
TOWARDS ENERGY AWARE RESERVATION

INFRASTRUCTURE FOR LARGE-SCALE

EXPERIMENTAL DISTRIBUTED SYSTEMS

LAURENT LEFEVRE and ANNE-CECILE ORGERIE
INRIA, Université de Lyon, Ecole Normale Supérieure de Lyon

LIP (CNRS, ENS Lyon, UCB Lyon, INRIA)
46 Allée d’Italie, 69364 Lyon Cedex 07, France

laurent.lefevre@inria.fr - annececile.orgerie@ens-lyon.fr

December 11, 2019

Abstract

While an extensive set of research projects deal with the issue of
power-saving for battery-based electronic devices, few have an interest
in permanently-plugged Large-Scale Experimental Distributed Systems
(LSEDS). However, a rapid study shows that each computer, member of
a distributed system platform, consumes a substantial quantity of power,
especially when those resources are idle. Today, given the number of pro-
cessing resources involved in large-scale computing infrastructures, we are
convinced that we can save a lot of electric power by proposing and ap-
plying “green policies”. Introduced in this article, those policies propose
to alternatively switch computer nodes On and Off in a clever way. Based
on the analysis of some experimental large-scale system’s usage, we pro-
pose a resource-reservation infrastructure which takes the energy issue into
account. We validate our infrastructure on the large-scale experimental
Grid’50001 platform and present the energy gains obtained.

1 Introdution

For a long time, energy saving for mobile distributed systems has been a mat-
ter of concern. However, for large-scale non-mobile distributed systems, which
nowadays reach impressive sizes, it just begins to be taken into account.

At a time when Large-Scale Experimental Distributed Systems (LSEDS)
(like Grids, Clouds...) are used more and more, driven by real-world applications

1Some experiments of this article were performed on the Grid’5000 platform, an
initiative from the French Ministry of Research through the ACI GRID incentive
action, INRIA, CNRS and RENATER and other partners (http://www.grid5000.fr).
This research is supported by the INRIA ARC GREEN-NET project (http://www.ens-
lyon.fr/LIP/RESO/Projects/GREEN-NET/).

1



of increasing scale and complexity, we greatly lack studies and analyses of their
usage. Some previous works on operational grids [8] show that they are not
utilized at their full capacity. To better understand the stakes and potential
savings induced by the scaling effects, we focus on the analyses of usage and
energy of Large-Scale Experimental Distributed Systems (LSEDS).

By relying on Grid5000[1], a French experimental Grid platform, we obtain
a case study from which we are able to get a comprehensive view of our concern.
Grid5000 is an experimental testbed for research in distributed systems which
proposes 4000 processors geographically distributed on 9 sites in France. This
platform can be defined as a highly reconfigurable, controllable and monitorable
LSEDS. Utilization of Grid5000 is specific and experiment-oriented. Each user
can reserve some nodes in advance and then, during its reservation time, the
user has exclusive access on these nodes. The users can create and deploy their
own system image, collect data and reboot the nodes. The nodes are entirely
dedicated to the user during his reservation.

 0

 20

 40

 60

 80

 100

2007−01−01

2007−01−08

2007−01−15

2007−01−22

2007−01−29

2007−02−05

2007−02−12

2007−02−19

2007−02−26

2007−03−05

2007−03−12

2007−03−19

2007−03−26

2007−04−02

2007−04−09

2007−04−16

2007−04−23

2007−04−30

2007−05−07

2007−05−14

2007−05−21

2007−05−28

2007−06−04

2007−06−11

2007−06−18

2007−06−25

2007−07−02

2007−07−09

2007−07−16

2007−07−23

2007−07−30

2007−08−06

2007−08−13

2007−08−20

2007−08−27

2007−09−03

2007−09−10

2007−09−17

2007−09−24

2007−10−01

2007−10−08

2007−10−15

2007−10−22

2007−10−29

2007−11−05

2007−11−12

2007−11−19

2007−11−26

2007−12−03

2007−12−10

2007−12−17

2007−12−24

2007−12−31

 0

 500

 1000

 1500

 2000

P
e
rc

e
n
ta

g
e

 o
f 

ti
m

e

N
u
m

b
e
r 

o
f 

jo
b

s

Weeks

Distribution in time of the different resource’s states per week for Toulouse

Dead

Suspected

Absent

Work

Idle

Jobs114 resources 434 resources

Figure 1: Global weekly diagram of usage of Toulouse Grid5000 site

We analyze the node reservation traces of Grid5000 for each site over a one-
year period (the 2007 year). As an example, Figure 1 shows the usage for one
site (Toulouse). The plain line indicates the number of reservations per week
(we call a resource reservation “job”). For each week, we represent the time
during which some cores are dead : (they are down), suspected (they do not work
properly), absent (they do not answer), and working (a reservation is running).
For this site, the average percentage of work time is 50.57%. A complete analysis
of the usage of Grid5000 is available in [11]. We also see on Figure 1 that,
during some weeks, the usage of the site can be really low. However, the real
concern of such experimental platforms is to be able to support burst periods of
work and communication when needed (before specific deadlines, for large-scale
experiments, etc.).

Based on this analysis, we realize that the energy consumption can be re-
duced when the platform is not used. A framework able to control the LSEDS
nodes must deal with :

• switching OFF unused nodes;

2



• predicting node usage to switch ON the nodes required in a near future;

• aggregating some reservations to avoid frequent ON/OFF cycles.

We propose an energy-saving model applying these aspects, and we design its
implementation through the Energy-Aware Reservation Infrastructure (EARI).
We design and apply a set of “green policies”, introduced in this article, which
propose to alternatively switch computer nodes On and Off in a clever way.
Based on the analysis of some experimental large-scale system’s usage, we vali-
date our infrastructure on the large-scale experimental Grid5000 platform and
present the energy gains obtained.

This paper is organized as follows. Section 2 presents our Energy Aware
Reservation Infrastructure (EARI). We describe the prediction algorithms of
EARI in Section 3. Our green policies, and our experimental validations are
detailed in Section 4. Section 5 presents some related works, and the last Section
gives our conlusions and future works.

2 Towards an Energy-Aware Large-Scale Exper-
imental System

2.1 Architecture and context

Figure 2: Global architecture

We propose a complete framework supporting energy awareness in Large-
Scale Experimental Distributed Systems. Figure 2 presents the global architec-
ture of our model. Each user is connected to a portal to submit a reservation.
The scheduler processes the submission and validates it. Then, it manages the
resources and gives access to them to the users who have reserved them accord-
ing to the scheduler agenda. The scheduler dynamically treats the reservations
when they are submitted by the user. Energy sensors monitor energy param-
eters from the resources (which can be nodes, routers, etc.), and these data
are collected by our infrastructure. Data are used to compute “green” advices

3



which are sent to the user in order to influence his reservation choice. Our in-
frastructure also computes the consumption diagrams of the past reservations,
and it sends them as a feedback on the portal in order to expose them to users.
Last but not least, it decides which resources should be on and which should be
off.

In our context, we assume that, for each submission of a reservation, users
give their desired start time, number of resources and reservation length. When
a submission occurs, the resources manager simply checks in its agenda if it can
accept this reservation. If the reservation is acceptable, it is placed in the agenda
when it is submitted. Actually, the resource manager does no scheduling. This
submission scheme is the basic assumption of our model: the reservations are
defined in terms of both time and number of resources, and the user gives a
desired start time at the submission time.

2.2 Energy monitoring

We want to measure the power consumption (in Watts) of the LSEDS nodes
in order to modelize the link between electrical cost and applications or pro-
cesses. To measure the real consumption of some machines, we use a watt-meter
furnished by the SME Omegawatt. With this infrastructure, we can make one
measure per second for six different machines.

Figure 3: Electrical consumption of 6 nodes on the Lyon Grid5000 site

Figure 3 shows our results concerning the energy consumption on the Lyon
site. We have dynamically collected the consumption in Watts of six differ-
ent nodes representing the three hardware architectures available on the Lyon
Grid5000 site: two IBM eServer 325 (2.0GHz, 2 CPUs per node), two Sun Fire
v20z (2.4GHz, 2 CPUs per node) and two HP Proliant 385 G2 (2.2GHz, 2 dual
core CPUs per node). We can see that the nodes have a high idle power con-
sumption, that some of them reach impressive powers during boot, and that
they consume power even when shutting down.

4



These experiments represent the typical life of a LSEDS node: nodes switched
off but plugged in the wall socket, booting, having intensive disks accesses
(hdparm2), experimenting intensive high-performance network communication
(iperf3), or having intensive CPU usage (cpuburn4). We see that the cpuburn

experiment is the most consuming and the hdparm one is the least consuming.
We can also observe some peak of energy consumption during the boot and turn

off steps (due to the intense activity of some devices (fans, hard drives. . . )).
These results show the impact of node utilization on energy usage. Using this
analysis, we design an energy-aware reservation infrastructure.

2.3 Definition of the energy efficiency model

We define a reservation R as a tuple: (l, n, t0) where l is the length of the
reservation in seconds, n is the required number of resources, and t0 is the
desired start time. We denote N the total number of resources managed by the
scheduler. Therefore, we should always have n ≤ N and t0 ≥ t where t is the
actual time and l ≥ 1 to get a valid reservation. For example, in the case of
a large-scale distributed computing system, a reservation is a combination of n
nodes during l seconds starting at t0. In the case of a high-performance data
transfer, a reservation is a bandwidth portion with a size of n (n can be in Mbps
for example) during l seconds starting at t0.

Figure 4: Booting and shutting down a resource

When a reservation is accepted by the scheduler, it is written into the corre-
sponding agenda managed and maintained by each site. This agenda contains
all the future reservations. The history contains all the past and current reser-
vations. Therefore, when a reservation starts, it is deleted from the agenda and
added to the history. PI refers to the power consumption in Watts of a given
resource (it can vary from one resource to another) when it is idle. POFF refers

2hdparm is a command line utility for Linux to set and view the IDE hard disks’ hardware
parameters.

3Iperf is a commonly-used network tool to measure TCP and UDP bandwidth performance
that can create TCP and UDP data streams.

4cpuburn is a tool designed to heavily load CPU chips in order to test their reliability.

5



to the consumption in Watts of a given resource when it is off (POFF < PI).
EON→OFF (EOFF→ON ) refers to the needed energy (in Joules) for a given re-
source to switch between On and Off (respectively Off and On) modes. Figure 4
illustrates these definitions. We can roughly estimate the energy consumption
in Joules of a given reservation R = (l, n, t0):

Em(R) = l ×
n∑

i=1

Pm(i)

where Pm(i) is the mean consumption of the resource i.

2.4 Principle of the resource managing algorithm of our
model

We split our algorithm into two parts: when a reservation is submitted (sec-
tion 2.5), and when a reservation ends (section 2.6).

When a reservation arrives (R = (l, n0, t0)); at t0, we know that there will be
at least n busy resources (because of previously arrived reservations). Therefore,
first of all, we check whether this reservation is acceptable, ie. n0 ≤ N − n. If
it is not, we compute the earliest possible start time after t0 (by taking into
account the reservations which are already written down in the agenda) which
is called t1.

Then, we need to estimate different amounts of energy for the arriving reser-
vation. We estimate the energy consumed by reservation R if it starts:

• at time t0 or t1 depending of the earliest available start time;

• just after the next possible end time (of a reservation) which is called tend;

• l seconds before the next possible start time which is called tstart;

• at tslack during a slack period (time ≥ 2 hours and usage under 50%).

We will see the required prediction algorithms on the next sections. In order
to achieve these estimations, we need to compute t1 (done previously), tend (the
end time of the next reservation after which we can put R), and tstart (we need
to find the next reservation before which we can put R), and to estimate tslack
(we need to find the next slack period, see Section 3.4). Our goal is to glue
the reservations in order to avoid booting and turning off nodes, which consume
energy. Our infrastructure does not impose nor enforce any solution; it proposes
and offers several of them to the user who can choose the most appropriate one
for his reservations.

2.5 Resource allocation

In order to calculate tend, we look for the next reservation end in the agenda,
and we verify if it is possible to start R at that time (enough resources for the

6



total length). If it is not possible, we look for the next one in the agenda and
so on. We then defined tend as the end time of this reservation.

In the same way, we calculate tstart by looking for the next reservation start
time in the agenda, and we check out if it is possible to place R before (this
start time should then be at least at t + l where t is the current time, and l
is the duration of R). If the found start time does not match, we try the next
one and so on. Finally, we give all these estimations (energy estimations and
corresponding start times) to the user, who selects one of them. The reservation
is then written down in the agenda, and the reservation number is given to the
user. With this approach, the user can still make his reservation exactly when
he wants to, but he can also delay it in order to save energy. It will raise
user-awareness upon energy savings.

The heterogeneity of the resources available in large-scale distributed systems
lead to heterogeneous energy consumptions. The scheduler allocates resources
by choosing those with the smallest power coefficient. That coefficient is cal-
culated depending on the mean power consumption of the resource (computed
during reservations on a great period of time). Thus a resource which consumes
a small amount of energy will have a high power coefficient and will be cho-
sen in priority by the scheduler. This allocation policy is used when we give
resources for a reservation without constraints. Actually, when the scheduler
places a reservation just after another one (by using tend or not) or just before
another one, it allocates the resources which are already switched on (and in
priority those which have the highest power coefficient). Moreover, the user can
explicitly choose specific resources, so in that case, this policy is not applicable.

2.6 Resource release

When a reservation ends, M resources are freed. First of all, we compute the
total actual consumption of this reservation. We give this information to the
user, and we store it in the history for the prediction algorithms. Moreover,
we compute the error made when we have estimated the consumption of this
reservation with the corresponding start time: this is the difference between the
true value and the predicted one. We will use it in the next section to compute
a feedback error in order to improve our estimation algorithms.

We need to define an imminent reservation: it is a reservation that will start
in less than Ts seconds in relation to the present time. The idea is to compute Ts
such as it will be the minimum time which ensures an energy saving if we switch
off the resource during this time. Actually, we define Ts so that if we switch off a
resource during Ts seconds, we save at least Es Joules (miminum fixed amount
of energy). To this definition, we add a special time, denoted by Tr, which is
related to the resource type and “hardware resistance”. For example, mechanical
hard drives can only support a limited number of ignitions. Thus we should not
switch them off too often or too quickly. Therefore Tr reflects this concern and
differs from one resource to another. If we denote δtot = δON→OFF +δOFF→ON ,
Ts is defined by:

7



Ts =
Es − POFF × δtot + EON→OFF + EOFF→ON

PI − POFF
+ Tr

As we can see, Ts varies from one resource to another because it depends on
PI , POFF , δON→OFF , δOFF→ON , EON→OFF , EOFF→ON and Tr which depend
on the resource. We can fix Es = 10 Joules for example. We can notice that
we should have: Ts − δtot ≥ 0. We want indeed to have at least enough time
to switch off the resource and switch it on again. Now, we look for the freed
resources that have an imminent reservation. These resources are considered as
busy and are left switched on. During this active watch, we lose less than Es

Joules per resource, and then they are used again.
We look for other awake resources which are waiting for a previous estimated

imminent reservation. For these m awake resources (M minus the previous
busy ones and plus the other awake resources), we need to estimate when the
next reservation will occur and how many resources it will take. We call this
reservation Re = (le, ne, te). We can now verify if Re is imminent. If it is not
the case, all the remaining resources are switched off. If Re is imminent, we look
for min(m,ne) resources or less that can accept this potential reservation: they
are free at te for at least le seconds. We keep these resources on during Ts + Tc
seconds, and we switch off the other ones. Tc is a fixed value that corresponds to
the mean time between the user’s request and the reservation’s acceptation by
the scheduler (among other things, it includes the time to compute the energy
estimations and a minimum time to answer to the user).

At the next reservation arrival, we will compute the estimation errors we have
done, and we will use them as feedback in our prediction algorithms. Moreover,
if there are idle resources (which are switched on without any reservation), and
if the reservation which just arrived is not imminent, we switch off the idle
resources.

3 Predictions

The efficiency of our model, compared to a simple algorithm where the resources
are put into sleep state from the moment that they have nothing to do, resides
in our ability to make accurate predictions of the estimation of the next reserva-
tion (length, number of resources and start time), the estimation of the energy
consumed by a given reservation and the estimation of a slack period. However
our prediction algorithm should remain sufficiently fast and lightweight to be
applicable during reservation manager run time.

3.1 Estimation of the next reservation

First of all, we take care about the estimation of the next reservation Re =
(le, ne, te) for a given site. To estimate its start time, we calculate the average
characteristics of the six previous reservations on that site.

8



At a given time t, we denote R0, . . . , R5 the six previous reservations on this
site (with Ri = (li, ni, ti)). They are the reservationse whose start times are the
nearest to t (but not necessarily before t, scheduled reservations can be taken
into account). These reservations are ordered by start time (R0 is the oldest).

The estimation of the start time is done by calculating the average of the
five intervals between the six previous start times. This average is added to t
with the feedback to obtain the estimation:

te = t+ 1/5[t5 − t0] + t feedback

We proceed similarly to estimate the next reservation’s length and required
number of resources. If we obtain te < t (because of the feedback), we set
te = t+ 1. This method, based on a short past history window frame, allows a
quick adaptation to the workload.

The accuracy of the next reservation’s prediction is crucial for our power
management. If we make too many wrong estimations, resources wait for im-
minent reservations that do not arrive, and so they waste energy or they are
switched off just before the arrival of an imminent reservation, and so they waste
the energy consumed by a halt-and-boot cycle.

3.2 Feedback on the next reservation’s estimation

The feedback is used to improve the energy efficiency of our approach. As we
have seen before, the estimation errors are penalizing in terms of consumed
energy. We need to obtain accurate predictions.

At each reservation’s arrival, we compute the estimation errors we have
made. More precisely, at a given time t, the reservation R = (l0, n0, t0) arrives.
Re = (le, ne, te) is the last reservation that we have predicted. We denote
Errl = (l0 − le): the error done by estimating the length of the next reservation,
Errn = (n0−ne) and Errt = (t0−te) the errors done by estimating the number
of resources and the start time of the next reservation respectively.

Basically, if we predict the reservation too early, then we have Errt > 0.
If we add Errt to the next predicted start time, we delay the predicted start
time by Errt seconds, and that is exactly what we want to do. Then we denote
Errl(a), Errl(b) and Errl(c) the three last errors for the length of a reservation.
n feedback and t feedback are similar to l feedback:

l feedback = 1/3[Errl(a) + Errl(b) + Errl(c)]

3.3 Estimation of a reservation’s energy consumption

This estimation takes into account the user, the resource type and all the char-
acteristics of the reservation R = (l, n, t). The assumption made here is that
each user has almost the same usage of the resources. What we really estimate
is the average power during working time per resource for each different type of
resource (different architectures for example).

9



3.4 Slack periods

A slack period is a period longer than two hours with a usage percentage of
the platform inferior to 50%. Typically, such periods happen during the night.
We chose two hours because it is just a bit longer than the average length of
a reservation on Grid5000 (see [11]). Therefore a lot of reservations can take
place during such a period, in terms of length. To estimate when the next slack
period will occur, we use the values of the three previous days. If there was no
slack period during the three previous days, we estimate that there will be no
slack period that day.

To be really complete, our model should include the energy consumption of
the cooling infrastructure proportionally distributed on each resource. Actually,
Preal(typek, Ra) (the real average power for the reservation Ra for a resource
which have a typek type) would include a fraction of the average power con-
sumed by the cooling infrastructure during the duration of the reservation Ra

proportionally to its heat production. However, such a fraction can be difficult
to estimate, which is why most power-management systems do not take the
cooling infrastructure into account. In [11], we have evaluated our prediction
algorithms, and we have seen that in 70% of the cases on average, we take the
good decision (to switch off the nodes or to let them on).

4 Energy gains for current and future green large-
scale experimental distributed systems

To evaluate EARI, we conduct experiments based on a replay of the 2007 traces
of the Grid5000 platform (these traces have been studied in [11]). Therefore, we
move the reservations on a time scale by respecting several policies. Our replay
mechanism works as follow: each reservation is treated when its submission time
comes, so we do not need an arrival law for the reservations. We have a timer
that simulates the running time of the experiment and at each second, we look
into the log database to see if there is a new event, and we launch the algorithm
associated to it. The events are: a reservation submission, a reservation start,
a reservation end or a dead/absent/suspected resource (we put into the agenda
that this resource is not available for an undetermined time).

4.1 Green Policies of EARI

We design six policies to conduct our experiments:

• user : we always select the solution that fits the most with the user’s
demand (the date asked by the user or the nearest possible date);

• fully-green: we always select the solution that saves the most energy
(where we need to boot and to shut down the smallest number of re-
sources);

10



• 25%-green: we process 25% of the submission, taken at random, with the
previous fully-green policy and the remaining ones with the user policy;

• 50%-green: we process 50% of the submission, taken at random, with the
fully-green policy and the others with the user policy;

• 75%-green: we process 75% of the submission, taken at random, with the
fully-green policy and the others with the user policy;

• deadlined : we use the fully-green policy if it doesn’t delay the reservation
from the initial user’s demand for more than 24 hours, otherwise we use
the user policy.

These policies simulate the behavior of real users: there is a percentage of
“green” users who follow the advice given by EARI. Maybe they do not want to
delay their reservation for too long, as in the deadlined policy. Some users do not
want to move their reservation even if they can save energy by doing this; this is
the user policy. The fully-green policy can illustrate the case of an administrator
decision: the administrator always chooses the most energy-efficient option.

4.2 Validations on the replay of the Grid5000 traces

On the four following diagrams (Figures 5, 6, 7 and 8), we show the consumption
with EARI in percentage compared with the consumption when all the nodes
are always On (current case). These consumptions are computed by using the
values found in Section 2. In this previous section, we have measured that
Pidle = 190 Watts. Here, we will propose three different Pidle: 100, 145 and 190
Watts in order to anticipate some decrease in consumption in idle state mode.

The graphs present, for each Pidle, the results for the six different policies in
order to compare their energy savings. We fix Ts = 240 seconds for these four
diagrams (Figures 5 and 7). We also represent the ideal lowest bound which we
called “all glued”. It is an unreachable ideal case where we could glue all the
reservations: they are all put one after the other, and the resources are switched
off the rest of the time. In that case, we do not need any prediction, and thus
we cannot make prediction errors. This ideal case is not reachable because it
assumes that we know all the reservations in advance, yet the future is never
known!

The prediction errors occur when we fail to predict an imminent reservation
or when we predict an imminent reservation that does not exist. In the first
case, we switch off resources that we will need in less than Ts seconds, so we
lose energy. In the second case, we let some resources idle during Ts but they
are useless, and they will be switched off after Ts seconds of inactivity.

Figure 5 presents the case of the Rennes Grid5000 site. As expected, in
the three cases, the fully-green policy consumes less energy by about 5%. As
expected too, the user policy consumes the most. We also notice that the
deadlined policy is almost equivalent to the 50%-green one in terms of energy
consumption. We should notice that in the three cases, as Pidle varies, the

11



“100%” varies also: it corresponds to a different amount of energy in the three
cases. Indeed, this “100%” is computed as follows: the time spent to work times
PON plus the time spent idle times Pidle. The times do not change between the
three cases, but Pidle does.

Compared to other Grid5000 sites, Rennes (Figure 5) supports a large set of
long reservations. Thus the reservations are hard to move after or before other
reservations. In this case, we see that our fully-green policy consumes the less
and is really near the all glued bound, so our prediction models are efficient and
our fully-green policy too. Our prediction algorithm takes the right decision (to
keep the resources on or to switch them off after the end of a reservation) in
70% of the cases on average.

Aside from that, we see that sometimes our 75%-green policy consumes more
than the 50%-green one. This is due to the random factor: we can move a small
reservation that will prevent us from moving a big one at this place or that will
block several others. This behavior is not energy-efficient. Therefore adding
randomness does not necessarily lead to decreasing the energy consumption.

Figure 5: Energy consumption

Policy Delayed res. Mean delay
25%-green 44% 9 h.
50%-green 62% 9 h.
75%-green 81% 8 h.
fully-green 97% 7 h.
deadlined 73% 4 h.

Figure 6: Statistics of delayed reserva-
tions

Results of EARI for Rennes Grid5000 site with Ts = 240 s.

Figure 6 presents the average time that we have delayed the reservations (res.
stands for reservation) and the percentage of delayed reservation in relation with
the start time wished by the user. For example, the user policy does not delay
any reservation (0% of delayed reservation and 0 hours for the mean delay time).
These values does not depend on Pidle, but they depend on Ts, so we fix Ts = 240
seconds as for the previous diagram (Figure 5).

The percentage of delayed reservations for the 25%-green policy is not 25%
because of the reservations that we move. Indeed, they can take the place of
the reservations we will not move (the 75% that should follow the user policy),
so these reservations are put at the nearest date to the wished start time. We
observe the same phenomenon with the 50%-green and the 75%-green policies.
We see on Fig. 6 that in the case of Rennes, the mean delay times are really
short. Compared to the cluster size (714 resources), the reservations are not
really big in terms of number of resources (55 on average), so the reservations
are easier to move.

The diagram (Figure 7) presents the example of Sophia. It also confirms
the energy efficiency of our fully-green policy because it is the most efficient for

12



Figure 7: Energy consumption

Policy Delayed res. Mean Delay
25%-green 40% 8 h.
50%-green 60% 7 h.
75%-green 78% 14 h.
fully-green 94% 9 h.
deadlined 71% 5 h.

Figure 8: Statistics of delayed reserva-
tions

Results of EARI for Sophia Grid5000 site with Ts = 240 s.

different types of workload over a great period of time. We notice that, with
our fully-green policy, we can save several more percentage points. These points
represent a huge amount of energy at the scale of an entire cluster for a whole
year.

As in the other examples, we see on Figure 8, for the case of Sophia, that
increasing the number of delayed reservations does not necessarily increase the
time during which they are delayed. Indeed, the 40% of delayed reservations
for the 25%-green policy are delayed by one more hour than the 60% of delayed
reservations for the 50%-green policy. We have conducted these replays on four
clusters’ traces studied previously (Fig. 9). These four examples represent four
different workloads over a one-year period. In all the cases, our fully-green policy
is the best one.

Figure 9: Energy consumption of EARI for 4 Grid5000 sites with Ts = 240 s.
and Pidle = 190 W.

We have analysed the impact of Ts on the consumption. We can indeed
change Ts to be more reactive: the resources have more idle time after the
reservations to wait for the arriving imminent reservations. Thus, Ts will just
be the time that the resources will wait for a reservation after the end of a
reservation if our prediction algorithm has predicted an imminent reservation.

13



One can wonder if these switching on and off are not prejudicial to the
nodes. Actually, they are already switched off and on at the beginning of each
reservation since users can deploy our own image on the nodes of Grid5000. At
the end of the reservations, they are rebooted on the standard image. We have
seen that all the green policies are always more energy efficient than the user
policy. All these results show that EARI can cause significant energy savings,
even for the future Grids. Indeed, even 1% at the scale of a site and over a one
year period represents a large amount of energy (see [12]). An extrapolation
to the whole Grid5000 platform shows that for 2007, we could have saved 52%
of the present consumption with our fully-green policy. This represents the
consumption of 600 inhabitants for one year.

5 Related works

Although energy has been a matter of concern for sensor networks and battery
constrained systems since their creation, energy issues are recent for full-time
plugged systems. A first problem that occurs is how to measure the consump-
tion. We have considered an external watt-meter to obtain the global consump-
tion of a node. A different approach consists of deducing it from the usage of
the node components, by using event monitoring counters [10], for example. A
lot of other works on server power management based on on/off algorithms has
been done [13], [3]. Some take into account thermal issues [2], [13]. The main
issue in that case is to design an energy-aware scheduling algorithm with the
current constraints (divisible task or not [2], synchronization [9], etc). Some
algorithms include DVFS (Dynamic Voltage Frequency Scaling) techniques [9],
[7] and some do not [3]. Although we are fully aware that such techniques will
be available on all processors in a near future, our work does not include this in
the first step presented here. Such techniques are indeed difficult to use in the
presence of a processor and user heterogeneity especially if we want to design
a centralized resource management algorithm. Virtualization seems to become
an other promising track [6]. We have not yet spoken about network presence.
A lot of works has also been done on the network level to reduce the consump-
tion of Ethernet cards and switches’ ports by adaptively modifying the link rate
[4] or by turning off the ports [5]. The problem of ensuring network presence
becomes more obvious with such objectives.

6 Conclusion and future work

This paper presents the first step of our work, whose goal is to better under-
stand the usage of Large-Scale Experimental Distributed Systems and to pro-
pose methods and energy-aware tools to reduce the energy consumption in such
systems. Our analysis has provided instructive results about this, using the ex-
ample of Grid5000. Then, we have proposed an energy-aware model to reduce
the global consumption of a large-scale experimental Grid. This infrastructure

14



is efficient and can be easily implemented and deployed. We have presented our
results which validate our energy-aware reservation model.

We are currently working on tools, portals and frameworks proposing these
results in a real-time manner to users and grid middleware. We are working
on such a tool that we will integrate to the Grid5000 website. We plan to
make further experiments to fully validate our infrastructure and to enhance
our prediction algorithm. We also plan to make the same experiments with the
whole grid traces including the grid reservation constraints (on several sites at
the same time). We will study the possibility to move reservations from one site
to another (according to external temperatures parameters for example). Our
model is generic enough to be adapted to other infrastructure, so we are looking
for logs of production/operationnal platform to validate our infrastructure in a
different context.

Our long term goal is to incorporate virtualization and DVFS techniques
in our infrastructure with the objective to save more energy without impacting
performances. Virtualization could also solve the problem of ensuring network
presence and answering basic requests from the monitoring tools of large-scale
distributed systems or dealing with the high-performance data transport sys-
tems.

References

[1] F. Cappello et al. Grid’5000: A large-scale, reconfigurable, controlable and
monitorable grid platform. In 6th IEEE/ACM International Workshop on
Grid Computing, Grid’2005, Seattle, Washington, USA, Nov. 2005.

[2] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers. In SOSP
’01: 18th ACM symposium on Operating systems principles, pages 103–116,
New York, NY, USA, 2001. ACM.

[3] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In ISCA ’07: Proceedings of the 34th annual in-
ternational symposium on Computer architecture, pages 13–23, New York,
NY, USA, 2007. ACM.

[4] C. Gunaratne, K. Christensen, and B. Nordman. Managing energy con-
sumption costs in desktop pcs and lan switches with proxying, split tcp
connections, and scaling of link speed. Int. J. Netw. Manag., 15(5):297–
310, 2005.

[5] M. Gupta and S. Singh. Dynamic ethernet link shutdown for energy con-
servation on ethernet links. Communications, 2007. ICC ’07. IEEE Inter-
national Conference on, pages 6156–6161, 24-28 June 2007.

[6] F. Hermenier, N. Loriant, and J.-M. Menaud. Power management in grid
computing with xen. In XEN in HPC Cluster and Grid Computing Envi-

15



ronments (XHPC06), number 4331 in LNCS, pages 407–416, Sorento, Italy,
2006. Springer Verlag.

[7] Y. Hotta et al. Profile-based optimization of power performance by using
dynamic voltage scaling on a pc cluster. IPDPS 2006, 2006.

[8] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters. How are real
grids used? the analysis of four grid traces and its implications. In 7th
IEEE/ACM International Conference on Grid Computing, Sept. 2006.

[9] R. Jejurikar and R. Gupta. Energy aware task scheduling with task syn-
chronization for embedded real-time systems. In Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, pages 1024–1037.
IEEE, June 2006.

[10] A. Merkel and F. Bellosa. Balancing power consumption in multiprocessor
systems. SIGOPS Oper. Syst. Rev., 40(4):403–414, 2006.

[11] A.-C. Orgerie, L. Lefèvre, and J.-P. Gelas. Chasing gaps between bursts :
Towards energy efficient large-scale experimental grids. In PDCAT 2008 :
The Ninth International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies, pages 381–389, Dunedin, New Zealand,
Dec. 2008.

[12] A.-C. Orgerie, L. Lefèvre, and J.-P. Gelas Save watts in your grid: Green
strategies for energy-aware framework in large-scale distributed systems. In
14th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pages 171–178, Melbourne, Australia, Dec. 2008.

[13] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S. Chase.
Balance of power: Dynamic thermal management for internet data centers.
IEEE Internet Computing, 9(1):42–49, 2005.

16


