
Execution Analysis of DSM Applications�

A Distributed and Scalable Approach

Lionel Brunie� Laurent Lef�evre and Olivier Reymann

Laboratoire de l�Informatique du Parall�elisme

Ecole Normale Sup�erieure de Lyon

����� LYON Cedex �	 � France

�lbrunie� llefevre� oreymann��lip�ens�lyon�fr

Abstract

In the last �ve years� Distributed Shared Memory �DSM�
systems have received increasing attention� Indeed� by re�
leasing the programmer from the management of inter�pro�
cess communications� they o�er a very intuitive and easy�
to�use programming paradigm� In compensation� such sys�
tems often appear� from the programmer point of view� as
a �black box� since no information about the actual com�
munications is available� Consequently� in the absence of
visualization and monitoring tools� optimizing� debugging
or evaluating the performance of DSM applications is very
di	cult� In that framework� this paper proposes an original
monitoring model based on two new concepts
 meta�objects
and event manager processes� This model constitutes the ba�
sis of an actual monitoring system� called DOSMOS�Trace�
that has been designed and implemented to monitor appli�
cations developed on top of the DOSMOS DSM system��
This monitoring environment is analysed in terms of func�
tionalities� protocols and user interface� Experiments show
the e	ciency and the robustness of the underlying model
as well as the pertinence� for the programmer� of such a
monitoring tool�

Keywords� distributed shared memory� monitoring� per�
formance evaluation� program visualization�

� Introduction

In the last �ve years� Distributed Shared Memory �DSM�
systems have received increasing attention� Indeed� by re�
leasing the programmer from the management of inter�pro�
cess communications� they o�er a very intuitive and easy�
to�use programming paradigm� In compensation� such sys�
tems often appear� from the programmer point of view� as
a �black box� since no information about the actual com�
munications is available� Consequently� in the absence of
visualization and monitoring tools� optimizing� debugging

�DOSMOS is the acronym of Distributed Objects Shared MemOry
System� The DOSMOS system has been developed on top of PVM in
our laboratory�

or evaluating the performance of DSM applications is very
di	cult�

Until now� most of monitoring tools have been designed
for message passing applications� However� in spite of ev�
ident points of convergence� monitoring DSM applications
di�ers from monitoring message�passing applications because
pertinent information to be traced is clearly di�erent� In
that framework� this paper proposes an original monitoring
model based on two new concepts
 meta�objects �i�e� speci�c
distributed data�structures designed for the storage of mon�
itoring data� and event manager processes �i�e� specialized
distributed processes in charge of the on�the��y collection
and management of execution traces��

This paper is organized as follows� In section �� we recall
some basic points about DSM systems and analyse the func�
tionalities that should be provided by DSM�oriented moni�
toring tools� Previous works on parallel monitoring are stud�
ied in section
� Then� the DOSMOS system is brie�y pre�
sented in section �� The basics of the monitoring model we
propose are described in section � while protocols are anal�
ysed in section �� Section � presents the DOSMOS�Trace
monitoring environment which implements the concepts in�
troduced in this paper� An analysis of the intrusion gener�
ated by the monitoring is proposed in section �� Section �
discusses the pertinence and the e�ectiveness of the model
presented in this paper� Finally� section �� concludes this
paper and analyses the main perspectives of this work�

� Monitoring DSM applications

��� What is a DSM System�

Basically� Distributed Shared Memory systems �DSM� al�
low� above a distributed memory architecture� the manipu�
lation of shared data in a transparent way� In other words�
in such systems� a programmer can make the processes of his
application share data without explicitly programming the
inter�process communications which are actually handled by
the system�

Two basic approaches have been studied

virtual sharing of memory pages� the environments of
this type �Li��� LP��� FP��� CBZ��� HS��� merge var�
ious memory pages distributed in the system into a
single address space�

virtual sharing of variables or objects� such systems
�RAK��� TKB��� CG��� BL��� BL���� more program�
ming oriented� allow the user to de�ne shared variables
�or shared objects for object�oriented systems� which

will be accessible in a transparent way from any node
in the network�

The purpose of this paper is not to discuss the respective
advantages and drawbacks of these two kinds of systems�
Indeed� from the programmer point of view �and thus for
the monitoring point of view�� all these systems implement
the same basic functionalities� i�e� transparent manipulation
of shared data�

��� Monitoring DSM applications

The goal of any monitoring tool is to collect information
about the execution of the application �called execution tra�
ces� and to display it in a pertinent way in order to allow the
programmer to understand the behaviour of his application�
In the framework of DSM applications� execution traces can
be grouped in two classes

Information about the DSM system administration�
creation� destruction� migration of processes and� to
speak more generally� of system �entities� �e�g� group
of processes for the DOSMOS system �cf� section ����

Information about the shared data� duplication of sha�
red data �evolution of the number of copies distributed
in the system�� migration� number and types of ac�
cesses �e�g� read�only� exclusive write� concurrent write�
� � � �� a list� for each shared datum� of the processes that
frequently modify it� etc�

Analysing such traces will allow �section �� the program�
mer to detect and correct most critical situations� e�g�

bottlenecks� a bottleneck occurs when a shared datum is
too frequently accessed in an exclusive way� A possi�
ble solution consists in splitting the shared datum into
several sub�variables in order to distribute the accesses
over several objects�

ping�pong e�ects� this occurs when a variable is� for a
long while� concurrently accessed by two� or more� pro�
cesses� Possible solution
 splitting of the variable�

no�sharing� when a variable is declared as shared but only
one process actually accesses it� Solution
 declaration
of the variable as a local variable in order to circumvent
the DSM system layer�

speci�c features� for instance� in the DOSMOS system� a
bad group structure�

The purpose of this paper is twofold
 �rst� proposing
and studying a software architecture able to e	ciently im�
plement such monitoring functionalities �section ��� second�
illustrating the relevance of this model by analysing the fa�
cilities provided by the DOSMOS�Trace environment which
has been designed and implemented according to these prin�
ciples �section ���

� Previous Works

Basically� monitoring an application requires dealing with
three main problems
 �rst� the collection of execution traces�
second� the management and storage of the traces� �nally�
the analysis and visualization of the traces� Until now�
most monitoring tools have been designed to trace message�
passing applications� In that framework� the trace collection

is usually performed by instrumenting the application code
in order to monitor the most important events occurring
during the execution� The instrumentation can be placed at
various levels

� operating system level �e�g� Tapestry �MR����
 tracing
of events like communications� creation of processes�
memory accesses� system calls�

� run�time environment level
 �e�g� IPS �MY����
 en�
tries into and exits from parallel sessions� use of barri�
ers� procedure calls�

� application level �e�g� IVE �FLK���� or PVVT �Str����

working at this level allows focusing the monitoring on
the most interesting parts of the source code� The sys�
tems of this type are all based on the same principle

inserting additional code into the user program in or�
der� as previously� to trace the most important events�

Once the traces are collected� it is necessary to manage
them� to organize them in the memory� On the other hand�
post�mortem analysis requires the storage of traces on disk�
Though a few monitoring tools �e�g� SIEVE �SG��� or The
Belvedere system �HC���� implement database techniques�
most monitoring systems use �ordinary� �les� Recently� in
order to increase the scalability and the e	ciency of mon�
itoring tools� some works �e�g� PIMSY �TV��a� TV��b��
have proposed the use of distributed trace �les� The DOS�
MOS�Trace system lies within this approach�

Last point
 the visualization of traces� Basically� all sys�
tems allow the visualization of inter�processes communica�
tions �KS�
�� Furthermore� each system proposes its own
speci�c features
 hierarchical visualization �i�e� grouping of
processes�� performance analysis� tra	c analysis� processors
activity�� � �

DSM�oriented monitoring tools are not over�abundant�
Most tools have been designed for virtual shared memory
systems �i�e� page�based systems �section ������ In that
framework� attention has mainly been focused on system
events
 accesses to pages�Ede�
�� false sharing� cache misses�
However� for the basic programmer� such information is very
di	cult to use �e�g�� what measure is to be taken if a page
is over�used ��� In other words� such monitoring systems
provide pertinent data for DSM system designers� but not
for end�users�

Nevertheless� some works have proposed focusing on high�
er�level features� Thus� Brorsson and Strenstrom �BS����
propose an analysis tool based on the study of four pa�
rameters
 the spatial granularity� the degree of sharing� the
access mode and the temporal granularity� These param�
eters allow the comparison of various coherence strategies
in order to choose the most pertinent one �for the target
application� � � �� SHMAP �DBKF��� provides a visualiza�
tion of memory access patterns� cache strategies and pro�
cessor assignment� In a di�erent context� designed to trace
applications developed on top of shared�memory multipro�
cessors� Robinson� David and Enbody �RCE��� propose the
observation of causal dependencies between events� In the
same framework� �LMCF��� implements a specialized li�
brary in which every access to a shared data is assigned
a logical sequence number used to infer a partial ordering
of the execution� MTOOL �GH���� tries to isolate memory
bottlenecks by comparing the actual execution with an ideal
execution performed on a perfect shared memory machine�

However� most of these approaches su�er from important
drawbacks� First� most of them provide information hardly

usable by the end�user� Second� tools designed to moni�
tor shared�memory multiprocessors use speci�c features pro�
vided by these machines and so are not portable� Thus� like
most message�passing monitoring tools� MPTrace �EKKL���
instruments the application code� However� this is not real�
istic for software DSM systems� Indeed� no internal informa�
tion is available at the application level� e�g� it is impossible�
from the application� to know where a shared variable is lo�
cated� which process manages it� etc� So� working at the
application level would require a complete modi�cation of
the interface between the DSM system and the applications�
which would deeply a�ect the actual behaviour of the ap�
plications� Finally� most existing systems �and speci�cally
DSM�oriented systems� are intrusive �e�g� systems instru�
menting the DSM management routines� and not scalable
�e�g� systems using a centralized trace �le��

� The DOSMOS System

The DOSMOS�Trace monitoring environment �section ��
has been designed to monitor applications programmed on
top of the DOSMOS DSM system developed in our labora�
tory� The purpose of this paper is not to study this DSM
system �see e�g� �BL��� BL����� However� to better under�
stand the functionalities provided by the DOSMOS�Trace
environment� it may be necessary to say a few words about
the DOSMOS system�

DOSMOS is a variable�oriented DSM system �section ����
developed on top of PVM� The user can declare either basic
type variables �e�g� integers� �oats�� � � � or arrays that will
be split into several �system objects�� Various splittings
are provided
 by row� by column and by block� Basically� a
DOSMOS application is composed of two kinds of processes

Application Processes �AP� which execute the user�s co�
de�

Memory Processes �MP� which manage the shared vari�
ables and handle the access requests issued by Appli�
cation Processes�

To avoid expensive synchronizations and useless com�
munications which break down the e	ciency of the appli�
cations� DOSMOS allows grouping together the processes
which actually share a common set of variables� These
groups can be hierarchically structured into groups and sub�
groups� Furthermore� to maintain the coherence of the sha�
red data� the DOSMOS system implements a weak consis�
tency protocol called release consistency� This protocol is
based on two primitives
 acquire which allows obtaining an
exclusive access to a variable and release which unlocks this
variable �for a complete discussion on consistency protocols�
see �RM�
���

Though Application Processes and variables can be struc�
tured in groups� any shared variable is accessible from any
Application Process� Link Processes �LP� are specialized
MP devoted to inter�group operations on shared variables�
Thus� thanks to LPs� an Application Process can access vari�
ables managed by other groups than its own� However such
inter�groups accesses are� of course� more expensive than
intra�group accesses� Figure � shows an example of software
con�guration including � APs�
 MPs and � LPs�

Group 1

Group 2

AP

AP

AP

MP

MP

AP

AP

MP

AP

LP

Object C

Objects A,B

LP

Figure �
 DOSMOS system
 an example of software con�g�
uration with two groups and three objects A� B and C

� A Model for DSM Application Monitoring

��� Trace Detection and Collection� Event Man�
ager Process

As previously discussed� instrumenting the user�s code is not
realistic� Consequently two approaches are possible
 �rst�
modifying the DSM code� i�e�� in the DOSMOS context�
modifying the code of the memory processes �MP�� This ap�
proach presents important drawbacks
 as in any DSM sys�
tem� the whole e	ciency of DOSMOS relies on the memory
processes� Thus� loading MPs with the monitoring would
deeply a�ect the behaviour of the system� So� in order to
minimize the monitoring intrusion� we propose to introduce
a new kind of system processes called Event Manager Pro�
cesses �EMP�� An EMP is linked to one or more memory
processes� Once an MP detects an event� it sends a mes�
sage to the EMP it depends on� EMPs are in charge of
the whole management of the execution traces� Protocols
de�ning the coordination procedures between memory pro�
cesses and EMPs are described in section �� This approach
presents important advantages� First� it minimizes the work
requested from MPs� and consequently� the intrusion due to
monitoring� � Furthermore� in the case of post�mortem uti�
lization� traces have to be stored on disk� However� as traces
are managed by EMPs� which are distributed in the whole
network� the storing on disk is not performed by a single pro�
cess but by all the EMPs� which is clearly more scalable and
e	cient� The scalability of the system can even be increased
if several distributed trace �les� located on several disks� are
used� In fact� the best �but the most expensive� � � � solution
is to attach a local disk to each processor on which an EMP
runs� Indeed� by increasing the I�O bandwidth� such an ar�
chitecture allows reducing the bottleneck constituted by the
transfer of traces to disk� Figure � shows an example of the
monitoring environment� This con�guration uses three pro�
cessors� two logical groups and two shared variables A and
B�

Finally� experimentally it appears that tracing realistic
applications generates a huge amount of traces which a�ects
the intrusion� That is why� to reduce the volume of traces�
the DOSMOS�Trace system allows the user to specify which
information he is interested in�

�This intrusion will be even reduced if EMPs are located on ded�
icated processors �in order not to �steal� CPU time from memory
processes��

��� Trace Management� the Meta�Object Concept

In contrast to post�mortem analysis� on�line monitoring tools
require keeping execution traces in memory� To manage
these traces� we propose to introduce new data structures�
called meta�objects� A meta�object is a tuple �record� with
as many �elds as di�erent monitoring informations�

However� in the DOSMOS system� for e	ciency pur�
poses� a variable can be duplicated� i�e� several read�only
copies of a variable can be distributed �within the group of
processors sharing the variable�� Therefore� it is necessary
to distinguish between two types of meta�objects

a primary meta�object is attached to each shared vari�
able� It contains information about the variable such
as the number and the type �read� write� acquire� of
the accesses performed on the variable� It also main�
tains the list of the processes that recently accessed the
variable� the origin �local� intra�group� inter�group�
and the characteristics of the accesses they requested
�i�e� type �read�write�acquire��� This information is
very useful to analyse the behaviour of the applica�
tion and to propose optimizations� The primary meta�
object of a variable is managed by the EMP monitoring
the MP owner of the variable�

secondary meta�objects are attached to each copy of a
shared variable� Because a copy can only be accessed
in a read�only fashion� a secondary meta�object does
not have to store as much information as a primary
meta�object does� In practice� secondary meta�objects
record the identi�cation of the MP that owns the copy�
the identi�cation of the EMP that manages the pri�
mary meta�object and the number of read operations
performed on this copy� A secondary meta�object is
managed by the EMP attached to the MP owner of
the copy�

Secondary meta�objects allow the user to know the ac�
tual distribution of the read accesses among the processes�
This information is important because it deals with the
group structure of the application and with the e	ciency
of the implemented consistency protocol� Indeed� to be ef�
�cient� DSM applications should perform as many local ac�
cesses as possible �because remote accesses are more expen�
sive��

Remark
 write accesses require bringing invalidation pro�
tocols into play� These protocols are triggered by the Mem�
ory Process owner of the variable� This Memory Process is
connected with the EMP which manages the primary meta�
object� Consequently� all the write accesses are traced in
this primary meta�object�

��� Analysis and Visualization of Execution Traces

Whether they work in an on�line or post�mortem fashion�
analysis tools must interact with EMPs which are the only
processes able to access monitoring data� This argues for
implementing a client�server architecture in which EMPs act
as servers and tools as clients�

The DOSMOS�Trace system implements the following
approach ��gure
�
 a Visualization Process �VP� is started
at the beginning of the execution �on�line monitoring� or af�
ter the execution �post�mortem analysis�� The user submits
queries to this process which passes them to all the EMPs
concerned� These latter return the requested information
to the VP which is in charge of the fusion of these data�
Finally� the VP displays the results�

Object A

Meta-Object A

Group 1

Group 2

Processor 3

Processor 1 Processor 2

MP

LP

LP

MP

EMP Disk

MP

EMP

MP

MP

EMP DiskDisk

Object B

Meta-Object B

Figure �
 DOSMOS�Trace
 example of monitoring environ�
ment

	 Implementation and System Architecture

	�� Meta�Objects

As described in section ���� meta�objects are designed to
store and manage the traced information in memory� How�
ever� as several copies of the same variable can be distributed
in the network� several kinds of meta�objects must be dis�
tinguished�

Thus� in the DOSMOS�Trace system� a primary meta�

object is associated with the main copy of a variable� � This
meta�object contains general information such as

� Variable identi�cation �name� system identication�

� Group
 this �eld contains the identi�cation of the group
the shared variable belongs to� It is used to analyse
and visualize the group structure�

� Number of copies of the variable distributed in the
system

� Memory process owner of the variable

� Number of read operations performed on this main
copy

� Total number of read accesses performed on all the
copies �see below�

� Number of write accesses

� Number of acquire and release operations

� List of last acquire operations

� List of last write operations

� List of delayed acquire operations

�In the DOSMOS system� a shared variable is managed by one
Memory Process �Distributed Static Owner protocol ��LH�	
��� This
Memory Process controls the duplication of the shared variable� han�
dles the copies invalidations and manages the write accesses�

Display

EMP EMP EMP

Disk Disk Disk

VP

Figure

 DOSMOS�Trace
 the Visualization Process �VP�
communicates with all the Event Manager Processes dis�
tributed in the network�

These last three lists store triplets containing the identi�
�er of the Application Process from which the operation was
issued� the identi�er of the Memory Process that received
this query and the group the Application Process belongs
to�

Variable copies are monitored using secondary meta�obj�

ects� A secondary meta�object is attached to each copy of a
variable� It contains the following information

� Variable identi�cation

� Memory process owner of this copy�

� EMP which manages the primary meta�object

� Number of read operations performed on the copy

Secondary meta�objects permit a very accurate view on
the execution� More precisely� secondary meta�objects allow
knowing the actual distribution of the read accesses among
the processes� This information is important because it con�
cerns the group structure of the application� Indeed� the
e	ciency of DSM applications is largely determined by the
ratio of the number of local accesses to the number of re�
mote accesses�� So� analyzing the read access distribution is
extremely important to understanding the behavior of DSM
applications well�

Moreover� using secondary meta�objects allows the EMP
managing the primary meta�object to be discharged from
the management of the traces generated by the copies� As
a consequence� it increases the scalability of the monitoring
system �both from a CPU point of view and an I�O point
of view �if� of course� EMPs use several disks���

	�� System Architecture

Figure � shows an example of process con�guration during a
monitored execution� This architecture follows a few rules

� One Event Manager Process at most can be run on
one processor�

�This information is mandatory because an EMP can monitor sev�
eral Memory Processes �see section �����

�Remote accesses are much more expensive�

� Each EMP must be connected to at least one Memory
Process�

� A Memory Process sends its trace information only to
its dedicated Event Manager Process�

� A Memory Process must deal with at least �and even�
tually more than� one Application Process�

� An Application Process communicates with only one
Memory Process�

Event Manager Processes can switch between two modes�
During execution� EMPs receive messages from the mem�
ory processes concerning the various operations performed
on the shared objects� They store these traces in memory
�meta�objects� and�or on disk �trace �les�� At the end of
the execution� EMPs remain alive in order to answer to the
queries issued by the user�

	�� Protocols

This section describes the protocols implemented for passing
traces information from MPs to EMPs�

During a variable access� two kinds of memory processes
must be distinguished

Primary Memory Process �PMP�� the Memory Process
that owns the requested variable�

Secondary Memory Process �SMP�� any Memory Pro�
cess that received an access request from one of its
Application Processes but does not own the requested
variable� It possibly has one copy of that variable�

The management of shared memory is based on four
standard operations
 write access� read access� acquire and
release�

	���� Write Operation Protocol

The protocol used for a write access is the simplest one� Two
cases are possible

Local write access� ��gure ��a� The PMP directly receives
the AP write request ��� � it modi�es the variable and
informs its EMP ��� in order to store the operation on
disk and update the meta�object�

Remote write access� ��gure ��b� The SMP receives the
AP write request ���� informs its EMP ��� to store the
operation on disk and forwards the request to the PMP
of the variable �
� which performs the write access�
Then the PMP sends a message to its EMP ��� to
update the variable�s primary meta�object�

	���� Read Operation Protocol

Local read access� ��gure ��a� The MP receiving the AP
read request ���� It owns either the variable itself or
a valid copy of this variable� It then returns the re�
quested value to the AP ��� and informs its EMP �
�
to store the operation on disk and update the meta�
object�

Remote read access� ��gure ��b� In this case� the MP re�
ceiving the AP read request ��� does not own a valid
copy of the variable� This request is then forwarded to
the variable PMP ��� which returns the value of the
variable �
� and sends a message to its EMP ��� to

(1)

(4)

PMP

SMP

(b) Remote Write(a) Local Write

(1)

(2)

Disk

(2)

(3)

AP

Disk

EMP Meta-Object

AP EMP

EMPObjectObject PMP Meta-Object

Figure �
 Protocol implemented to collect the trace information about a write operation�

(1) (2)

(3)

(a) Local Read Operation

Disk

(1)

(2) (3)

(4)

(5)

(6)
Disk

(b) Remote Read Operation

PMP

SMP

AP

MP EMPObject Copy
Object or

or
Secondary Meta-Object

Copy
Object

AP

EMP

Secondary Meta-Object

EMP
Primary Meta-Object

Meta-ObjectObject

Figure �
 Protocol implemented to collect the trace information about a read operation�

update the meta�object attached to it� The secondary
MP forwards the value to the calling AP ���� creates a
variable copy and noti�es its EMP to store the opera�
tion on disk and to generate a secondary meta�object�

	���� Acquire Operation Protocol

To obtain an exclusive write access right on a variable ��g�
ure ��� an AP must generate an Acquire request message and
sends it to its MP ���� Two cases must be distinguished

This MP is the PMP of the variable� ��gure ��a� If
the variable is free �i�e� not acquired by another AP��
it gives the exclusive write access right to the AP ���
and sends information to its EMP �
� in order to store
the operation on disk and update the meta�object� If
the variable is already acquired by another AP� the
MP informs the EMP that a new AP is waiting for the
variable �
�� When it is released� the PMP gives the
exclusive write access right to the AP ��� and reports
it to its EMP �
��

This MP is not the PMP of the variable� ��gure ��b�
The SMP forwards the request to the PMP of the vari�
able ���� This latter veri�es if the variable is free� In
this case� it returns the exclusive write access write
to the SMP �
� which forwards it to the AP ���� The
EMP attached to the PMP updates the primary meta�
object ��� while the EMP attached to the SMP stores
the operation on disk ���� If the variable was already
acquired� the PMP informs its EMP that a new AP is
waiting for the variable ���� When it is released� the

same action sequence is performed as in the case where
the variable was immediately available�

	���� Release Operation Protocol

The management of a Release operation requires a lot of
communications� Indeed� we must guarantee the consis�
tency of all the object copies but also update the primary
meta�object by sending to it all the data contained in the
secondary meta�objects� This generates additional commu�
nications between EMPs�

Figure � shows a diagram of the protocol used by a Re�
lease operation in the most general case� i�e� when the re�
lease request is sent by an AP to a SMP ���� This latter
forwards the request to the variable�s PMP ��� which per�
forms either an invalidation or an update of all the copies
distributed in the system �
�� Each SMP that has a copy
informs its EMP ��� that it must send the data stored into
the secondary meta�object to the EMP attached to the PMP
in order to update the primary meta�object ���� When the
PMP receives all acknowledgement messages issued by the
SMPs ���� it updates the primary meta�object ��� and re�
quests the SMP linked to the calling AP to inform this AP
�� and �� and the EMP attached to this SMP ���� that the
release operation is �nished�

 Interface and Experiments

Designed to trace applications developed on top of DOS�
MOS� the DOSMOS�Trace system actually implements all

(a) Local Acquire Operation (b) Remote Acquire Operation

(1)(2)

(3)

Object

AP

PMP EMP

Meta-Object

Disk

(2)

(4)

(3)

(6)

(5) (1)

Object PMP

SMP

AP

EMP

Disk

EMP Meta-Object

Figure �
 Protocol implemented to collect the trace information about an Acquire operation�

(1)

Disk
(3)

(5)
(2)
(6)

(7)

(8)

(9)

(4) (10)

(4)

SMP

PMP

SMP

(5)(6)(3)

Object Copy

Object

Object Copy

AP EMP

Secondary Meta-Object

EMP Meta-Object

Secondary Meta-Object

EMP

Figure �
 Protocol implemented to collect the trace infor�
mation about a Release operation�

the concepts developed in the above sections
 EMPs� meta�
objects� distributed traces �les� visualization process� The
aim of this section is to illustrate its functionalities by pre�
senting two examples of information provided by this sys�
tem��

�� Accesses to shared Variables

Figures � and � display the histogram of the read ac�
cesses performed on a variable during the execution of an
application� Various colors� are used in order to di�erenti�
ate the origin of the accesses
 local accesses are represented
in green� intra�group accesses in yellow and inter�group ac�
cesses in red�

Such diagrams allow the user to detect a bad group struc�
ture� Thus� in �gure �� the predominance of inter�group

�Figures are displayed using Matlab�
�Grey level correspondence
 green�dark grey� yellow�light grey�

red�black

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Time (s)

N
um

be
r

of
 r

ea
di

ng
s

System object: MAX(3) − Number and distribution of read accesses

Figure �
 Number and origin of the read accesses performed
on an object vs execution time �in black
 inter�group ac�
cesses�

accesses shows clearly that the group structure is not per�
tinent�On the contrary� in �gure �� one can verify that no
inter�group accesses are performed�

In the same way� it is possible to visualize write and
acquire accesses�

�� Histories

This functionality provides an analysis of the �history�
of any shared variable ��gure ��� or any application process
��gure ���� In other words� it allows the visualization of all
the accesses performed on a variable or� reciprocally� all the
accesses performed by an application process�

On these �gures� a ��� represents a write operation �un�
der the dotted line�� an �x� symbolizes a read access �above
the dotted line� and a green ��� represents an optimized
read access �i�e� a read access performed on a local copy of
the variable�� Black boxes are used to represent the amount
of time that a process was waiting before it can perform
either an acquire or a release�

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Time (s)

N
um

be
r

of
 r

ea
di

ng
s

System object: MAX(3) − Number and distribution of read accesses

Figure �
 Number and origin of the read accesses performed
on an object vs execution time �note this execution does not
include inter�group accesses�

0 0.5 1 1.5 2 2.5

 1

 2

 3

 4

 5

Time (s)

A
pp

lic
at

io
n

P
ro

ce
ss

 (
D

N
)

System object: PING_PONG(0) − History of events

R
W

R
W

R
W

R
W

R
W

Figure ��
 Object activity vs execution time

Such diagrams are extremely useful for the user in analys�
ing problematical situations� Indeed they allow the very eas�
ily isolating ping�pong e�ects �e�g� �gure ���� over�accessed
variables� bottlenecks� not actually shared variables� etc�

� Estimation of the Intrusion

This section presents the methodology we have followed to
estimate the overhead time introduced by the monitoring�

The experiments were made on a network of SUN Sparc
workstations� They are based on a sample application which
consists of a sequence of exclusive write and read accesses
applied to a variable without any computation� In terms
of overhead time� this application is especially unfavorable�
Indeed

� This application does not perform any computation�
The ratio overhead�execution time is consequently the
worst possible�

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0

Time (s)

S
ys

te
m

 o
bj

ec
t (

id
)

Application Process: 2 − History of events

R
W

Figure ��
 Process activity vs execution time

� All requests are made on the same variable� So one
cannot take advantage of the variable�s owner distri�
bution�

� Only acquire and release operations are performed�
However these operations are� as we have seen� the
most exepensive ones�

In other words� results obtained using this sample appli�
cation can be considered as an upper bound�

Four system con�gurations were used

�� � workstations each one holding one Application Pro�
cess and one Memory Process� This is the reference
con�guration�

�� � workstations each one holding one Application Pro�
cess� one Memory Process and one Event Manager
Process�

� � workstations each one holding one Application Pro�
cess and one Memory Process� Furthermore� one of
them also runs one Event Manager Process which col�
lects the events from all the MPs�

�� � workstations each one holding one Application Pro�
cess� one Memory Process plus another workstation
holding only an Event Manager Process which collects
the events from all the MPs�

Table � shows the execution time obtained on these var�
ious system con�gurations� Obviously� the three monitoring
con�gurations do not provide the same results� It is clear
that an architecture containing dedicated processors only
executing an EMP is the best solution� In this case� an
overhead of ��� was obtained�

Consider now a �real� application� i�e� an application
which not only makes accesses to shared data but also per�
forms some computations� Let R be the ratio between the
computation time and the access data time� The sample
application represents the case where R equals zero� Its ex�
ecution time� without monitoring� is equal to ����� seconds�
For a given value of R� the execution time without mon�
itoring can therefore be estimated as ����� � �� � R�� In
case of monitoring� it can be estimated as the time for the
monitored execution without computation plus R � ������

Con�guration � �
 �
Execution time ����� ����� ���
�� ����� ������� ���
� ������

Table �
 Execution time �in seconds� for several con�gurations

Ratio n Con�guration � �
 �
R�� �
��� ����� ����� ����� ����� ����� �����
R�� ����� �
��� ����� ����� ����� ����� �����
R�
 ����� ������ ����� ��
��� �
��� ����� ����

Table �
 Calculated execution time �in seconds� for di�erent �computation�shared data access� ratios

Table � shows the estimated execution times �and the corre�
sponding overhead �in percentage�� for
 values of R� Thus�
it appears that as soon as the computation time is higher
than the access data time �which seems reasonable�� the in�
trusion falls below ����

One question remains open
 how many MPs must be
managed by one EMP in order to keep the intrusion below
a prede�ned limit� We are currently making tests in order
to collect more experimental data�

� Discussion

In comparison with previous approaches� the model pre�
sented in this paper presents several important advantages

weak intrusion� due mainly to the introduction of dedi�
cated distributed processes �EMPs��

scalability� due to the distributed architecture on which
relies the model� Thus� EMPs are distributed as well
as trace �les�

�exibility� meta�objects are very �exible data structures�
Adding a functionality to the monitoring environment
only requires adding �elds to the meta�object struc�
ture and specifying the protocol between EMPs and
memory processes�

user�orientation� as illustrated in section �� by working at
the variable level� the DOSMOS�Trace system allows
the user to clearly understand the behaviour of his
application� especially to detect the most important
problems
 bottlenecks� ping�pong e�ects� bad group
structure� activity imbalance�� � �

independence towards the shared data type� though
designed for variable�oriented DSM systems� this model
allows to deal with page�oriented systems� Thus� trac�
ing the accesses to shared pages can be very simply
handled by associating one meta�object to each page�

�
 Conclusion and Future Works

This paper has described a novel model for the monitor�
ing of DSM applications� This model relies on two original
concepts
 Event Manager Processes and meta�objects� In
comparison with previous systems� this approach� based on
a distributed architecture� has shown it was weakly intrusive
and scalable� Implementing these concepts� the DOSMOS�
Trace monitoring system has proved their e	ciency and ro�
bustness�

Based on this model� further developments are mainly
focused on the de�nition and implementation of an on�line
automatic optimization tool �data migration� load balanc�
ing�� i�e� on the automatic detection and correction� at run�
time� of typical problematical situations �e�g� bottlenecks�
ping�pong e�ects� bad group structure��

Acknowledgment

We would like to thank Mr Robert Halstead for his proof�
reading of this paper� His pertinent advices were a great
help for us for improving the quality of this paper�

References

�BL��� Lionel Brunie and Laurent Lef evre� DOSMOS

A distributed shared memory based on PVM� In
First european PVM users group meeting� Uni�
versita di Roma� October �����

�BL��� Lionel Brunie and Laurent Lef evre� New propo�
sitions to improve the e	ciency and scalability of
DSM systems� June ����� to be published in the
proceedings of the IEEE ICA
PP��� conference
�Singapore��

�BS��� Mats Brorsson and Per Strenstrom� Visualiz�
ing sharing behaviour in relation shared mem�
ory management� In InternationalConference on
Parallel and distributed systems� Hinschu Taiwan
ROC� December �����

�CBZ��� John B� Carter� John K� Bennet� and Willy
Zwaenepoel� Implementation and performance
of MUNIN� ACM � Operating Systems Review�
�����
���!���� �����

�CG��� Nicholas Carriero and David Gerlenter� LINDA
in context� Communications of the ACM�

����
���!���� April �����

�DBKF��� J� Dongarra� O� Brewer� J� A� Kohl� and
S� Fineberg� A tool to aid in the design� im�
plementation and understanding of matrix al�
gorithms for parallel processors� Parallel Dis�
tributed Computing� ����
���!���� June �����

�Ede�
� Daniel R� Edelson� Fault interpretation
 Fine�
grain monitoring of page accesses� In Winter

USENIX� pages
��!��
� San Diego� CA� Jan�
uary ���
�

�EKKL��� Susan J� Eggers� David R� Keppel� Eric J�
Koldinger� and Henry M� Levy� Techniques
for e	cient inline tracing on a shared�memory
multiprocessor� Performance evaluation review�
�����

�!��� May �����

�FLK���� M� Friedell� M� LaPolla� S� Kochhar� S� Sistare�
and J� Juda� Visualizing the behavior of mas�
sively parallel programs� In Supercomputing�
pages ���!���� Albuquerque� November �����

�FP��� Brett D� Fleisch and Gerald J� Popek� MIRAGE

a coherent distributed shared memory design� In
ACM PRESS� editor� Proceedings of the twelfth
ACM Symposium on Operating Systems Princi�

ples� volume �
� pages ���!��
� The Wigwam
Litch�eld Park� Arizona� December �����

�GH��� Aaron Goldberg and John Hennessy� MTOOL

a method for isolating memory bottlenecks in
shared memory multiprocessor programs� In In�
ternational Conference on Parallel Processing�
volume �� pages ���!���� �����

�HC��� A� A� Houch and J� E� Cuny� Belvedere
 Pro�
totype of a pattern�oriented debugger for highly
parallel computation� In International confer�
ence on parallel processing� pages �
�!�
�� Au�
gust �����

�HS��� Abdelsalam Heddaya and Himanshu Sinha� An
overview of Mermera
 a system and formal�
ism for non�coherent distributed parallel mem�
ory� Technical report� Computer Science De�
partment� Boston University Boston� MA ������
September �����

�KS�
� E� Kraemer and J� T� Stasko� The visualiza�
tion of parallel systems
 an overview� Journal of
Parallel and Distributed Computing� ��
���!����
���
�

�LH��� Kai Li and Paul Hudak� Memory coherence in
shared virtual memory systems� ACM Trans�

actions on Computer Systems� ����

��!
���
November �����

�Li��� Kai Li� IVY
 A shared virtual memory system for
parallel computing� In International Conference

on Parallel Processing� volume II� pages ��!����
August �����

�LMCF��� T� J� LeBlanc� J� M� Mellor�Crummey� and R� J�
Fowler� Analysing parallel program execution us�
ing multiple views� Parallel Distributed Comput�
ing� ����
��
!���� June �����

�LP��� Zakaria Lahjomri and Thierry Priol� KOAN
 a
shared virtual memory for the iPSC�� hyper�
cube� In Springer�Verlag� editor� Parallel Pro�
cessing � CONPAR ���VAPV� pages ���!����
September �����

�MR��� A� D� Malony and D� A� Reed� Visualizing paral�
lel computer system performances� Parallel com�
puter systems� �����

�MY��� B� P� Miller and C� Q� Yan� IPS
 an interactive
and automatic performance measurement tool
for parallel and distributed programs� In Seventh

international conference on distributed comput�
ing systems� University of Wisconsin� September
�����

�RAK��� Umakishore Ramachandran� Mustaque
Ahamad� and M� Yousef A� Khalidi� Coherence
of distributed shared memory
 unifying synchro�
nization and data transfer� In International con�
ference on parallel processing� volume II� pages
���!���� �����

�RCE��� David F� Robinson� Betty H� C� Cheng� and
Richard J� Enbody� A transparent monitoring
tool for shared�memory multiprocessors� IEEE�
pages ���!�
�� �����

�RM�
� Michel Raynal and Masaaki Mizuno� How to �nd
his way in the jungle of consistency criteria for
distributed object memories �or how to escape
from minos� labyrinth�� Technical Report �����
INRIA� IRISA� Rennes� July ���
�

�SG��� S� R� Sarukka and D� Gannon� Peformance vi�
sualization of parallel programs using SIEVE�
In International conference on supercomputing�
pages ���!���� Washington D� C�� July �����

�Str��� Per Strenstr"om� A survey of cache coherence
schemes for multiprocessors� IEEE computer�
�
���
��!��� June �����

�TKB��� Andrew S� Tanenbaum� M� Frans Kaashoek�
and Henri E� Bal� Parallel programming using
shared objects and broadcasting� IEEE com�
puter� �����
��!��� August �����

�TV��a� Bernard Tourancheau
and Xavier�Fran#cois Vigouroux� Parallel trace
�le management on top of PVM� In PVM UG�
Oak Ridge� TN� �����

�TV��b� Bernard Tourancheau and Xavier�
Fran#cois Vigouroux� PIMSy ! a parallel trace �le
analyzer� In IEEE computer society press� edi�
tor� Scalable High�Performance Computing con�
ference� Knoxville� Tennessee� May �����

