a good overview
of the program’s execution, more data is usually
needed to detect the causes of incorrect behavior
or performance bottlenecks. Such data is then ex-
tracted during additional replay phases. It is also
possible to attach standard debuggers to the pro-
gram and perform traditional cyclic debugging, as
long as the execution of the program is controlled
by the data of the initial execution.

5 Conclusions and Future Work

Observing a program’s execution during runtime is
a difficult task since the observation itself perturbs



the observation target. For this reasons, monitoring
of software is a delicate task which requires a good
balance between the amount of extracted data and
the intrusion on the observed program.

This paper introduced a monitoring approach
where the initial execution of the program is traced
on a programmable network interface cards. The
advantage of this approach is its minimal intrusion
on the observed program. In fact, with this ap-
proach it is even possible to perform monitoring
without the users’ knowledge, and thus permit re-
execution of arbitrary programs e.g. by adding a
flag to the mpirun command.

The work described above is only the first re-
sults of this project. We are also investigating pos-
sibilities to determine the usage of the networking
infrastructures (in order to define the costs of net-
working in a cluster), or to monitor other additional
networking characteristics. It may also be interest-
ing to add Quality-of-Service functionality directly
on the NIC with an approach similar to adding the
monitoring code.

References
[1] R. Berrendorf and H. Ziegler, PCL - The Perfor-

mance Counter Library: A Common Interface to
Access Hardware Performance Counters on Mi-
croprocessors, Technical Report FZJ-ZAM-IB-
9816, Research Center Jülich, October 1998.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci, A Portable Programming Interface for
Performance Evaluation on Modern Processors,
The International Journal of High Performance
Computing Applications, Vol. 14, No. 3, pp. 189–
204, Fall 2000.

[3] A. Fagot and J. Chassin de Kergommeaux, Sys-
tematic Assessment of the Overhead of Tracing
Parallel Programs, Proceedings EUROMICRO
PDP ’96, 4th EUROMICRO Workshop on Par-
allel and Distributed Processing, IEEE Computer
Society Press, Braga, Portugal, pp. 179–186, Jan-
uary 1996.

[4] J. Gait, The Probe Effect in Concurrent Programs,
IEEE Software - Practise and Experience, Vol. 16,
No. 3, pp. 225–233, March 1986.

[5] W. Karl, M. Schulz, and J. Trinitis Multilayer
Online-Monitoring for Hybrid DSM systems on

top of PC clusters with a SMiLE, In: Proceed-
ings of the 11th Intl. Conference on Modelling
Techniques and Tools for Computer Performance
Evaluation, Springer, LNCS, Vol. 1786, Chicago,
IL, USA, March 2000.

[6] R. Klar, P. Dauphin, F. Hartleb, R. Hofmann,
B. Mohr, A. Quick, and M. Siegle, Mes-
sung und Modellierung paralleler und verteil-
ter Rechensysteme, B.G. Teubner, Stuttgart, Ger-
many (1995) [in German].

[7] D. Kranzlmüller, Event Graph Anal-
ysis for Debugging Massively Paral-
lel Programs, PhD thesis, GUP Linz,
Joh. Kepler University Linz, Austria,
http://www.gup.uni-linz.ac.at/
˜dk/thesis, September 2000.

[8] E. Leu and A. Schiper, Execution Replay: A
Mechanism for Integrating a Visualization Tool
with a Symbolic Debugger, In: Y. Roberts,
L. Bouge, M. Cosnard, D. Trystram, (Eds.), Proc.
CONPAR 92 - VAPP V, Springer, LNCS, Vol.
634, 1992.

[9] E. Lemoine, C. Pham and L. Lefèvre Packet Clas-
sification in the NIC for Improved SMP-based In-
ternet Servers” IEEE Proceedings of the Inter-
national Conference on Networking (ICN 2004),
Guadeloupe, French Caribbean, Feb. 2004

[10] Message Passing Interface Forum: ”MPI: A
Message-Passing Interface Standard - Version
1.1”, http://www.mcs.anl.gov/mpi/
(June 1995).

[11] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic and W. Su Myrinet : a giga-
bit per second local area network IEEE-Micro,
15(1), Feb. 1995

[12] F. Teodorescu and J. Chassin de Kergommeaux,
On Correcting the Intrusion of Tracing Non-
deterministic Programs by Software, Proc. EU-
ROPAR’97 Parallel Processing, 3rd Intl. Euro-Par
Conference, Springer, LNCS, Vol. 1300, Passau,
Germany, pp. 94–101,August 1997.

[13] L. Lefèvre and R. Westrelin High performance
communications libraries for windows 2000 :
from a developer standpoint In International
conference on parallel and distributed processing
techniques and aplications (PDPTA 2002), vol-
ume 4, pages 1665-1671, Las Vegas, Nevada,
USA, june 2002.


