Towards the design of an high performance active node

Jean-Patrick Gelas, Saad El Hadri, Laurent Lefevre
INRIA RESO / LIP
Ecole Normale Supérieure de Lyon
46, allée d’Italie 69364 LYON Cedex 07 - France
Jean-Patrick.Gelas@ens-lyon.fr, Saad.El.Hadri@ens-lyon.fr, Laurent.LefevreQinria.fr

Abstract

Achieving high performance in active networks is one of the most challenging task. In this paper, we propose
an architecture for the design of next generation gigabit active routers'. This original architecture allows service
deployment of 4 levels : inside network cards, in kernel space, in user space and on distributed computing resources.
We deploy and validate this architecture within the Tamanoir ezecution environment. First experiments on gigabit
network platforms are described.

Keywords : high performance, active networking, execution environment, Tamanoir

1 Introduction

The integration of new and dynamic technologies into the shared network infrastructure is a challenging task,
and the growing interest in the active networking field[18] might be seen as a natural consequence.

In active networking vision, routers can perform computations on user data in transit and users can modify
the behavior of the network by supplying programs, called services, that perform these computations. These
routers are called active nodes (or active routers) and propose a greater flexibility towards the deployment of new
functionalities, more adapted to architecture, users and service providers requirements. Other network equipments
(gateways,bridges, proxies) can benefit from active network technology

Currently active network designers must face two major problems : security of services deployment inside
equipments and performance of on-the-fly processing. This paper proposes solutions for the design of an high
performance active node.

For most of researchers in active networks, providing active services with high level languages (Java) and inside
user space is a too costly approach due to the latency added for processing packets. This is mainly due to the fact
that numerous experiments in active networks relies on ANTS toolkit [19] (based on Java) with peak performance
of around 5 Mbits.

Our main goal is to focus on the providing of performance inside active network equipments. We define an
architecture targeted for the design of a Gigabit active node. This active node should be able to process and route
active streams coming from Gigabit networks (Fig. 2).

This layered architecture proposes solutions for the dynamic embedding of active services optimally deployed
on suitable levels:

e ultra lightweight services in network programmable cards (packets marking, dropping and filtering services);

e lightweight services in kernel space level (packets counting, QoS, management services, intelligent dropping
and state-based services);

I This work is supported by the French RNRT VTHD++ Project.

e middle services in user space level (reliable multicast, packets aggregating, packets monitoring and data
caching);

e high level services in distributed architecture (compression and multimedia transcoding on-the-fly).

In order to validate the proposed architecture, we design the Tamanoir Active node software suite based on
widely used equipments and tools : Myrinet for NIC level, Netfilter/Linux[16] for kernel space support, Java for
user space level and Linux Virtual Server[22] for clustering approach. This Tamanoir software is deployed and
experimented on various local and long distance platforms.

The paper is organized as follows. In section 2, we propose an architecture of an high performance active
router. Section 3 describes the Tamanoir architecture developed in our laboratory. Section 4 presents performances
obtained with Tamanoir. We briefly describe other solutions proposed for high performance active networking
(section 5). We finish by some conclusions and future directions for the improvement of software active routers.

2 An High Performance Active Node architecture

We want to design an architecture of an active router able to be deployed around high performance backbone.
Our approach concerns both a strategic deployment of active network functionalities around backbone in access
layer networks and by providing an high performance dedicated architecture.

Our active network model is focused on active edge routers, located around the core network between backbone
and access networks (Fig. 1). Core networks are mainly optical and must remain fast (40 Gb/s) and simple. Access
networks must face heterogeneous equipments and protocols and could benefit from the deployment of dynamic
network services.

Access layer
Fooy)
modem \

Jient core
clients Y —i network

portable

S

client with satellite link

Figure 1. Active Routers (AR) deployed in access networks

We define an Active Network Execution Environment (EE) as an environment able to load and deploy a service
in memory’s execution system. It must be also able to direct packets towards the required service thanks to
appropriate headers filtering. Ideally, an EE direct packets to the service as transparently as possible without
adding overheads.

Most common protocols like TCP, UDP, ICMP, RTP, RTCP,...should be supported by an active node. While
UDP or RTP are used for multimedia or real-time applications, supporting TCP streams is required for applications
requiring reliable communications like file transfer, web traffic and Grid application.

By taking into account high performance challenges, active services must be deployed at various levels depending
on resources (processing capabilities, memory consumption, storage capacity...) and intelligence (flexibility of the

execution environment) they need. In order to provide an adapted EE for each kind of services and to limit packet
overhead, we design an active node architecture on 4 levels : Network Interface card (NIC), Kernel Space, User
Space and Distributed Resources (see Fig. 3).

Distributed resources

’ n*100 Mb/s

Active / passive
UDP/TCP

Figure 2. Active node between backbone and

access network
Data streams

Figure 3. Execution environment of an active
node architecture

2.1 Network Interface Card level

Programmable network interface cards (NIC) like Myrinet[3] embed CPU, RAM and DMA engines. In these
cards, software network protocols can be executed to optimize communications between host and network. We
take advantage of this flexibility to deploy low level network services on these NIC. Running services directly on
programmable network interface cards gives the advantage to run services as close as possible to the wire. The
idea is not so far from Network Processor. Class of services must be restricted to ultra-lightweight one : packets
marking, packets dropping, packets counting. . .in order to not impact processing time per packet and NIC memory
space allocation.

While this paper does not focus on services deployment inside NIC, this topic is currently under investigation
in our team.

2.2 Kernel space level

In kernel space, OS runs time-sensitive operations : scheduler, protocols stacks, drivers...An active node can
deploy, in this level, efficient lightweight services requiring memory and processing capabilities from the host. This
deployment is specially useful when NIC are not programmable.

The kernel space level is perfectly suited for lightweight level services like QoS services or intelligent packets
dropping. Moreover, services running at kernel space level can benefit to the the routing functionalities of the
kernel and also use zero-copy or OS bypass technics to communicate with the user space. This approach requires
an open kernel and easy access to the network protocol stack.

Running a service in kernel space allows a very fast execution and takes advantages of resources (fast CPU,
system memory) of the host system. Services must be written in C or assembly code which limits portability and
makes the writing less obvious. This approach requires obviously an open operating system (like Linux or BSD).
This system must provide tools to direct active packets to kernel lightweight services (like Netfilter in Linux).
Kernel space is a very sensible part of the system and doesn’t tolerate any misbehavior. There is a risk to endanger
the whole system. Services must be restricted to time-sensitive services in terms of processing time per packets.

2.3 User space level

A user space level can provide all the safety, flexibility and easiness for running a full-featured execution envi-
ronment. Services executed in this level can access to all system resources (memory, disk, dedicated hardware...).
It gives also the opportunity to use high level languages (like Java).

However, overhead introduced by the processing of packets on this user space level and the cost of copying data
from kernel space to user space must be taken into account in order to reduce the impact on raw performances.
The EE must be executed as fast as possible and then written with a constant high-performance objective in mind.
It should not be interpreted during execution and then must be either compiled or use Just-In-Time compilation
technics.

2.4 Distributed resources level

Active streams requiring heavy processing functions like compression, cryptography or conversion on-the-fly
require heavy processing capabilities in of the active node. These services must be supported by a parallel archi-
tecture.

We explore the design of a parallel active node depending of Execution environment requirements and available
architecture.

EE - ‘ serviceﬂ ‘ serviceﬂ ‘ serviceﬂ ‘ serviceﬂ
"
EE EE
active <
packetsé ‘ serviceqﬂ ‘ serviceqﬂ ‘ serviceﬂ ‘ serviceﬂ
: T T EE EE

G (b) (©)

Figure 4. Approaches to design a parallel active node archit ecture: (a) shared memory, (b) message-
passing and (c) replicated EEs

Shared memory approach : First approach consists of distributing services on various processing units (Fig. 4(a)).
These services can be executed in parallel and can access to packets through a shared memory (on an SMP architec-
ture) or a distributed shared memory (on a cluster of machines [12]). Packets reaching the active node are placed
in queues located in shared memory with one queue for each available service, but a unique queue for services of
same name. Services are considered as consumers of these queues. This approach easily allows services migration
between processing units.

Message-passing approach : This approach is dedicated for distributed computing resources (clusters of ma-
chines) communicating through messages. Like first approach, services are distributed on various machines. The
execution environment is mapped on a dedicated node. In figure 4(b) the EE receives packets and directs them
towards the node holding the required service. Message passing techniques libraries (PVM, MPI...) could be
used. Next, the node process the packet with the suitable service before its retransmission.

Replicated EEs : Last approach consists of replicating EE and services on distributed resources (Fig. 4(c)). We
call these nodes back-ends. In order to provide to replicated EEs active packets, a front-end machine must be
added to the architecture. This front-end is completely dedicated to distribute streams to the back-ends. This
approach requires less modifications to Execution environments and services.

These 3 approaches (shared memory system, message passing, replicated EEs) provides parallelism in streams
processing. Another advantage of using a distributed architecture like a cluster of PC concerns the fault-tolerance
capability of the active node. It gives the possibility of stopping a back-end node for maintenance without stopping
the whole active node and services. Moreover, it is possible to upgrade performances of an active node by adding
more back-ends. In order to avoid single point of failure on EE (b) or on the front-end (c), these last ones must
be replicated on various nodes.

All distributed solutions must also take into account of load balancing of services and streams (from round-robin
(RR) algorithm to more sophisticated algorithm like weighted RR, least connection RR...)

3 The Tamanoir experience

The aims of the Tamanoir? project is to design an high performance active node validating the architecture
described in section 2. The whole development of the high performance EE Tamanoir has been done in several
steps. First we implemented a EE running in user space, next we investigate the kernel space and finally the
distributed computing approach.

3.1 High level multi-threaded Execution Environment

The Tamanoir[7, 8] suite is a complete software environment dedicated to deploy active routers and services
inside the network. Tamanoir Active Nodes (TAN) provide persistent active routers which are able to handle
different applications and various data stream (audio, video,...) at the same time (multi-thread approach). The
both main transport protocol TCP and UDP are supported by TAN. We rely on the ANEP (Active Network
Encapsulated Protocol)[1] format to send data over the active network (Figure 5).

Execution Environment

demultiplexer

service #1
ANEP data<

streams service #2

TCP/UDP service #3

Raw data <
streams

control stream
(TCP)

Figure 5. A Tamanoir Active Node (TAN)

The Execution Environment relies on a demultiplexer receiving active packets and redirecting these packets
towards the adapted service in function of a hash key contained in packets header. New services are plugged in the
TAN dynamically. The Active Node Manager (ANM) is dedicated to deployment of active services and to update
routing tables.

3.1.1 User space and implementations issues

For the user space part of our EE, we choose to use a portable language for the active networks users be able to
define and write their own services. Thus, the Tamanoir execution environment running in user space is entirely
written in Java [10] which provides a great flexibility and is shipped with standard library. Unfortunately, the
execution environment provided by the JVM (Java Virtual Machine) gives a very high level of abstraction, through
which applications have some difficulties to obtain good performances. However, recent JVM releases (> 1.3.x)

2Tamanoir (great anteater) is one of the strangest animal of south America : living in savanna, with an impressive tongue and a
mouth of 2 centimeters diameter this animal only eats ants (up to 30000 daily). We choose this animal in reference to the ANTS [19]
active network Java-based system.

give excellent performance for the mainstream hardware architecture (i.e x86), mainly due to the improvements of
Just-In-Time (JIT) compilation techniques.

Each service is written in Java and inherited from a generic class called Service, itself inherited from the Java
Thread class. Thus, each service is executed in a independent thread. For a given service, with TCP active streams,
a thread service is dedicated for each stream while with UDP only one dedicated thread processes all streams. A
given service can be applied on TCP or UDP active streams without change.

In order to improve safety and security, some EE runs each service in a separated sand-boxes (JVM). This
approach does not improve resources sharing on a node (if one process consumes all CPU resources, others processes
will not be able to work correctly). Moreover a standard JVM footprint takes more than 100 MB of memory for
each instance. Using a multi-thread approach and running one service in each thread rather than running as many
instance of JVM as services greatly improves the memory consumption.

3.1.2 Dynamic service deployment

The injection of new functionalities, called services, is independent from the data stream: services are deployed on
demand when streams reach an active node which does not hold the required service. Two services deployment
are available : by using a service repository, where TANs send all requests for downloading required services, by
deploying service from TAN to TAN (TAN query the active node that sends the stream for the service). In order
to avoid single point of failure service repository can be mirrored and replicated. When the service is available on a
node, it is ready to process the stream. Of course, an active stream can cross equally a classical router, obviously,
without any processing actions.

EE @ =]

: ANEP packet (tcp or udp)
: service transport (tcp)
: service request (tcp)

Figure 6. Two deployment scenario : from code repository or f rom a Tamanoir Active Node

3.2 Kernel space Execution Environment

After our EE user space investigation, we focus our approach on deploying lightweight services inside the kernel
space of the operating system. Our main purpose, here, is to deport efficiently active functionalities from the high
level execution environment (JVM) into the OS kernel.

Recent versions of the Linux kernel (2.4.x) are well furnished with networking functionalities and protocols :
QoS, Firewall, routing and packet filtering. NetFilter is a framework for packet modification, outside the normal
Berkeley socket interface [16]. With IPv4 communication protocol, NetFilter provides five hooks, which are defined
points on the IP packet way. These hooks allow to develop and run modules, written in C, in the kernel level. The
function nf register_hook is used to attach a personalized function to a specific hook. When a packet reaches the
hook, it is automatically transmitted to this personalized function.

The various modules which are set up into the OS kernel can be modified dynamically by active services. A
Tamanoir active service, running inside the JVM, configures the NetFilter module by sending control messages
(Fig. 7). This message is captured by the NetFilter module and used to parameterize lightweight services (forward,
packet marking, drop...). This configuration on-the-fly allows to dynamically deport personalized functions inside
the kernel.

[€5)

3

o Slu
)

N TAN

0

>

©

O

@

o

)

O

c S1k |c
)

4

Figure 7. User space service (S1u) and kernel space service (S1k) communicates through the com-
munication module (¢)

3.3 Distributed service processing : Tamanoir on a cluster

High level and application oriented active services (compression, cryptography, transcoding on-the-fly...) re-
quire intensive computing resources. To support these services, Tamanoir use the Replicated EEs architecture
shown in Fig.4(c). A Tamanoir Active Node embeds a dedicated cluster to support efficiently parallel services on
streams.

The Linux Virtual Server (LVS)[22] software suite is dedicated to provide distributed servers (ftp, web, mail. ..)
offering best performances in terms of throughput and availability. LVS is able to transmit packets in 3 different
ways : LVS-NAT, based on address translation (NAT); LVS-DR (Direct Routing) where packets MAC address are
changed and packets transmitted to a real server; LVS-TUN (tunneling) where packets are IPIP encapsulated and
transmitted to a back-end machine.

We modify LVS usage for active networking and use it in Tamanoir EE. A Tamanoir-LVS is a collection of TAN
execution environment running on a cluster of machines and linked together with an high performance network
(Myrinet or GigaEthernet). A dedicated machine is configured as a front-end and is used to route packets from
the Internet to back-ends machines. The front-end is seen by external client (on the Internet) as a single server
dedicated to distribute connections on each node of the cluster in a round robin way or weighted round robin.
Tamanoir Execution Environment is replicated on each back-end machine.

4 Experiments

An open problem in active networking is to compare and benchmark results between different execution en-
vironment. In order to show the efficiency of our approach, we first experiment raw performance obtained by a
lightweight active service (packet monitoring : which includes packet marking, packets counting and forwarding)
running in user space, in kernel space and, finally distributed on a cluster.

We deploy and use J2RE 1.3 a JVM from IBM on a GNU/Linux Debian distribution. We use three different
platforms at different time to perform measures of throughput and latencies.

Our first experimental platform (P1) consists of dual-processor Pentium IIT 1Ghz for TANs and AMD Athlon 1
Ghz for client hosts. TAN and clients are connected through a dedicated Fast Ethernet (100Mb/s) network. This
platform was used to measure latency in kernel and user space.

The second experimental platform (P2) is a cluster of 1U rack Compaq DL360 Proliant dual-PIII/1.4GHz with
a PCI 66MHz bus, connected through Gigabit Ethernet network with a Foundry switch.

Third platform (P3) is a cluster of 1U rack SUN LX50 dual-PIII/1.4GHz with a 66MHz PCI bus too, connected
through a Myrinet (Gigabits) network with a Myricom switch.

4.1 Raw performances on stand-alone base Tamanoir node

Throughput

First, we experiment the throughput achieved with packet monitoring service in Tamanoir user space EE (Figure 8).
All experiments are based on the same Java client application which sends and receives ANEP packet streams.

1 Back End - Monitoring Service - Myrinet

400 10 streams
5 streams ------—-

3 streams ------ -
350 2 streams
1stream ——--

300 |

Mbps

250 |

200 |

150

100

50 [

1 1 1 1 1 1
128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB
payload size

Figure 8. Throughput results on a stand-alone machine deplo ying active monitoring service

We perform experiments on a lightweight Monitoring service running in user space (in the JVM) on the P3
platform (with Myrinet networks). As shown in figure 8, in order to achieve the best throughput on only one
active node we use large packets (between 32 and 64KB). We also send a large number of streams in order to
benefit from aggregation. Figure 8 shows that we achieve more than 430Mb/s for 5 or 10 streams with packets
size of 32KB. There is not a big difference between the 5 and 10 streams curves because we were limited by the
number of sender and receiver machines to produce data streams.

Architecture impact - 1 stream
100 T T T T
SUN LX50/dual-PIIl 1.4GHz/bus PCI 66MHz/Myrinet

Network Architecture impact - 2 streams

Compag Proliant DL360/dual-Plll 1.4GHz/bus PCI 66MHz/GigaEthernet ------- 200
classic PC/dual-Plll 1GHz/bus PCI 33MHz/Fast Ethernet --------

90 |

80 1 180 SUN LX50/dual-Plll 1.4GHz/bus PCI 66MHz/Myrinet

Compaq Proliant DL360/dual-Plll 1.4GHz/bus PCI 66MHz/GigaEthernet -------

or 160 |

60 |
140

50 -

Mbps

120 |

|
Mbps

40 |
100
30 |
80 |-

20 |

60 |

I I I I I I 40 -
128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB
payload size 20

1
128B 1 2 4 8 32 64
payload size (KBytes)

Figure 9. Architecture and network impact on))
P1, P2, P3 platforms Figure 10. SMP impact on 1 stream transport

Figure 9 shows the network technology and architecture impact of our experimental platform on one stream
transport. We consider that P2 and P3 platforms differ only by network capabilities (SUN LX50 and Compag
DL360 are comparable architectures). Myrinet technology is faster than GigaEthernet technology from 4KB packets
size. It is more difficult to compare classic PCs shipped with a Fast-Ethernet cards with the SUN and Compaq

machine, because these PC are older and use a slower PCI bus. For only one active stream there is finally a small
difference with the 2 first expensive configurations.

As shown in figure 10 we experiment the benefit from SMP architecture by sending two parallel active streams.
To process a TCP stream, Tamanoir instantiates a service inside a Java thread. For two streams, Tamanoir deploys
two concurrent threads. On a dual architecture each thread is distributed on among CPU. So, the total throughput
is in average the double of the throughput we have in figure 9.

Latency

Latency is the time for an ANEP packet to be processed and routed to its next destination by a Tamanoir active
node. The measures were made on the first experimental platform thanks to Netfilter. When a packet reach the
node we start a timer and stop it when the same packet now processed leave the node.

Packets crossing the Tamanoir active node remaining in the Linux kernel layer spend around 7 microseconds for
basic forwarding operations with TCP or UDP (Fig. 11 and 12) on P1 platform. On the kernel level, the size of
ANEP packet does not affect performances.

Time of crossing of ANEP packet according to the Payload packet Time of crossing of ANEP packet according to the Payload packet
10000 | [10000 | T]
o | T T ™ o
2 e 2
o 1000 .= UDP - KERNEL LINUX —— b o 1000 TCP - KERNEL LINUX ——— b
= UDP - SUN SDK 1.3 - = TCP - SUN SDK 1.3 -
a UDP - IBM SDK 1.3 -~ - 2 TCP - IBM SDK 1.3 - -
5 UDP - GCJ 3.0 5 TCP-GCJ 3.0
% 100 1 % 100 1
Q ()
£ £
[[
10 1 10 1
. .
1 1
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
ANEP Payload size (bytes) ANEP Payload size (bytes)
Figure 11. Crossing time for ANEP packets Figure 12. Crossing time for ANEP packets
using UDP protocol using TCP protocol

As we expected, when a packet is forwarded by the Tamanoir EE running in user space (in the JVM), per-
formances are impacted. Results obtained with standard Java Virtual Machines (SUN [17] or IBM [9]) are quite
similar. GCJ [6] is the GNU compiler for Java and provides native code from Java sources or bytecode (.class)
files. Code is next linked with the library libgcj. Compiled execution environment obtained with GCJ, running in
user space too, does not improve performances. With TCP transport (Fig 12), performances obtained with small
packets remain around 16 ms (<4096 Bytes). Meanwhile we obtain better results with bigger packets. Around
4.4 ms for 4KB TCP ANEP packets with JVM and around 10.5 ms with GCJ version. This is due to the policy
of small packets aggregation originally designed for improving data transmission. As shown in figure 11 we obtain
better results, between 0.5 and 1.25 ms, on UDP with small packets size.

First experiments of deported services show how we can configure a Tamanoir Service running in kernel space.
Figure 13 describes the case of an active service which needs to propagate half of data packets to the user space
EE. By using standard messages, we can easily configure an active service running in a NetFilter module.

Figure 13 and 14 describes performances obtained thanks to a forwarding and packet marking service previously
executed in the user space EE and next inside a NetFilter module. ANEP packets need 7 ps to be processed and
routed by a service running in kernel space and need around 2 ms for a small packet (200 Bytes), then an order of
magnitude of 1000.

By running some services in kernel space, we improve performance for active packets transport and low level
services executed in kernel space unload the JVM (and user space) from superfluous work.

Time of crossing (us)

UDP Flow: the even packets stay in the kernel, others pass into the JVM
10000 T T

Packets ANEP Payload‘l Byte
Packets ANEP Payload 200 Bytes §———
Packets ANEP Payldad 4096 Bytes

1000

100

Time of crossing (us)

10

1 I I I I
20 22 24 26 28 30

ANEP packets which are crossed the actif node

Figure 13. A packet on two goes up in the
JVM, others are forwarded by the kernel

UDP flow: 500 packets cross the JVM, the 500 following stay into the kernel, ...

10000

1000 £

1%%¢kets ANEP Payload 20000 Bytes
Packets ANEP Payload 1 Byte -------

10

100

200

.
300 400 500 600 700 800 900 1000
ANEP packets which are crossed the actif node

Figure 14. First 500 packets are processed
inside the JVM, the following remain in the

kernel
Q -
2 service
% controk- 1 - - i
e TAMANOIR |
)
S
Q
O
(]
o
n
§§ A DN
5 L
x

Figure 15. NetFilter module runs in kernel space. Tamanoir s

controls the kernel module to switch active packets

10

ervice runs in user user space and

4.2 Performances on cluster-based Tamanoir node

Finally, we evaluate the benefit of distributing resources inside an active node by designing a cluster-based
Tamanoir node. Giving first experiments results of LVS, we present here only performances achieved with Direct
Routing [22].

The local experimental platform consists of 12 clients and a Tamanoir-LVS node (embedding one front-end and
three back-ends) (Figure 16 show only 6 clients). Sz are active packets senders, Rz are receivers. Streams are
routed by the front-end node acting as a director (streams dispatcher), three back-ends are attached to provide
distributed resources. Results reported in this section have been measured on a Gigabit Myrinet network.

[unil [z [ftang

Figure 16. Platform topology with clients and a cluster-bas ed TAN

3 Back Ends
1200 T T Heavy and light services comparison on 1 and 3 Back Ends (BE)
1200 T T T T

1000

1000 + Monitoring service/3BE
Monitoring service/1BE -------

Gzip service/3BE --------
800 -

800 |

600 [

Mbps
Mbps
=
3
38
T

400
400

200

. e T e
128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB o L L L L . .

payload size 1288 1 2 4 8 32 64
payload size (KBytes)

Figure 17. Throughput of a monitoring service
in Mb/s a 3 nodes cluster-based TAN depend-
ing on number of streams

Figure 18. Lightweight (monitoring) and
heavy (gzip) services comparisons

Figure 17 and 18 show performances results achieved experimentally on the P3 platform. Figure 17 presents
performances obtained with a 3 node cluster based Tamanoir. With this configuration, Tamanoir supports Gbit
performance (1.1 Gbit for 8KB packets) for a monitoring service applied on 24 active streams. We outpass 1 Gbits
limit due to the high bandwith provided by Myrinet networks.

Figure 18 summarises the best results. All these results shows that to exploit all the potential of the processing
resources, our active node needs to process lot of streams. But with an heavy or high-level service like the Gzip
service (data compression on the fly of the tar file of the 2.4.19 Linux kernel sources), as shown in figure 18, active
node resources are more used and throughput is reduced. With this heavy services a 3 back end based Tamanoir
active node is still able to process up to about 240 Mb/s of active packets.

11

5 Related work

Since the proposition of active networks, numerous research projects deal with active networking technology.
But on the topic of high performance active networking, only few are concerned. In this section, we attempt to
give a brief overview of the mains works in the field of performance and active networks.

In the ANN project [4], each packet use a reference to an active module (call service) stored on a trusted code
server. Modules are dynamically linked and executed like native code on the router. This technique is called
Distributed code caching for Active Networks (DAN). Besides DAN, ANN claim that it ”will” support ANTS [19]
who is less focused on high performance but provide facility to design prototypes for experiments and refinement.
From a hardware point of view, ANN people are aware of tightly coupling processing engine and network and also
distribute computations over the CPUs available are important. These both last ideas gave birth, few years ago,
to an Active Networking Node (ANN) which can be attached to an ATM switch backplane to meet the above
requirements.

The PAN [13] project aims at developing a prototype called Practical Active Networking (PAN) that will
eventually address safety, security, inter-operability and high performance. The current implementation focus
only on high performance. This project was wrote in C and obtain very good raw performances. There is two
implementations of PAN, one of these run in user-space and the other one in kernel-space as module. This last,
allows to saturate a Fast Ethernet link with 1,500 bytes packets, with an overhead of only 13 % to process each
packet. Performance are obtained thanks to limited copy, packets processing only when necessary and finally native
code.

The TAGS [20] works focus on the packets demultiplexing bottleneck. In the Active Networking equipment each
packets have to be demultiplexed not only to the network layer, but to the application level Execution Environment
(EE). To speedup this demultiplexing stage TAGS implements a new active packet format called Simple Active
Packet Format (SAPF). Measurements show that SAPF packets can be processed 30% faster than regular IP
packets that use the traditional ANEP header.

CANEs [14], which stands for Composable Active Network Elements, is a project which aims to design a coherent
architectural framework for active networking including consistent terminology, minimum functional requirements,
and interface specifications. The main goal is to provide network-based capabilities that enhance the communication
service and/or performance seen by users of the network with mechanisms like reacting to a congestion, transparent
caching of information in network nodes, and support for multicast video distribution to heterogeneous end-users.

CANEs is an execution environments running on NodeOS (but currently on an interim platform called Bow-
man[15] implementing just a subset of the NodeOS interface).

The AMP[2] project is developing a new software base that allows active code to be executed securely, safely
and with high performance. AMP system should provide a fast and lightweight execution environment for Active
Networks nodes. By enforcing resource usage limitations, active code cannot tamper with the rest of the active
node. AMP take advantage of techniques and software developed by the DARPA-funded ezokernel project that
demonstrate physical resources may be managed by user-level applications in way that allows both efficiency and
potential for protection.

The Protocol Boosters[5] project aims to improve the performance of heterogeneous distributed computing
systems by improving the performance of the communication protocols that are used by the nodes of the distributed
systems. They can dynamically avoiding any unnecessary protocol processing and dynamically optimizing the
communication protocol. This will give an efficient programming model for active networks applications.

Clara is an architecture for a cluster based computing router used in the Journey network model providing
computation as a scalable network service. A "media unit” crossing a Clara computing router will be processed
in function of local conditions resources availability, making decision independently of other computing router.
This model doesn’t guarantee that each "media unit” will arrive processed. It’s in the same spirit of best-effort
routing in IP networks. A media unit processed or unprocessed is determined by the IP Router Alert option.
If un-detected, packets are directly routed by IP, else packets are handed up to the Clara software for possible
processing. The Clara architecture use one PC for routing, the others linked by a SAN, are only dedicated for
processing, with a simple round-robin dispatching algorithm. A prototype has been evaluated in the context of
real-time transcoding MPEG video.

While most projects are software environments (except ANN) for packet processing on programmable routers
(which are workstations that act like routers). Some companies (like IBM, Intel, Motorola,...) make available

12

commercially programmable packet processing engines for routers called ”Network Processors”. These Network
Processors perform processing from the data link layer to the application layer. They come as system-on-a-chip
designs that combine processors, memory and IO on a single ASIC. In [21] they study the design of an high
performance active router with these brand new specifics processors.

6 Conclusion

In this paper, we present our first step towards the design of an high performance software active router. We
propose a new architecture for active nodes targeted to provide high performance support for active services. We
validate this architecture by designing the Tamanoir execution environment. Tamanoir supports deployment of
services in user space level, kernel level and distributed services on a cluster. Our experiments have been deployed
on Gigabit networks. A stand-alone SMP based Tamanoir node can support around 500 Mbit/s of bandwith for
lightweight service with its multi-threaded design and services support in kernel. We demonstrate the need to
deploy cluster based Tamanoir nodes to fully support a GBit network.

One of our next step consists of fully integrating and evaluating active services inside Network Programmable
Interface Card (Myrinet). With this offload approach, Tamanoir should benefit from services located closed to the
link and directly executed on the network card.

In our quest of performances we also want to reduce the impact of ANEP packets by supporting other active
packets format (like SAPF or custom format) and simple IP packets requesting active services.

Providing performance in active routers is also a mandatory aspect for high performance long distance applica-
tions. One of our current research concerns the deployment of active networking technology to the requirements
of Grid middlewares and applications ([11]).

References

[1] S. Alexander, B. Braden, C. Gunter, A. Jackson, A. Keromytis, G. Minden, and D. Wetherall. Active Network
Encapsulation Protocol (ANEP). RFC Draft, Category : Experimental, July 1997.
[2] AMP Project. http://www.pgp.com/research/nailabs/distributed/amp.asp.

[3] Nanette Boden, Danny Cohen, Robert Felderman, Alan Kulawik, Charles Seitz, Jakov Seizovic, and Wen-King
Su. Myrinet : a gigabit per second local area network. IEEE-Micro, 15(1):29-36, February 1995.

[4] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner. A scalable, high performance active
network node. In IEEE Network, volume 13, January 1999.

[5] D. Feldmeier, A. McAuley, J. Smith, D. Bakin, W. Marcus, and T. Raleigh. Protocol boosters. IEEE Journal
On Selected Areas in Communications, 16(3):437-444, April 1998.

[6] GCJ. The GNU Compiler for the Java Programming Language. http://sourceware.cygnus.com/java/.

[7] Jean-Patrick Gelas and Laurent Leféevre. Tamanoir: A high performance active network framework. In
C. S. Raghavendra S. Hariri, C. A. Lee, editor, Active Middleware Services, Ninth IEEE International Sym-
posium on High Performance Distributed Computing, pages 105-114, Pittsburgh, Pennsylvania, USA, August
2000. Kluwer Academic Publishers. ISBN 0-7923-7973-X.

[8] Jean-Patrick Gelas and Laurent Lefévre. Mixing high performance and portability for the design of active
network framework with java. In 3rd International Workshop on Java for Parallel and Distributed Computing,
International Parallel and Distributed Processing Symposium (IPDPS 2001), San Fransisco, USA, April 2001.

[9] IBM. IBM Java Developer Kit for Linux. http://www.alphaworks.ibm.com/tech/linuxjdk.

[10] Java programming language. http://java.sun.com/.

13

[11] L. Lefevre, C. Pham, P. Primet, B. Tourancheau, B. Gaidioz, J.P. Gelas, and M. Maimour. Active networking
support for the grid. In Noaki Wakamiya Ian W. Marshall, Scott Nettles, editor, IFIP-TC6 Third International
Working Conference on Active Networks, IWAN 2001, volume 2207 of Lecture Notes in Computer Science,
pages 16-33, oct 2001. ISBN: 3-540-42678-7.

[12] Laurent Lefevre and Olivier Reymann. Combining low-latency communication protocols with multithreading
for high performance dsm systems on clusters. In 8th Furomicro Workshop on Parallel and Distributed
Processing, pages 333-340, Rhodes, Greece, Jan 2000. IEEE Computer Society Press.

[13] Erik L.Nygren, Stephen J.Garland, and M.Frans Kaashoek. PAN: A High-Performance Active Network Node
Supporting Multiple Mobile Code Systems. In IEEE OPENARCH °99, March 1999.

[14] S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, K. Calvert, and E. Zegura. Bowman and canes: Imple-
mentation of an active network. In 37th Annual Allerton Conference, Monticello, IL, September 1999.

[15] S. Merugu, S. Bhattacharjee, E. Zegura, and K. Calvert. Bowman: A node os for active networks. In IEFFE
INFOCOM ’2000, mar 2000.

[16] Rusty Russell. Linux Filter Hacking HOWTO. netfilter description and usage, july 2000.
[17] SUN. Kit de dveloppement java de sun. http://java.sun.com/.

[18] David Tennenhouse and David Wetherall. Towards an active network architecture. Computer Communications
Review, 26(2):5-18, April 1996.

[19] David Wetherall, John Guttag, and David Tennenhouse. ANTS : a toolkit for building and dynamically
deploying network protocols. In IEEE OPENARCH 98, April 1998.

[20] Tilman Wolf and Dan Decasper. Tags for high performance active networks. In OpenArch2000, Tel Aviv,
March 2000, 2000.

[21] Tilman Wolf and Jonathan S. Turner. Design issues for high performance active routers. IEEE Journal on
Selected Areas of Communication, 19(3):404-409, March 2001.

[22] Wensong Zhang. Linux Virtual Server for Scalable Network Services. In Ottawa Linuxz Symposium, 2000.

14

