
Towards the design of an high performan
e a
tive node

Jean-Patri
k Gelas, Saad El Hadri, Laurent Lef�evre

INRIA RESO / LIP

E
ole Normale Sup�erieure de Lyon

46, all�ee d'Italie 69364 LYON Cedex 07 - Fran
e

Jean-Patri
k.Gelas�ens-lyon.fr, Saad.El.Hadri�ens-lyon.fr, Laurent.Lefevre�inria.fr

Abstra
t

A
hieving high performan
e in a
tive networks is one of the most
hallenging task. In this paper, we propose

an ar
hite
ture for the design of next generation gigabit a
tive routers

1

. This original ar
hite
ture allows servi
e

deployment of 4 levels : inside network
ards, in kernel spa
e, in user spa
e and on distributed
omputing resour
es.

We deploy and validate this ar
hite
ture within the Tamanoir exe
ution environment. First experiments on gigabit

network platforms are des
ribed.

Keywords : high performan
e, a
tive networking, exe
ution environment, Tamanoir

1 Introdu
tion

The integration of new and dynami
 te
hnologies into the shared network infrastru
ture is a
hallenging task,

and the growing interest in the a
tive networking �eld[18℄ might be seen as a natural
onsequen
e.

In a
tive networking vision, routers
an perform
omputations on user data in transit and users
an modify

the behavior of the network by supplying programs,
alled servi
es, that perform these
omputations. These

routers are
alled a
tive nodes (or a
tive routers) and propose a greater
exibility towards the deployment of new

fun
tionalities, more adapted to ar
hite
ture, users and servi
e providers requirements. Other network equipments

(gateways,bridges, proxies)
an bene�t from a
tive network te
hnology

Currently a
tive network designers must fa
e two major problems : se
urity of servi
es deployment inside

equipments and performan
e of on-the-
y pro
essing. This paper proposes solutions for the design of an high

performan
e a
tive node.

For most of resear
hers in a
tive networks, providing a
tive servi
es with high level languages (Java) and inside

user spa
e is a too
ostly approa
h due to the laten
y added for pro
essing pa
kets. This is mainly due to the fa
t

that numerous experiments in a
tive networks relies on ANTS toolkit [19℄ (based on Java) with peak performan
e

of around 5 Mbits.

Our main goal is to fo
us on the providing of performan
e inside a
tive network equipments. We de�ne an

ar
hite
ture targeted for the design of a Gigabit a
tive node. This a
tive node should be able to pro
ess and route

a
tive streams
oming from Gigabit networks (Fig. 2).

This layered ar
hite
ture proposes solutions for the dynami
 embedding of a
tive servi
es optimally deployed

on suitable levels:

� ultra lightweight servi
es in network programmable
ards (pa
kets marking, dropping and �ltering servi
es);

� lightweight servi
es in kernel spa
e level (pa
kets
ounting, QoS, management servi
es, intelligent dropping

and state-based servi
es);

1

This work is supported by the Fren
h RNRT VTHD++ Proje
t.

1

� middle servi
es in user spa
e level (reliable multi
ast, pa
kets aggregating, pa
kets monitoring and data

a
hing);

� high level servi
es in distributed ar
hite
ture (
ompression and multimedia trans
oding on-the-
y).

In order to validate the proposed ar
hite
ture, we design the Tamanoir A
tive node software suite based on

widely used equipments and tools : Myrinet for NIC level, Net�lter/Linux[16℄ for kernel spa
e support, Java for

user spa
e level and Linux Virtual Server[22℄ for
lustering approa
h. This Tamanoir software is deployed and

experimented on various lo
al and long distan
e platforms.

The paper is organized as follows. In se
tion 2, we propose an ar
hite
ture of an high performan
e a
tive

router. Se
tion 3 des
ribes the Tamanoir ar
hite
ture developed in our laboratory. Se
tion 4 presents performan
es

obtained with Tamanoir. We brie
y des
ribe other solutions proposed for high performan
e a
tive networking

(se
tion 5). We �nish by some
on
lusions and future dire
tions for the improvement of software a
tive routers.

2 An High Performan
e A
tive Node ar
hite
ture

We want to design an ar
hite
ture of an a
tive router able to be deployed around high performan
e ba
kbone.

Our approa
h
on
erns both a strategi
 deployment of a
tive network fun
tionalities around ba
kbone in a

ess

layer networks and by providing an high performan
e dedi
ated ar
hite
ture.

Our a
tive network model is fo
used on a
tive edge routers, lo
ated around the
ore network between ba
kbone

and a

ess networks (Fig. 1). Core networks are mainly opti
al and must remain fast (40 Gb/s) and simple. A

ess

networks must fa
e heterogeneous equipments and proto
ols and
ould bene�t from the deployment of dynami

network servi
es.

modem

modem

clients

56K

33,6K

portableGSM 9,6

PDA

LAN

client with satellite link

core
network

AR

AR

AR

AR

AR

AR

AR

AR

Access layer

Figure 1. Active Routers (AR) deployed in access networks

We de�ne an A
tive Network Exe
ution Environment (EE) as an environment able to load and deploy a servi
e

in memory's exe
ution system. It must be also able to dire
t pa
kets towards the required servi
e thanks to

appropriate headers �ltering. Ideally, an EE dire
t pa
kets to the servi
e as transparently as possible without

adding overheads.

Most
ommon proto
ols like TCP, UDP, ICMP, RTP, RTCP,. . . should be supported by an a
tive node. While

UDP or RTP are used for multimedia or real-time appli
ations, supporting TCP streams is required for appli
ations

requiring reliable
ommuni
ations like �le transfer, web traÆ
 and Grid appli
ation.

By taking into a

ount high performan
e
hallenges, a
tive servi
es must be deployed at various levels depending

on resour
es (pro
essing
apabilities, memory
onsumption, storage
apa
ity. . .) and intelligen
e (
exibility of the

2

exe
ution environment) they need. In order to provide an adapted EE for ea
h kind of servi
es and to limit pa
ket

overhead, we design an a
tive node ar
hite
ture on 4 levels : Network Interfa
e
ard (NIC), Kernel Spa
e, User

Spa
e and Distributed Resour
es (see Fig. 3).

1 Gb/s

n*100 Mb/s

Active / passive

UDP/TCP

1 Gb/s

n*100 Mb/s

Active / passive

UDP/TCP

Figure 2. Active node between backbone and
access network

NIC (programmable)

Data streams

User space

Kernel space

Distributed resources

Figure 3. Execution environment of an active
node architecture

2.1 Network Interface Card level

Programmable network interfa
e
ards (NIC) like Myrinet[3℄ embed CPU, RAM and DMA engines. In these

ards, software network proto
ols
an be exe
uted to optimize
ommuni
ations between host and network. We

take advantage of this
exibility to deploy low level network servi
es on these NIC. Running servi
es dire
tly on

programmable network interfa
e
ards gives the advantage to run servi
es as
lose as possible to the wire. The

idea is not so far from Network Pro
essor. Class of servi
es must be restri
ted to ultra-lightweight one : pa
kets

marking, pa
kets dropping, pa
kets
ounting. . . in order to not impa
t pro
essing time per pa
ket and NIC memory

spa
e allo
ation.

While this paper does not fo
us on servi
es deployment inside NIC, this topi
 is
urrently under investigation

in our team.

2.2 Kernel space level

In kernel spa
e, OS runs time-sensitive operations : s
heduler, proto
ols sta
ks, drivers. . . An a
tive node
an

deploy, in this level, eÆ
ient lightweight servi
es requiring memory and pro
essing
apabilities from the host. This

deployment is spe
ially useful when NIC are not programmable.

The kernel spa
e level is perfe
tly suited for lightweight level servi
es like QoS servi
es or intelligent pa
kets

dropping. Moreover, servi
es running at kernel spa
e level
an bene�t to the the routing fun
tionalities of the

kernel and also use zero-
opy or OS bypass te
hni
s to
ommuni
ate with the user spa
e. This approa
h requires

an open kernel and easy a

ess to the network proto
ol sta
k.

Running a servi
e in kernel spa
e allows a very fast exe
ution and takes advantages of resour
es (fast CPU,

system memory) of the host system. Servi
es must be written in C or assembly
ode whi
h limits portability and

makes the writing less obvious. This approa
h requires obviously an open operating system (like Linux or BSD).

This system must provide tools to dire
t a
tive pa
kets to kernel lightweight servi
es (like Net�lter in Linux).

Kernel spa
e is a very sensible part of the system and doesn't tolerate any misbehavior. There is a risk to endanger

the whole system. Servi
es must be restri
ted to time-sensitive servi
es in terms of pro
essing time per pa
kets.

3

2.3 User space level

A user spa
e level
an provide all the safety,
exibility and easiness for running a full-featured exe
ution envi-

ronment. Servi
es exe
uted in this level
an a

ess to all system resour
es (memory, disk, dedi
ated hardware. . .).

It gives also the opportunity to use high level languages (like Java).

However, overhead introdu
ed by the pro
essing of pa
kets on this user spa
e level and the
ost of
opying data

from kernel spa
e to user spa
e must be taken into a

ount in order to redu
e the impa
t on raw performan
es.

The EE must be exe
uted as fast as possible and then written with a
onstant high-performan
e obje
tive in mind.

It should not be interpreted during exe
ution and then must be either
ompiled or use Just-In-Time
ompilation

te
hni
s.

2.4 Distributed resources level

A
tive streams requiring heavy pro
essing fun
tions like
ompression,
ryptography or
onversion on-the-
y

require heavy pro
essing
apabilities in of the a
tive node. These servi
es must be supported by a parallel ar
hi-

te
ture.

We explore the design of a parallel a
tive node depending of Exe
ution environment requirements and available

ar
hite
ture.

services services

services services

services services

services services

EE

service service

service service

packets
active

EE

front−end

(b) (c)(a)

EE EE

EEEE

Figure 4. Approaches to design a parallel active node archit ecture: (a) shared memory, (b) message-
passing and (c) replicated EEs

Shared memory approa
h : First approa
h
onsists of distributing servi
es on various pro
essing units (Fig. 4(a)).

These servi
es
an be exe
uted in parallel and
an a

ess to pa
kets through a shared memory (on an SMP ar
hite
-

ture) or a distributed shared memory (on a
luster of ma
hines [12℄). Pa
kets rea
hing the a
tive node are pla
ed

in queues lo
ated in shared memory with one queue for ea
h available servi
e, but a unique queue for servi
es of

same name. Servi
es are
onsidered as
onsumers of these queues. This approa
h easily allows servi
es migration

between pro
essing units.

Message-passing approa
h : This approa
h is dedi
ated for distributed
omputing resour
es (
lusters of ma-

hines)
ommuni
ating through messages. Like �rst approa
h, servi
es are distributed on various ma
hines. The

exe
ution environment is mapped on a dedi
ated node. In �gure 4(b) the EE re
eives pa
kets and dire
ts them

towards the node holding the required servi
e. Message passing te
hniques libraries (PVM, MPI. . .)
ould be

used. Next, the node pro
ess the pa
ket with the suitable servi
e before its retransmission.

Repli
ated EEs : Last approa
h
onsists of repli
ating EE and servi
es on distributed resour
es (Fig. 4(
)). We

all these nodes ba
k-ends. In order to provide to repli
ated EEs a
tive pa
kets, a front-end ma
hine must be

added to the ar
hite
ture. This front-end is
ompletely dedi
ated to distribute streams to the ba
k-ends. This

approa
h requires less modi�
ations to Exe
ution environments and servi
es.

4

These 3 approa
hes (shared memory system, message passing, repli
ated EEs) provides parallelism in streams

pro
essing. Another advantage of using a distributed ar
hite
ture like a
luster of PC
on
erns the fault-toleran
e

apability of the a
tive node. It gives the possibility of stopping a ba
k-end node for maintenan
e without stopping

the whole a
tive node and servi
es. Moreover, it is possible to upgrade performan
es of an a
tive node by adding

more ba
k-ends. In order to avoid single point of failure on EE (b) or on the front-end (
), these last ones must

be repli
ated on various nodes.

All distributed solutions must also take into a

ount of load balan
ing of servi
es and streams (from round-robin

(RR) algorithm to more sophisti
ated algorithm like weighted RR, least
onne
tion RR. . .)

3 The Tamanoir experien
e

The aims of the Tamanoir

2

proje
t is to design an high performan
e a
tive node validating the ar
hite
ture

des
ribed in se
tion 2. The whole development of the high performan
e EE Tamanoir has been done in several

steps. First we implemented a EE running in user spa
e, next we investigate the kernel spa
e and �nally the

distributed
omputing approa
h.

3.1 High level multi-threaded Execution Environment

The Tamanoir[7, 8℄ suite is a
omplete software environment dedi
ated to deploy a
tive routers and servi
es

inside the network. Tamanoir A
tive Nodes (TAN) provide persistent a
tive routers whi
h are able to handle

di�erent appli
ations and various data stream (audio, video,. . .) at the same time (multi-thread approa
h). The

both main transport proto
ol TCP and UDP are supported by TAN. We rely on the ANEP (A
tive Network

En
apsulated Proto
ol)[1℄ format to send data over the a
tive network (Figure 5).

ANM

TCP

UDP

control stream
(TCP)

service #1

service #2

service #3Raw data

ANEP data
streams

streams
TCP/UDP

Execution Environment

(Active Node Manager)

req.

hash table

demultiplexer

Figure 5. A Tamanoir Active Node (TAN)

The Exe
ution Environment relies on a demultiplexer re
eiving a
tive pa
kets and redire
ting these pa
kets

towards the adapted servi
e in fun
tion of a hash key
ontained in pa
kets header. New servi
es are plugged in the

TAN dynami
ally. The A
tive Node Manager (ANM) is dedi
ated to deployment of a
tive servi
es and to update

routing tables.

3.1.1 User spa
e and implementations issues

For the user spa
e part of our EE, we
hoose to use a portable language for the a
tive networks users be able to

de�ne and write their own servi
es. Thus, the Tamanoir exe
ution environment running in user spa
e is entirely

written in Java [10℄ whi
h provides a great
exibility and is shipped with standard library. Unfortunately, the

exe
ution environment provided by the JVM (Java Virtual Ma
hine) gives a very high level of abstra
tion, through

whi
h appli
ations have some diÆ
ulties to obtain good performan
es. However, re
ent JVM releases (� 1.3.x)

2

Tamanoir (great anteater) is one of the strangest animal of south Ameri
a : living in savanna, with an impressive tongue and a

mouth of 2
entimeters diameter this animal only eats ants (up to 30000 daily). We
hoose this animal in referen
e to the ANTS [19℄

a
tive network Java-based system.

5

give ex
ellent performan
e for the mainstream hardware ar
hite
ture (i.e x86), mainly due to the improvements of

Just-In-Time (JIT)
ompilation te
hniques.

Ea
h servi
e is written in Java and inherited from a generi

lass
alled Servi
e, itself inherited from the Java

Thread
lass. Thus, ea
h servi
e is exe
uted in a independent thread. For a given servi
e, with TCP a
tive streams,

a thread servi
e is dedi
ated for ea
h stream while with UDP only one dedi
ated thread pro
esses all streams. A

given servi
e
an be applied on TCP or UDP a
tive streams without
hange.

In order to improve safety and se
urity, some EE runs ea
h servi
e in a separated sand-boxes (JVM). This

approa
h does not improve resour
es sharing on a node (if one pro
ess
onsumes all CPU resour
es, others pro
esses

will not be able to work
orre
tly). Moreover a standard JVM footprint takes more than 100 MB of memory for

ea
h instan
e. Using a multi-thread approa
h and running one servi
e in ea
h thread rather than running as many

instan
e of JVM as servi
es greatly improves the memory
onsumption.

3.1.2 Dynami
 servi
e deployment

The inje
tion of new fun
tionalities,
alled servi
es, is independent from the data stream: servi
es are deployed on

demand when streams rea
h an a
tive node whi
h does not hold the required servi
e. Two servi
es deployment

are available : by using a servi
e repository, where TANs send all requests for downloading required servi
es, by

deploying servi
e from TAN to TAN (TAN query the a
tive node that sends the stream for the servi
e). In order

to avoid single point of failure servi
e repository
an be mirrored and repli
ated. When the servi
e is available on a

node, it is ready to pro
ess the stream. Of
ourse, an a
tive stream
an
ross equally a
lassi
al router, obviously,

without any pro
essing a
tions.

: service transport (tcp)

: service request (tcp)

: ANEP packet (tcp or udp)

TAN TAN

core network

http protocol

tcp/ip

tcp/udp

Figure 6. Two deployment scenario : from code repository or f rom a Tamanoir Active Node

3.2 Kernel space Execution Environment

After our EE user spa
e investigation, we fo
us our approa
h on deploying lightweight servi
es inside the kernel

spa
e of the operating system. Our main purpose, here, is to deport eÆ
iently a
tive fun
tionalities from the high

level exe
ution environment (JVM) into the OS kernel.

Re
ent versions of the Linux kernel (2.4.x) are well furnished with networking fun
tionalities and proto
ols :

QoS, Firewall, routing and pa
ket �ltering. NetFilter is a framework for pa
ket modi�
ation, outside the normal

Berkeley so
ket interfa
e [16℄. With IPv4
ommuni
ation proto
ol, NetFilter provides �ve hooks, whi
h are de�ned

points on the IP pa
ket way. These hooks allow to develop and run modules, written in C, in the kernel level. The

fun
tion nf register hook is used to atta
h a personalized fun
tion to a spe
i�
 hook. When a pa
ket rea
hes the

hook, it is automati
ally transmitted to this personalized fun
tion.

The various modules whi
h are set up into the OS kernel
an be modi�ed dynami
ally by a
tive servi
es. A

Tamanoir a
tive servi
e, running inside the JVM,
on�gures the NetFilter module by sending
ontrol messages

(Fig. 7). This message is
aptured by the NetFilter module and used to parameterize lightweight servi
es (forward,

pa
ket marking, drop. . .). This
on�guration on-the-
y allows to dynami
ally deport personalized fun
tions inside

the kernel.

6

S1k c

S1u
TAN

us
er

 s
pa

ce
ke

rn
el

 s
pa

ce

Figure 7. User space service (S1u) and kernel space service (S1k) communicates through the com-
munication module (
)

3.3 Distributed service processing : Tamanoir on a cluster

High level and appli
ation oriented a
tive servi
es (
ompression,
ryptography, trans
oding on-the-
y. . .) re-

quire intensive
omputing resour
es. To support these servi
es, Tamanoir use the Repli
ated EEs ar
hite
ture

shown in Fig.4(
). A Tamanoir A
tive Node embeds a dedi
ated
luster to support eÆ
iently parallel servi
es on

streams.

The Linux Virtual Server (LVS)[22℄ software suite is dedi
ated to provide distributed servers (ftp, web, mail. . .)

o�ering best performan
es in terms of throughput and availability. LVS is able to transmit pa
kets in 3 di�erent

ways : LVS-NAT, based on address translation (NAT); LVS-DR (Dire
t Routing) where pa
kets MAC address are

hanged and pa
kets transmitted to a real server; LVS-TUN (tunneling) where pa
kets are IPIP en
apsulated and

transmitted to a ba
k-end ma
hine.

We modify LVS usage for a
tive networking and use it in Tamanoir EE. A Tamanoir-LVS is a
olle
tion of TAN

exe
ution environment running on a
luster of ma
hines and linked together with an high performan
e network

(Myrinet or GigaEthernet). A dedi
ated ma
hine is
on�gured as a front-end and is used to route pa
kets from

the Internet to ba
k-ends ma
hines. The front-end is seen by external
lient (on the Internet) as a single server

dedi
ated to distribute
onne
tions on ea
h node of the
luster in a round robin way or weighted round robin.

Tamanoir Exe
ution Environment is repli
ated on ea
h ba
k-end ma
hine.

4 Experiments

An open problem in a
tive networking is to
ompare and ben
hmark results between di�erent exe
ution en-

vironment. In order to show the eÆ
ien
y of our approa
h, we �rst experiment raw performan
e obtained by a

lightweight a
tive servi
e (pa
ket monitoring : whi
h in
ludes pa
ket marking, pa
kets
ounting and forwarding)

running in user spa
e, in kernel spa
e and, �nally distributed on a
luster.

We deploy and use J2RE 1.3 a JVM from IBM on a GNU/Linux Debian distribution. We use three di�erent

platforms at di�erent time to perform measures of throughput and laten
ies.

Our �rst experimental platform (P1)
onsists of dual-pro
essor Pentium III 1Ghz for TANs and AMD Athlon 1

Ghz for
lient hosts. TAN and
lients are
onne
ted through a dedi
ated Fast Ethernet (100Mb/s) network. This

platform was used to measure laten
y in kernel and user spa
e.

The se
ond experimental platform (P2) is a
luster of 1U ra
k Compaq DL360 Proliant dual-PIII/1.4GHz with

a PCI 66MHz bus,
onne
ted through Gigabit Ethernet network with a Foundry swit
h.

Third platform (P3) is a
luster of 1U ra
k SUN LX50 dual-PIII/1.4GHz with a 66MHz PCI bus too,
onne
ted

through a Myrinet (Gigabits) network with a Myri
om swit
h.

7

4.1 Raw performances on stand-alone base Tamanoir node

Throughput

First, we experiment the throughput a
hieved with pa
ket monitoring servi
e in Tamanoir user spa
e EE (Figure 8).

All experiments are based on the same Java
lient appli
ation whi
h sends and re
eives ANEP pa
ket streams.

0

50

100

150

200

250

300

350

400

450

500

128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB

M
bp

s

payload size

1 Back End - Monitoring Service - Myrinet

10 streams
5 streams
3 streams
2 streams
1 stream

Figure 8. Throughput results on a stand-alone machine deplo ying active monitoring service

We perform experiments on a lightweight Monitoring servi
e running in user spa
e (in the JVM) on the P3

platform (with Myrinet networks). As shown in �gure 8, in order to a
hieve the best throughput on only one

a
tive node we use large pa
kets (between 32 and 64KB). We also send a large number of streams in order to

bene�t from aggregation. Figure 8 shows that we a
hieve more than 430Mb/s for 5 or 10 streams with pa
kets

size of 32KB. There is not a big di�eren
e between the 5 and 10 streams
urves be
ause we were limited by the

number of sender and re
eiver ma
hines to produ
e data streams.

0

10

20

30

40

50

60

70

80

90

100

128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB

M
bp

s

payload size

Architecture impact - 1 stream

SUN LX50/dual-PIII 1.4GHz/bus PCI 66MHz/Myrinet
Compaq Proliant DL360/dual-PIII 1.4GHz/bus PCI 66MHz/GigaEthernet

classic PC/dual-PIII 1GHz/bus PCI 33MHz/Fast Ethernet

Figure 9. Architecture and network impact on
P1, P2, P3 platforms

20

40

60

80

100

120

140

160

180

200

128B 1 2 4 8 32 64

M
bp

s

payload size (KBytes)

Network Architecture impact - 2 streams

SUN LX50/dual-PIII 1.4GHz/bus PCI 66MHz/Myrinet
Compaq Proliant DL360/dual-PIII 1.4GHz/bus PCI 66MHz/GigaEthernet

Figure 10. SMP impact on 1 stream transport

Figure 9 shows the network te
hnology and ar
hite
ture impa
t of our experimental platform on one stream

transport. We
onsider that P2 and P3 platforms di�er only by network
apabilities (SUN LX50 and Compaq

DL360 are
omparable ar
hite
tures). Myrinet te
hnology is faster than GigaEthernet te
hnology from 4KB pa
kets

size. It is more diÆ
ult to
ompare
lassi
 PCs shipped with a Fast-Ethernet
ards with the SUN and Compaq

8

ma
hine, be
ause these PC are older and use a slower PCI bus. For only one a
tive stream there is �nally a small

di�eren
e with the 2 �rst expensive
on�gurations.

As shown in �gure 10 we experiment the bene�t from SMP ar
hite
ture by sending two parallel a
tive streams.

To pro
ess a TCP stream, Tamanoir instantiates a servi
e inside a Java thread. For two streams, Tamanoir deploys

two
on
urrent threads. On a dual ar
hite
ture ea
h thread is distributed on among CPU. So, the total throughput

is in average the double of the throughput we have in �gure 9.

Laten
y

Laten
y is the time for an ANEP pa
ket to be pro
essed and routed to its next destination by a Tamanoir a
tive

node. The measures were made on the �rst experimental platform thanks to Net�lter. When a pa
ket rea
h the

node we start a timer and stop it when the same pa
ket now pro
essed leave the node.

Pa
kets
rossing the Tamanoir a
tive node remaining in the Linux kernel layer spend around 7 mi
rose
onds for

basi
 forwarding operations with TCP or UDP (Fig. 11 and 12) on P1 platform. On the kernel level, the size of

ANEP pa
ket does not a�e
t performan
es.

1

10

100

1000

10000

0 5000 10000 15000 20000 25000

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP Payload size (bytes)

Time of crossing of ANEP packet according to the Payload packet

UDP - KERNEL LINUX
UDP - SUN SDK 1.3
UDP - IBM SDK 1.3

UDP - GCJ 3.0

Figure 11. Crossing time for ANEP packets
using UDP protocol

1

10

100

1000

10000

0 5000 10000 15000 20000 25000

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP Payload size (bytes)

Time of crossing of ANEP packet according to the Payload packet

TCP - KERNEL LINUX
TCP - SUN SDK 1.3
TCP - IBM SDK 1.3

TCP - GCJ 3.0

Figure 12. Crossing time for ANEP packets
using TCP protocol

As we expe
ted, when a pa
ket is forwarded by the Tamanoir EE running in user spa
e (in the JVM), per-

forman
es are impa
ted. Results obtained with standard Java Virtual Ma
hines (SUN [17℄ or IBM [9℄) are quite

similar. GCJ [6℄ is the GNU
ompiler for Java and provides native
ode from Java sour
es or byte
ode (.
lass)

�les. Code is next linked with the library libg
j. Compiled exe
ution environment obtained with GCJ, running in

user spa
e too, does not improve performan
es. With TCP transport (Fig 12), performan
es obtained with small

pa
kets remain around 16 ms (<4096 Bytes). Meanwhile we obtain better results with bigger pa
kets. Around

4.4 ms for 4KB TCP ANEP pa
kets with JVM and around 10.5 ms with GCJ version. This is due to the poli
y

of small pa
kets aggregation originally designed for improving data transmission. As shown in �gure 11 we obtain

better results, between 0.5 and 1.25 ms, on UDP with small pa
kets size.

First experiments of deported servi
es show how we
an
on�gure a Tamanoir Servi
e running in kernel spa
e.

Figure 13 des
ribes the
ase of an a
tive servi
e whi
h needs to propagate half of data pa
kets to the user spa
e

EE. By using standard messages, we
an easily
on�gure an a
tive servi
e running in a NetFilter module.

Figure 13 and 14 des
ribes performan
es obtained thanks to a forwarding and pa
ket marking servi
e previously

exe
uted in the user spa
e EE and next inside a NetFilter module. ANEP pa
kets need 7 �s to be pro
essed and

routed by a servi
e running in kernel spa
e and need around 2 ms for a small pa
ket (200 Bytes), then an order of

magnitude of 1000.

By running some servi
es in kernel spa
e, we improve performan
e for a
tive pa
kets transport and low level

servi
es exe
uted in kernel spa
e unload the JVM (and user spa
e) from super
uous work.

9

1

10

100

1000

10000

20 22 24 26 28 30

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP packets which are crossed the actif node

UDP Flow: the even packets stay in the kernel, others pass into the JVM

Packets ANEP Payload 1 Byte
Packets ANEP Payload 200 Bytes

Packets ANEP Payload 4096 Bytes
Packets ANEP Payload 10000 Bytes
Packets ANEP Payload 20000 Bytes
Packets ANEP Payload 25000 Bytes

Figure 13. A packet on two goes up in the
JVM, others are forwarded by the kernel

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

T
im

e
of

 c
ro

ss
in

g
(u

s)

ANEP packets which are crossed the actif node

UDP flow: 500 packets cross the JVM, the 500 following stay into the kernel, ...

Packets ANEP Payload 20000 Bytes
Packets ANEP Payload 1 Byte

Figure 14. First 500 packets are processed
inside the JVM, the following remain in the
kernel

us
er

 s
pa

ce
ke

rn
el

 s
pa

ce

control
service

TAMANOIR

Figure 15. NetFilter module runs in kernel space. Tamanoir s ervice runs in user user space and
controls the kernel module to switch active packets

10

4.2 Performances on cluster-based Tamanoir node

Finally, we evaluate the bene�t of distributing resour
es inside an a
tive node by designing a
luster-based

Tamanoir node. Giving �rst experiments results of LVS, we present here only performan
es a
hieved with Dire
t

Routing [22℄.

The lo
al experimental platform
onsists of 12
lients and a Tamanoir-LVS node (embedding one front-end and

three ba
k-ends) (Figure 16 show only 6
lients). Sx are a
tive pa
kets senders, Rx are re
eivers. Streams are

routed by the front-end node a
ting as a dire
tor (streams dispat
her), three ba
k-ends are atta
hed to provide

distributed resour
es. Results reported in this se
tion have been measured on a Gigabit Myrinet network.

ta
n1

ta
n2

ta
n3

fr
on

t−
en

dS1 R1

S2 R2
S3 R3

Figure 16. Platform topology with clients and a cluster-bas ed TAN

0

200

400

600

800

1000

1200

128 Bytes 1KB 2KB 4KB 8KB 32KB 64KB

M
bp

s

payload size

3 Back Ends

24 - 8/BE
18 - 6/BE
12 - 4/BE

6 - 2/BE
3 - 1/BE

Figure 17. Throughput of a monitoring service
in Mb/s a 3 nodes cluster-based TAN depend-
ing on number of streams

0

200

400

600

800

1000

1200

128B 1 2 4 8 32 64

M
bp

s

payload size (KBytes)

Heavy and light services comparison on 1 and 3 Back Ends (BE)

Monitoring service/3BE
Monitoring service/1BE

Gzip service/3BE

Figure 18. Lightweight (monitoring) and
heavy (gzip) services comparisons

Figure 17 and 18 show performan
es results a
hieved experimentally on the P3 platform. Figure 17 presents

performan
es obtained with a 3 node
luster based Tamanoir. With this
on�guration, Tamanoir supports Gbit

performan
e (1.1 Gbit for 8KB pa
kets) for a monitoring servi
e applied on 24 a
tive streams. We outpass 1 Gbits

limit due to the high bandwith provided by Myrinet networks.

Figure 18 summarises the best results. All these results shows that to exploit all the potential of the pro
essing

resour
es, our a
tive node needs to pro
ess lot of streams. But with an heavy or high-level servi
e like the Gzip

servi
e (data
ompression on the
y of the tar �le of the 2.4.19 Linux kernel sour
es), as shown in �gure 18, a
tive

node resour
es are more used and throughput is redu
ed. With this heavy servi
es a 3 ba
k end based Tamanoir

a
tive node is still able to pro
ess up to about 240 Mb/s of a
tive pa
kets.

11

5 Related work

Sin
e the proposition of a
tive networks, numerous resear
h proje
ts deal with a
tive networking te
hnology.

But on the topi
 of high performan
e a
tive networking, only few are
on
erned. In this se
tion, we attempt to

give a brief overview of the mains works in the �eld of performan
e and a
tive networks.

In the ANN proje
t [4℄, ea
h pa
ket use a referen
e to an a
tive module (
all servi
e) stored on a trusted
ode

server. Modules are dynami
ally linked and exe
uted like native
ode on the router. This te
hnique is
alled

Distributed
ode
a
hing for A
tive Networks (DAN). Besides DAN, ANN
laim that it "will" support ANTS [19℄

who is less fo
used on high performan
e but provide fa
ility to design prototypes for experiments and re�nement.

From a hardware point of view, ANN people are aware of tightly
oupling pro
essing engine and network and also

distribute
omputations over the CPUs available are important. These both last ideas gave birth, few years ago,

to an A
tive Networking Node (ANN) whi
h
an be atta
hed to an ATM swit
h ba
kplane to meet the above

requirements.

The PAN [13℄ proje
t aims at developing a prototype
alled Pra
ti
al A
tive Networking (PAN) that will

eventually address safety, se
urity, inter-operability and high performan
e. The
urrent implementation fo
us

only on high performan
e. This proje
t was wrote in C and obtain very good raw performan
es. There is two

implementations of PAN, one of these run in user-spa
e and the other one in kernel-spa
e as module. This last,

allows to saturate a Fast Ethernet link with 1,500 bytes pa
kets, with an overhead of only 13 % to pro
ess ea
h

pa
ket. Performan
e are obtained thanks to limited
opy, pa
kets pro
essing only when ne
essary and �nally native

ode.

The TAGS [20℄ works fo
us on the pa
kets demultiplexing bottlene
k. In the A
tive Networking equipment ea
h

pa
kets have to be demultiplexed not only to the network layer, but to the appli
ation level Exe
ution Environment

(EE). To speedup this demultiplexing stage TAGS implements a new a
tive pa
ket format
alled Simple A
tive

Pa
ket Format (SAPF). Measurements show that SAPF pa
kets
an be pro
essed 30% faster than regular IP

pa
kets that use the traditional ANEP header.

CANEs [14℄, whi
h stands for Composable A
tive Network Elements, is a proje
t whi
h aims to design a
oherent

ar
hite
tural framework for a
tive networking in
luding
onsistent terminology, minimum fun
tional requirements,

and interfa
e spe
i�
ations. The main goal is to provide network-based
apabilities that enhan
e the
ommuni
ation

servi
e and/or performan
e seen by users of the network with me
hanisms like rea
ting to a
ongestion, transparent

a
hing of information in network nodes, and support for multi
ast video distribution to heterogeneous end-users.

CANEs is an exe
ution environments running on NodeOS (but
urrently on an interim platform
alled Bow-

man[15℄ implementing just a subset of the NodeOS interfa
e).

The AMP[2℄ proje
t is developing a new software base that allows a
tive
ode to be exe
uted se
urely, safely

and with high performan
e. AMP system should provide a fast and lightweight exe
ution environment for A
tive

Networks nodes. By enfor
ing resour
e usage limitations, a
tive
ode
annot tamper with the rest of the a
tive

node. AMP take advantage of te
hniques and software developed by the DARPA-funded exokernel proje
t that

demonstrate physi
al resour
es may be managed by user-level appli
ations in way that allows both eÆ
ien
y and

potential for prote
tion.

The Proto
ol Boosters [5℄ proje
t aims to improve the performan
e of heterogeneous distributed
omputing

systems by improving the performan
e of the
ommuni
ation proto
ols that are used by the nodes of the distributed

systems. They
an dynami
ally avoiding any unne
essary proto
ol pro
essing and dynami
ally optimizing the

ommuni
ation proto
ol. This will give an eÆ
ient programming model for a
tive networks appli
ations.

Clara is an ar
hite
ture for a
luster based
omputing router used in the Journey network model providing

omputation as a s
alable network servi
e. A "media unit"
rossing a Clara
omputing router will be pro
essed

in fun
tion of lo
al
onditions resour
es availability, making de
ision independently of other
omputing router.

This model doesn't guarantee that ea
h "media unit" will arrive pro
essed. It's in the same spirit of best-e�ort

routing in IP networks. A media unit pro
essed or unpro
essed is determined by the IP Router Alert option.

If un-dete
ted, pa
kets are dire
tly routed by IP, else pa
kets are handed up to the Clara software for possible

pro
essing. The Clara ar
hite
ture use one PC for routing, the others linked by a SAN, are only dedi
ated for

pro
essing, with a simple round-robin dispat
hing algorithm. A prototype has been evaluated in the
ontext of

real-time trans
oding MPEG video.

While most proje
ts are software environments (ex
ept ANN) for pa
ket pro
essing on programmable routers

(whi
h are workstations that a
t like routers). Some
ompanies (like IBM, Intel, Motorola,. . .) make available

12

ommer
ially programmable pa
ket pro
essing engines for routers
alled "Network Pro
essors". These Network

Pro
essors perform pro
essing from the data link layer to the appli
ation layer. They
ome as system-on-a-
hip

designs that
ombine pro
essors, memory and IO on a single ASIC. In [21℄ they study the design of an high

performan
e a
tive router with these brand new spe
i�
s pro
essors.

6 Con
lusion

In this paper, we present our �rst step towards the design of an high performan
e software a
tive router. We

propose a new ar
hite
ture for a
tive nodes targeted to provide high performan
e support for a
tive servi
es. We

validate this ar
hite
ture by designing the Tamanoir exe
ution environment. Tamanoir supports deployment of

servi
es in user spa
e level, kernel level and distributed servi
es on a
luster. Our experiments have been deployed

on Gigabit networks. A stand-alone SMP based Tamanoir node
an support around 500 Mbit/s of bandwith for

lightweight servi
e with its multi-threaded design and servi
es support in kernel. We demonstrate the need to

deploy
luster based Tamanoir nodes to fully support a GBit network.

One of our next step
onsists of fully integrating and evaluating a
tive servi
es inside Network Programmable

Interfa
e Card (Myrinet). With this o�oad approa
h, Tamanoir should bene�t from servi
es lo
ated
losed to the

link and dire
tly exe
uted on the network
ard.

In our quest of performan
es we also want to redu
e the impa
t of ANEP pa
kets by supporting other a
tive

pa
kets format (like SAPF or
ustom format) and simple IP pa
kets requesting a
tive servi
es.

Providing performan
e in a
tive routers is also a mandatory aspe
t for high performan
e long distan
e appli
a-

tions. One of our
urrent resear
h
on
erns the deployment of a
tive networking te
hnology to the requirements

of Grid middlewares and appli
ations ([11℄).

Referen
es

[1℄ S. Alexander, B. Braden, C. Gunter, A. Ja
kson, A. Keromytis, G. Minden, and D. Wetherall. A
tive Network

En
apsulation Proto
ol (ANEP). RFC Draft, Category : Experimental, July 1997.

[2℄ AMP Proje
t. http://www.pgp.
om/resear
h/nailabs/distributed/amp.asp.

[3℄ Nanette Boden, Danny Cohen, Robert Felderman, Alan Kulawik, Charles Seitz, Jakov Seizovi
, and Wen-King

Su. Myrinet : a gigabit per se
ond lo
al area network. IEEE-Mi
ro, 15(1):29{36, February 1995.

[4℄ D. De
asper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner. A s
alable, high performan
e a
tive

network node. In IEEE Network, volume 13, January 1999.

[5℄ D. Feldmeier, A. M
Auley, J. Smith, D. Bakin, W. Mar
us, and T. Raleigh. Proto
ol boosters. IEEE Journal

On Sele
ted Areas in Communi
ations, 16(3):437{444, April 1998.

[6℄ GCJ. The GNU Compiler for the Java Programming Language. http://sour
eware.
ygnus.
om/java/.

[7℄ Jean-Patri
k Gelas and Laurent Lef�evre. Tamanoir: A high performan
e a
tive network framework. In

C. S. Raghavendra S. Hariri, C. A. Lee, editor, A
tive Middleware Servi
es, Ninth IEEE International Sym-

posium on High Performan
e Distributed Computing, pages 105{114, Pittsburgh, Pennsylvania, USA, August

2000. Kluwer A
ademi
 Publishers. ISBN 0-7923-7973-X.

[8℄ Jean-Patri
k Gelas and Laurent Lef�evre. Mixing high performan
e and portability for the design of a
tive

network framework with java. In 3rd International Workshop on Java for Parallel and Distributed Computing,

International Parallel and Distributed Pro
essing Symposium (IPDPS 2001), San Fransis
o, USA, April 2001.

[9℄ IBM. IBM Java Developer Kit for Linux. http://www.alphaworks.ibm.
om/te
h/linuxjdk.

[10℄ Java programming language. http://java.sun.
om/.

13

[11℄ L. Lef�evre, C. Pham, P. Primet, B. Touran
heau, B. Gaidioz, J.P. Gelas, and M. Maimour. A
tive networking

support for the grid. In Noaki Wakamiya Ian W. Marshall, S
ott Nettles, editor, IFIP-TC6 Third International

Working Conferen
e on A
tive Networks, IWAN 2001, volume 2207 of Le
ture Notes in Computer S
ien
e,

pages 16{33, o
t 2001. ISBN: 3-540-42678-7.

[12℄ Laurent Lef�evre and Olivier Reymann. Combining low-laten
y
ommuni
ation proto
ols with multithreading

for high performan
e dsm systems on
lusters. In 8th Euromi
ro Workshop on Parallel and Distributed

Pro
essing, pages 333{340, Rhodes, Gree
e, Jan 2000. IEEE Computer So
iety Press.

[13℄ Erik L.Nygren, Stephen J.Garland, and M.Frans Kaashoek. PAN: A High-Performan
e A
tive Network Node

Supporting Multiple Mobile Code Systems. In IEEE OPENARCH '99, Mar
h 1999.

[14℄ S. Merugu, S. Bhatta
harjee, Y. Chae, M. Sanders, K. Calvert, and E. Zegura. Bowman and
anes: Imple-

mentation of an a
tive network. In 37th Annual Allerton Conferen
e, Monti
ello, IL, September 1999.

[15℄ S. Merugu, S. Bhatta
harjee, E. Zegura, and K. Calvert. Bowman: A node os for a
tive networks. In IEEE

INFOCOM '2000, mar 2000.

[16℄ Rusty Russell. Linux Filter Ha
king HOWTO. net�lter des
ription and usage, july 2000.

[17℄ SUN. Kit de dveloppement java de sun. http://java.sun.
om/.

[18℄ David Tennenhouse and David Wetherall. Towards an a
tive network ar
hite
ture. Computer Communi
ations

Review, 26(2):5{18, April 1996.

[19℄ David Wetherall, John Guttag, and David Tennenhouse. ANTS : a toolkit for building and dynami
ally

deploying network proto
ols. In IEEE OPENARCH '98, April 1998.

[20℄ Tilman Wolf and Dan De
asper. Tags for high performan
e a
tive networks. In OpenAr
h2000, Tel Aviv,

Mar
h 2000, 2000.

[21℄ Tilman Wolf and Jonathan S. Turner. Design issues for high performan
e a
tive routers. IEEE Journal on

Sele
ted Areas of Communi
ation, 19(3):404{409, Mar
h 2001.

[22℄ Wensong Zhang. Linux Virtual Server for S
alable Network Servi
es. In Ottawa Linux Symposium, 2000.

14

