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Abstract

In the last five years, Distributed Shared Memory (DSM)
systems have received increasing attention. Indeed, by re-
leasing the programmer from the management of inter-pro-
cess communications, they offer a very intuitive and easy-
to-use programming paradigm. In compensation, such sys-
tems often appear, from the programmer point of view, as
a “black box” since no information about the actual com-
munications is available. Consequently, in the absence of
visualization and monitoring tools, optimizing, debugging
or evaluating the performance of DSM applications is very
difficult. In that framework, this paper proposes an original
monitoring model based on two new concepts: meta-objects
and event manager processes. This model constitutes the ba-
sis of an actual monitoring system, called DOSMOS-Trace,
that has been designed and implemented to monitor appli-
cations developed on top of the DOSMOS DSM system'.
This monitoring environment is analysed in terms of func-
tionalities, protocols and user interface. Experiments show
the efficiency and the robustness of the underlying model
as well as the pertinence, for the programmer, of such a
monitoring tool.

Keywords: distributed shared memory, monitoring, per-
formance evaluation, program visualization.

1 Introduction

In the last five years, Distributed Shared Memory (DSM)
systems have received increasing attention. Indeed, by re-
leasing the programmer from the management of inter-pro-
cess communications, they offer a very intuitive and easy-
to-use programming paradigm. In compensation, such sys-
tems often appear, from the programmer point of view, as
a “black box” since no information about the actual com-
munications is available. Consequently, in the absence of
visualization and monitoring tools, optimizing, debugging

IDOSMOS is the acronym of Distributed Objects Shared MemOry
System. The DOSMOS system has been developed on top of PVM in
our laboratory.

or evaluating the performance of DSM applications is very
difficult.

Until now, most of monitoring tools have been designed
for message passing applications. However, in spite of ev-
ident points of convergence, monitoring DSM applications
differs from monitoring message-passing applications because
pertinent information to be traced is clearly different. In
that framework, this paper proposes an original monitoring
model based on two new concepts: meta-objects (i.e. specific
distributed data-structures designed for the storage of mon-
itoring data) and event manager processes (i.e. specialized
distributed processes in charge of the on-the-fly collection
and management of execution traces).

This paper is organized as follows. In section 2, we recall
some basic points about DSM systems and analyse the func-
tionalities that should be provided by DSM-oriented moni-
toring tools. Previous works on parallel monitoring are stud-
ied in section 3. Then, the DOSMOS system is briefly pre-
sented in section 4. The basics of the monitoring model we
propose are described in section 5 while protocols are anal-
ysed in section 6. Section 7 presents the DOSMOS-Trace
monitoring environment which implements the concepts in-
troduced in this paper. An analysis of the intrusion gener-
ated by the monitoring is proposed in section 8. Section 9
discusses the pertinence and the effectiveness of the model
presented in this paper. Finally, section 10 concludes this
paper and analyses the main perspectives of this work.

2 Monitoring DSM applications

2.1 \What is a DSM System?
Basically, Distributed Shared Memory systems (DSM) al-

low, above a distributed memory architecture, the manipu-
lation of shared data in a transparent way. In other words,
in such systems, a programmer can make the processes of his
application share data without explicitly programming the
inter-process communications which are actually handled by
the system.

Two basic approaches have been studied:

virtual sharing of memory pages: the environments of
this type [Li88, LP92, FP89, CBZ91, HS92] merge var-
ious memory pages distributed in the system into a
single address space.

virtual sharing of variables or objects: such systems
[RAK89, TKB92, CG&9, BL.94, BL96], more program-
ming oriented, allow the user to define shared variables
(or shared objects for object-oriented systems) which



will be accessible in a transparent way from any node
in the network.

The purpose of this paper is not to discuss the respective
advantages and drawbacks of these two kinds of systems.
Indeed, from the programmer point of view (and thus for
the monitoring point of view), all these systems implement
the same basic functionalities, ¢.e. transparent manipulation
of shared data.

2.2 Monitoring DSM applications

The goal of any monitoring tool is to collect information
about the execution of the application (called execution tra-
ces) and to display it in a pertinent way in order to allow the
programmer to understand the behaviour of his application.
In the framework of DSM applications, execution traces can
be grouped in two classes:

Information about the DSM system administration:
creation, destruction, migration of processes and, to
speak more generally, of system “entities” (e.g. group
of processes for the DOSMOS system (cf. section 4)).

Information about the shared data: duplication of sha-
red data (evolution of the number of copies distributed
in the system), migration, number and types of ac-
cesses (e.g. read-only, exclusive write, concurrent write,
...), alist, for each shared datum, of the processes that
frequently modify it, etc.

Analysing such traces will allow (section 7) the program-
mer to detect and correct most critical situations, e.g.:

bottlenecks: a bottleneck occurs when a shared datum is
too frequently accessed in an exclusive way. A possi-
ble solution consists in splitting the shared datum into
several sub-variables in order to distribute the accesses
over several objects;

ping-pong effects: this occurs when a variable is, for a
long while, concurrently accessed by two, or more, pro-
cesses. Possible solution: splitting of the variable;

no-sharing: when a variable is declared as shared but only
one process actually accesses it. Solution: declaration
of the variable as a local variable in order to circumvent
the DSM system layer.

specific features: for instance, in the DOSMOS system, a
bad group structure.

The purpose of this paper is twofold: first, proposing
and studying a software architecture able to efficiently im-
plement such monitoring functionalities (section 5); second,
illustrating the relevance of this model by analysing the fa-
cilities provided by the DOSMOS-Trace environment which
has been designed and implemented according to these prin-
ciples (section 7).

3 Previous Works

Basically, monitoring an application requires dealing with
three main problems: first, the collection of execution traces;
second, the management and storage of the traces; finally,
the analysis and visualization of the traces. Until now,
most monitoring tools have been designed to trace message-
passing applications. In that framework, the trace collection

is usually performed by instrumenting the application code
in order to monitor the most important events occurring
during the execution. The instrumentation can be placed at
various levels:

e operating system level (e.g. Tapestry [MR90]): tracing
of events like communications, creation of processes,
memory accesses, system calls;

e run-time environment level: (e.g. IPS [MY87]): en-
tries into and exits from parallel sessions, use of barri-
ers, procedure calls;

e application level (e.g. IVE [FLK191] or PVVT [Str90]):
working at this level allows focusing the monitoring on
the most interesting parts of the source code. The sys-
tems of this type are all based on the same principle:
inserting additional code into the user program in or-
der, as previously, to trace the most important events.

Once the traces are collected, it is necessary to manage
them, to organize them in the memory. On the other hand,
post-mortem analysis requires the storage of traces on disk.
Though a few monitoring tools (e.g. SIEVE [SG92] or The
Belvedere system [HC87]) implement database techniques,
most monitoring systems use “ordinary” files. Recently, in
order to increase the scalability and the efficiency of mon-
itoring tools, some works (e.g. PIMSY [TV94a, TV94b])
have proposed the use of distributed trace files. The DOS-
MOS-Trace system lies within this approach.

Last point: the visualization of traces. Basically, all sys-
tems allow the visualization of inter-processes communica-
tions [KS93]. Furthermore, each system proposes its own
specific features: hierarchical visualization (i.e. grouping of
processes), performance analysis, traffic analysis, processors
activity,. . .

DSM-oriented monitoring tools are not over-abundant.
Most tools have been designed for virtual shared memory
systems (i.e. page-based systems (section 2.1)). In that
framework, attention has mainly been focused on system
events: accesses to pages[F.de93], false sharing, cache misses.
However, for the basic programmer, such information is very
difficult to use (e.g., what measure is to be taken if a page
is over-used 7). In other words, such monitoring systems
provide pertinent data for DSM system designers, but not
for end-users.

Nevertheless, some works have proposed focusing on high-
er-level features. Thus, Brorsson and Strenstrom [BS92],
propose an analysis tool based on the study of four pa-
rameters: the spatial granularity, the degree of sharing, the
access mode and the temporal granularity. These param-
eters allow the comparison of various coherence strategies
in order to choose the most pertinent one (for the target
application. ..). SHMAP [DBKF90] provides a visualiza-
tion of memory access patterns, cache strategies and pro-
cessor assignment. In a different context, designed to trace
applications developed on top of shared-memory multipro-
cessors, Robinson, David and Enbody [RCE92] propose the
observation of causal dependencies between events. In the
same framework, [LMCF90] implements a specialized li-
brary in which every access to a shared data is assigned
a logical sequence number used to infer a partial ordering
of the execution. MTOOL [GH91]) tries to isolate memory
bottlenecks by comparing the actual execution with an ideal
execution performed on a perfect shared memory machine.

However, most of these approaches suffer from important
drawbacks. First, most of them provide information hardly



usable by the end-user. Second, tools designed to moni-
tor shared-memory multiprocessors use specific features pro-
vided by these machines and so are not portable. Thus, like
most message-passing monitoring tools, MPTrace [EKKI90]
instruments the application code. However, this is not real-
istic for software DSM systems. Indeed, no internal informa-
tion is available at the application level, e.g. it is impossible,
from the application, to know where a shared variable is lo-
cated, which process manages it, etc. So, working at the
application level would require a complete modification of
the interface between the DSM system and the applications,
which would deeply affect the actual behaviour of the ap-
plications. Finally, most existing systems (and specifically
DSM-oriented systems) are intrusive (e.g. systems instru-
menting the DSM management routines) and not scalable
(e.g. systems using a centralized trace file).

4 The DOSMOQOS System

The DOSMOS-Trace monitoring environment (section 5)
has been designed to monitor applications programmed on
top of the DOSMOS DSM system developed in our labora-
tory. The purpose of this paper is not to study this DSM
system (see e.g. [BL94, BL96]). However, to better under-
stand the functionalities provided by the DOSMOS-Trace
environment, it may be necessary to say a few words about
the DOSMOS system.

DOSMOS is a variable-oriented DSM system (section 2.1)
developed on top of PVM. The user can declare either basic
type variables (e.g. integers, floats,...) or arrays that will
be split into several “system objects”. Various splittings
are provided: by row, by column and by block. Basically, a
DOSMOS application is composed of two kinds of processes:

Application Processes (AP) which execute the user’s co-
de;

Memory Processes (MP) which manage the shared vari-
ables and handle the access requests issued by Appli-
cation Processes.

To avoid expensive synchronizations and useless com-
munications which break down the efficiency of the appli-
cations, DOSMOS allows grouping together the processes
which actually share a common set of variables. These
groups can be hierarchically structured into groups and sub-
groups. Furthermore, to maintain the coherence of the sha-
red data, the DOSMOS system implements a weak consis-
tency protocol called release consistency. This protocol is
based on two primitives: acquire which allows obtaining an
exclusive access to a variable and release which unlocks this
variable (for a complete discussion on consistency protocols,
see [RM93]).

Though Application Processes and variables can be struc-
tured in groups, any shared variable is accessible from any
Application Process. Link Processes (LP) are specialized
MP devoted to inter-group operations on shared variables.
Thus, thanks to LPs, an Application Process can access vari-
ables managed by other groups than its own. However such
inter-groups accesses are, of course, more expensive than
intra-group accesses. Figure 1 shows an example of software
configuration including 6 APs, 3 MPs and 2 LPs.
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Figure 1: DOSMOS system: an example of software config-
uration with two groups and three objects A, B and C'

5 A Model for DSM Application Monitoring

5.1 Trace Detection and Collection: Event Man-
ager Process

As previously discussed, instrumenting the user’s code is not
realistic. Consequently two approaches are possible: first,
modifying the DSM code, t.e., in the DOSMOS context,
modifying the code of the memory processes (MP). This ap-
proach presents important drawbacks: as in any DSM sys-
tem, the whole efficiency of DOSMOS relies on the memory
processes. Thus, loading MPs with the monitoring would
deeply affect the behaviour of the system. So, in order to
minimize the monitoring intrusion, we propose to introduce
a new kind of system processes called Event Manager Pro-
cesses (EMP). An EMP is linked to one or more memory
processes. Once an MP detects an event, it sends a mes-
sage to the EMP it depends on. EMPs are in charge of
the whole management of the execution traces. Protocols
defining the coordination procedures between memory pro-
cesses and EMPs are described in section 6. This approach
presents important advantages. First, it minimizes the work
requested from MPs, and consequently, the intrusion due to
monitoring? . Furthermore, in the case of post-mortem uti-
lization, traces have to be stored on disk. However, as traces
are managed by EMPs, which are distributed in the whole
network, the storing on disk is not performed by a single pro-
cess but by all the EMPs, which is clearly more scalable and
efficient. The scalability of the system can even be increased
if several distributed trace files, located on several disks, are
used. In fact, the best (but the most expensive. .. ) solution
is to attach a local disk to each processor on which an EMP
runs. Indeed, by increasing the 1/O bandwidth, such an ar-
chitecture allows reducing the bottleneck constituted by the
transfer of traces to disk. Figure 2 shows an example of the
monitoring environment. This configuration uses three pro-
cessors, two logical groups and two shared variables A and
B.

Finally, experimentally it appears that tracing realistic
applications generates a huge amount of traces which affects
the intrusion. That is why, to reduce the volume of traces,
the DOSMOS-Trace system allows the user to specify which
information he is interested in.

2This intrusion will be even reduced if EMPs are located on ded-
icated processors (in order not to “steal” CPU time from memory
processes).



5.2 Trace Management: the Meta-Object Concept

In contrast to post-mortem analysis, on-line monitoring tools
require keeping execution traces in memory. To manage
these traces, we propose to introduce new data structures,
called meta-objects. A meta-object is a tuple (record) with
as many fields as different monitoring informations.

However, in the DOSMOS system, for efficiency pur-
poses, a variable can be duplicated, ¢.e. several read-only
copies of a variable can be distributed (within the group of
processors sharing the variable). Therefore, it is necessary
to distinguish between two types of meta-objects:

a primary meta-object is attached to each shared vari-
able. It contains information about the variable such
as the number and the type (read, write, acquire) of
the accesses performed on the variable. It also main-
tains the list of the processes that recently accessed the
variable, the origin (local, intra-group, inter-group)
and the characteristics of the accesses they requested
(i.e. type (read/write/acquire)). This information is
very useful to analyse the behaviour of the applica-
tion and to propose optimizations. The primary meta-
object of a variable is managed by the EMP monitoring
the MP owner of the variable.

secondary meta-objects are attached to each copy of a
shared variable. Because a copy can only be accessed
in a read-only fashion, a secondary meta-object does
not have to store as much information as a primary
meta-object does. In practice, secondary meta-objects
record the identification of the MP that owns the copy,
the identification of the EMP that manages the pri-
mary meta-object and the number of read operations
performed on this copy. A secondary meta-object is
managed by the EMP attached to the MP owner of
the copy.

Secondary meta-objects allow the user to know the ac-
tual distribution of the read accesses among the processes.
This information is important because it deals with the
group structure of the application and with the efficiency
of the implemented consistency protocol. Indeed, to be ef-
ficient, DSM applications should perform as many local ac-
cesses as possible (because remote accesses are more expen-
sive).

Remark: write accesses require bringing invalidation pro-
tocols into play. These protocols are triggered by the Mem-
ory Process owner of the variable. This Memory Process is
connected with the EMP which manages the primary meta-
object. Consequently, all the write accesses are traced in
this primary meta-object.

5.3 Analysis and Visualization of Execution Traces

Whether they work in an on-line or post-mortem fashion,
analysis tools must interact with EMPs which are the only
processes able to access monitoring data. This argues for
implementing a client-server architecture in which EMPs act
as servers and tools as clients.

The DOSMOS-Trace system implements the following
approach (figure 3): a Visualization Process (VP) is started
at the beginning of the execution (on-line monitoring) or af-
ter the execution (post-mortem analysis). The user submits
queries to this process which passes them to all the EMPs
concerned. These latter return the requested information
to the VP which is in charge of the fusion of these data.
Finally, the VP displays the results.

Group 1

Group 2

Figure 2: DOSMOS-Trace: example of monitoring environ-
ment

6 Implementation and System Architecture

6.1 Meta-Objects

As described in section 5.2, meta-objects are designed to
store and manage the traced information in memory. How-
ever, as several copies of the same variable can be distributed
in the network, several kinds of meta-objects must be dis-
tinguished.

Thus, in the DOSMOS-Trace system, a primary meta-
object is associated with the main copy of a variable®. This
meta-object contains general information such as:

e Variable identification (name, system identication)

e Group: this field contains the identification of the group
the shared variable belongs to. It is used to analyse
and visualize the group structure.

e Number of copies of the variable distributed in the
system

e Memory process owner of the variable

e Number of read operations performed on this main
copy

e Total number of read accesses performed on all the
copies (see below)

o Number of write accesses

e Number of acquire and release operations
e List of last acquire operations

e List of last write operations

e List of delayed acquire operations

3In the DOSMOS system, a shared variable is managed by one
Memory Process (Distributed Static Owner protocol ([LH89])). This
Memory Process controls the duplication of the shared variable, han-
dles the coples invalidations and manages the write accesses.
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Figure 3: DOSMOS-Trace: the Visualization Process (VP)
communicates with all the Event Manager Processes dis-
tributed in the network.

These last three lists store triplets containing the identi-
fier of the Application Process from which the operation was
issued, the identifier of the Memory Process that received
this query and the group the Application Process belongs
to.

Variable copies are monitored using secondary meta-obj-
ects. A secondary meta-object is attached to each copy of a
variable. It contains the following information:

e Variable identification

e Memory process owner of this copy?

o EMP which manages the primary meta-object

e Number of read operations performed on the copy

Secondary meta-objects permit a very accurate view on
the execution. More precisely, secondary meta-objects allow
knowing the actual distribution of the read accesses among
the processes. This information is important because it con-
cerns the group structure of the application. Indeed, the
efficiency of DSM applications is largely determined by the
ratio of the number of local accesses to the number of re-
mote accesses”. So, analyzing the read access distribution is
extremely important to understanding the behavior of DSM
applications well.

Moreover, using secondary meta-objects allows the EMP
managing the primary meta-object to be discharged from
the management of the traces generated by the copies. As
a consequence, it increases the scalability of the monitoring
system (both from a CPU point of view and an I/O point
of view (if, of course, EMPs use several disks)).

6.2 System Architecture

Figure 2 shows an example of process configuration during a
monitored execution. This architecture follows a few rules:

e One Event Manager Process at most can be run on
One pProcessor;

4This information is mandatory because an EMP can monitor sev-
eral Memory Processes (see section 6.2).
SRemote accesses are much more expensive.

e Each EMP must be connected to at least one Memory
Process;

e A Memory Process sends its trace information only to
its dedicated Event Manager Process;

e A Memory Process must deal with at least (and even-
tually more than) one Application Process;

An Application Process communicates with only one
Memory Process.

Event Manager Processes can switch between two modes.
During execution, EMPs receive messages from the mem-
ory processes concerning the various operations performed
on the shared objects. They store these traces in memory
(meta-objects) and/or on disk (trace files). At the end of
the execution, EMPs remain alive in order to answer to the
queries issued by the user.

6.3 Protocols

This section describes the protocols implemented for passing
traces information from MPs to EMPs.

During a variable access, two kinds of memory processes
must be distinguished:

Primary Memory Process (PMP): the Memory Process
that owns the requested variable;

Secondary Memory Process (SMP): any Memory Pro-
cess that received an access request from one of its
Application Processes but does not own the requested
variable. It possibly has one copy of that variable.

The management of shared memory is based on four
standard operations: write access, read access, acquire and
release.

6.3.1 Write Operation Protocol

The protocol used for a write access is the simplest one. Two
cases are possible:

Local write access: (figure 4.a) The PMP directly receives
the AP write request (1) ; it modifies the variable and
informs its EMP (2) in order to store the operation on
disk and update the meta-object.

Remote write access: (figure 4.b) The SMP receives the
AP write request (1), informs its EMP (2) to store the
operation on disk and forwards the request to the PMP
of the variable (3) which performs the write access.
Then the PMP sends a message to its EMP (4) to

update the variable’s primary meta-object.

6.3.2 Read Operation Protocol

Local read access: (figure 5.a) The MP receiving the AP
read request (1). It owns either the variable itself or
a valid copy of this variable. It then returns the re-
quested value to the AP (2) and informs its EMP (3)
to store the operation on disk and update the meta-
object.

Remote read access: (figure 5.b) In this case, the MP re-
ceiving the AP read request (1) does not own a valid
copy of the variable. This request is then forwarded to
the variable PMP (2) which returns the value of the
variable (3) and sends a message to its EMP (4) to
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Figure 5: Protocol implemented to collect the trace information about a read operation.

update the meta-object attached to it. The secondary
MP forwards the value to the calling AP (5), creates a
variable copy and notifies its EMP to store the opera-
tion on disk and to generate a secondary meta-object.

6.3.3 Acquire Operation Protocol

To obtain an exclusive write access right on a variable (fig-
ure 6), an AP must generate an Acquire request message and
sends it to its MP (1). Two cases must be distinguished:

This MP is the PMP of the variable: (figure 6.a) If
the variable is free (i.e. not acquired by another AP),
it gives the exclusive write access right to the AP (2)
and sends information to its EMP (3) in order to store
the operation on disk and update the meta-object. If
the variable is already acquired by another AP, the
MP informs the EMP that a new AP is waiting for the
variable (3). When it is released, the PMP gives the
exclusive write access right to the AP (2) and reports

it to its EMP (3).

This MP is not the PMP of the variable: (figure 6.b)
The SMP forwards the request to the PMP of the vari-
able (2). This latter verifies if the variable is free. In
this case, it returns the exclusive write access write
to the SMP (3) which forwards it to the AP (5). The
EMP attached to the PMP updates the primary meta-
object (4) while the EMP attached to the SMP stores
the operation on disk (6). If the variable was already
acquired, the PMP informs its EMP that a new AP is
waiting for the variable (4). When it is released, the

same action sequence is performed as in the case where
the variable was immediately available.

6.3.4 Release Operation Protocol

The management of a Release operation requires a lot of
communications. Indeed, we must guarantee the consis-
tency of all the object copies but also update the primary
meta-object by sending to it all the data contained in the
secondary meta-objects. This generates additional commu-
nications between EMPs.

Figure 7 shows a diagram of the protocol used by a Re-
lease operation in the most general case, i.e. when the re-
lease request is sent by an AP to a SMP (1). This latter
forwards the request to the variable’s PMP (2) which per-
forms either an invalidation or an update of all the copies
distributed in the system (3). Each SMP that has a copy
informs its EMP (4) that it must send the data stored into
the secondary meta-object to the EMP attached to the PMP
in order to update the primary meta-object (5). When the
PMP receives all acknowledgement messages issued by the
SMPs (6), it updates the primary meta-object (7) and re-
quests the SMP linked to the calling AP to inform this AP
(8 and 9) and the EMP attached to this SMP (10) that the

release operation is finished.

7 Interface and Experiments

Designed to trace applications developed on top of DOS-
MOS, the DOSMOS-Trace system actually implements all
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the concepts developed in the above sections: EMPs, meta-
objects, distributed traces files, visualization process. The
aim of this section is to illustrate its functionalities by pre-
senting two examples of information provided by this sys-

tem®.

7.1 Accesses to shared Variables

Figures 8 and 9 display the histogram of the read ac-
cesses performed on a variable during the execution of an
application. Various colors’ are used in order to differenti-
ate the origin of the accesses: local accesses are represented
in green, intra-group accesses in yellow and inter-group ac-
cesses in red.

Such diagrams allow the user to detect a bad group struc-
ture. Thus, in figure 8, the predominance of inter-group

SFigures are displayed using Matlab.
"Grey level correspondence: green=dark grey, yellow=light grey,
red=Dblack

System object: MAX(3) — Number and distribution of read accesses
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Time (s)

Number of readings

2

Figure 8 Number and origin of the read accesses performed
on an object vs execution time (in black: inter-group ac-
cesses)

accesses shows clearly that the group structure is not per-
tinent.On the contrary, in figure 9, one can verify that no
inter-group accesses are performed.

In the same way, it is possible to visualize write and
acquire accesses.

7.2 Histories

This functionality provides an analysis of the “history”
of any shared variable (figure 10) or any application process
(figure 11). In other words, it allows the visualization of all
the accesses performed on a variable or, reciprocally, all the
accesses performed by an application process.

On these figures, a “*” represents a write operation (un-
der the dotted line), an “x” symbolizes a read access (above
the dotted line) and a green “4” represents an optimized
read access (i.e. a read access performed on a local copy of
the variable). Black boxes are used to represent the amount
of time that a process was waiting before it can perform
either an acquire or a release.
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Figure 9: Number and origin of the read accesses performed
on an object vs execution time (note this execution does not
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Figure 10: Object activity vs execution time

Such diagrams are extremely useful for the user in analys-
ing problematical situations. Indeed they allow the very eas-
ily isolating ping-pong effects (e.g. figure 10), over-accessed
variables, bottlenecks, not actually shared variables, etc.

8 Estimation of the Intrusion

This section presents the methodology we have followed to
estimate the overhead time introduced by the monitoring.
The experiments were made on a network of SUN Sparc
workstations. They are based on a sample application which
consists of a sequence of exclusive write and read accesses
applied to a variable without any computation. In terms
of overhead time, this application is especially unfavorable.

Indeed:

e This application does not perform any computation.
The ratio overhead/execution time is consequently the
worst possible;

Application Process: 2 - History of events

System object (id)
o

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Time (s)

Figure 11: Process activity vs execution time

e All requests are made on the same variable. So one
cannot take advantage of the variable’s owner distri-
bution;

e Only acquire and release operations are performed.
However these operations are, as we have seen, the
most exepensive ones.

In other words, results obtained using this sample appli-
cation can be considered as an upper bound.
Four system configurations were used:

1. 4 workstations each one holding one Application Pro-
cess and one Memory Process. This is the reference
configuration.

2. 4 workstations each one holding one Application Pro-
cess, one Memory Process and one Event Manager
Process.

3. 4 workstations each one holding one Application Pro-
cess and one Memory Process. Furthermore, one of
them also runs one Event Manager Process which col-
lects the events from all the MPs.

4. 4 workstations each one holding one Application Pro-
cess, one Memory Process plus another workstation
holding only an Event Manager Process which collects
the events from all the MPs.

Table 1 shows the execution time obtained on these var-
ious system configurations. Obviously, the three monitoring
configurations do not provide the same results. It is clear
that an architecture containing dedicated processors only
executing an EMP is the best solution. In this case, an
overhead of 29% was obtained.

Consider now a “real” application, i¢.e. an application
which not only makes accesses to shared data but also per-
forms some computations. Let R be the ratio between the
computation time and the access data time. The sample
application represents the case where R equals zero. Its ex-
ecution time, without monitoring, is equal to 21.90 seconds.
For a given value of R, the execution time without mon-
itoring can therefore be estimated as 21.90 x (1 + R). In
case of monitoring, it can be estimated as the time for the
monitored execution without computation plus R x 21.90.



Configuration 1

2

3

4

Execution time | 21.90

40.00

(+83%)

48.20

(+120%)

28.30

(+29%)

Table 1: Execution time (in seconds) for several configurations

Ratio \ Configuration 1 2 3 4
R=1 13.80 | 61.90 (41%) | 70.10 (60%) | 50.20 (15%)
R=2 65.70 | 83.80 (28%) | 92.00 (40%) | 72.10 (10%)
R=3 87.60 | 105.70 (21%) | 113.90 (30%) | 94.00 (7%)

Table 2: Calculated execution time (in seconds) for different (computation/shared data access) ratios

Table 2 shows the estimated execution times (and the corre-
sponding overhead (in percentage)) for 3 values of R. Thus,
it appears that as soon as the computation time is higher
than the access data time (which seems reasonable), the in-
trusion falls below 15%.

One question remains open: how many MPs must be
managed by one EMP in order to keep the intrusion below
a predefined imit? We are currently making tests in order
to collect more experimental data.

9 Discussion

In comparison with previous approaches, the model pre-
sented in this paper presents several important advantages:

weak intrusion, due mainly to the introduction of dedi-
cated distributed processes (EMPs).

scalability, due to the distributed architecture on which
relies the model. Thus, EMPs are distributed as well
as trace files;

flexibility: meta-objects are very flexible data structures.
Adding a functionality to the monitoring environment
only requires adding fields to the meta-object struc-
ture and specifying the protocol between EMPs and
MEemory processes;

user-orientation: as illustrated in section 7, by working at
the variable level, the DOSMOS-Trace system allows
the user to clearly understand the behaviour of his
application, especially to detect the most important
problems: bottlenecks, ping-pong effects, bad group
structure, activity imbalance,. ..

independence towards the shared data type: though
designed for variable-oriented DSM systems, this model
allows to deal with page-oriented systems. Thus, trac-
ing the accesses to shared pages can be very simply
handled by associating one meta-object to each page.

10 Conclusion and Future Works

This paper has described a novel model for the monitor-
ing of DSM applications. This model relies on two original
concepts: Event Manager Processes and meta-objects. In
comparison with previous systems, this approach, based on
a distributed architecture, has shown it was weakly intrusive
and scalable. Implementing these concepts, the DOSMOS-
Trace monitoring system has proved their efficiency and ro-
bustness.

Based on this model, further developments are mainly
focused on the definition and implementation of an on-line
automatic optimization tool (data migration, load balanc-
ing), ¢.e. on the automatic detection and correction, at run-
time, of typical problematical situations (e.g. bottlenecks,
ping-pong effects, bad group structure).
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