
igh availability and fault tolerance are key issues that
have been considered in different areas. Indeed, fail-

ures can happen due to core network congestion, end server
overload, server hardware or software fault, denial of service
attacks, and so on.

In Internet routing, link as well as router availability were
addressed through failure-aware routing mechanisms. In
Internet servers, data, node, and service availability were
invested in greatly. This survey focuses on fault tolerance for
Internet servers.

Fault-tolerant frameworks take advantage of resource
redundancy to provide reliable execution of a service when its
legitimate processing server goes down. They are built on two
key concepts: fault detection on one hand and fault recovery
on the other. Moreover, they need to meet different chal-
lenges related to the robustness as well as the performance of
the fault handling procedures. The first challenge is illustrated
in Fig. 1 by the resources axis. It measures the resource con-
sumption inherent in the granularity of the failure detection
and recovery mechanisms in terms of CPU, memory, band-
width, I/O, and so on. The second challenge is illustrated in
Fig. 1 by the fault model axis. It measures the strength of the
fault model in terms of fine-grained failover, client trans-
parency, failure detection protocol robustness, and so on. For

instance, the model should ensure that only one instance of
the service is processing the client requests at a given time. It
may be more or less compliant with off-the-shelf commercial
or legacy applications and hardware. The third challenge is
illustrated in Fig. 1 by the performance axis. It deals with the
impact of the failure recovery procedure on the end-to-end
quality of service (QoS) of the highly available service during
both failure and failure-free periods. This measure is all the
more relevant when the handled applications are QoS-sensi-
tive. Representative parameters that would help quantify this
impact include fault detection latency, replica launch latency,
and fault recovery latency. Other application-dependent met-
rics can be considered as well such as bandwidth, latency, and
loss rate. These metrics vary greatly in terms of their dimen-
sion and acceptable ranges for each class of applications.

ADDITIONAL HIGH AVAILABILITY REQUIREMENTS FOR
CLUSTER-BASED ARCHITECTURES

Internet server clustering has been widely used to improve the
scalability of the rendered services under heavy load. A clus-
ter typically consists of a set of networked off-the-shelf servers
that offer a single system image while providing additional
processing capabilities. Cluster-based architectures take

IEEE Communications Surveys & Tutorials • 2nd Quarter 200834

H

S U R V E Y S
I E E E
C O M M U N I C AT I O N S

NARJESS AYARI AND DENIS BARBARON, FRANCE TELECOM R&D
LAURENT LEFEVRE AND PASCALE PRIMET, INRIA/LIP

ABSTRACT
Fault-tolerant frameworks provide highly available services by means of

fault detection and fault recovery mechanisms. These frameworks need to
meet different constraints related to the fault model strength, performance,
and resource consumption. One of the factors that led to this work is the
observation that current fault-tolerant frameworks are not always adapted
to existing Internet services. In fact, most of the proposed frameworks are
not transport-level- or session-level-aware, although the concerned services
range from regular services like HTTP and FTP to more recent Internet
services such as multimodal conferencing and voice over IP. In this work we
give a comprehensive overview of fault tolerance concepts, approaches, and
issues. We show how the redundancy of application servers can be invested
to ensure efficient failover of Internet services when the legitimate process-
ing server goes down.

FAULT TOLERANCE FOR HIGHLY AVAILABLE

INTERNET SERVICES: CONCEPTS,
APPROACHES, AND ISSUES

2ND QUARTER 2008, VOLUME 10, NO. 2

www.comsoc.org/pubs/surveys

1553-877X

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

advantage of resource redundancy to meet both scalability
and high availability requirements. They create fault recovery
models to provide highly available service frameworks having
no single point of failure (SPoF) either at the entry or inside
the cluster. They also provide a means to recover from the
failure of a legitimate cluster resource on an available replica.

Redundancy can follow two different scenarios. First, in
the passive scenario (Fig. 2a), only one node operates as the
master server at a given time and processes the offered net-
work traffic. All the other nodes are the master’s replicas.
Should the master node fail, one replica is elected to recover
the service.

The second scenario is the active scenario (Fig. 2b). where
all the replicas operate concurrently, sharing the offered net-
work traffic. When a processing node fails, one replica is
elected to take over the traffic already assigned to
the failed node.

In a typical cluster the network traffic is first
offered to the cluster head(s), where a load bal-
ancer is instantiated to divert incoming requests
to an appropriate processing server inside the
cluster. Load balancers can be designed as state-
ful or stateless devices. Stateful devices maintain
an in-memory mapping between incoming flows
and the associated available servers. In the event
of failure of the legitimate entry point to the clus-
ter, fault-tolerant frameworks require means to
recover the legitimate load balancer’s association
table so as to ensure the survivability of both
already established flows and lately offered ones.

On the other hand, since deliberate or
unplanned failures can occur inside the cluster,
fault-tolerant frameworks need to provide a
means to keep on processing already accepted

sessions until they normally terminate in the event
of a planned failure at the legitimate processing
server.

However, recovering a service when the entry
point to the cluster or processing node crashes is
not a simple procedure. Indeed, depending on the
end-to-end session properties, different network-
level operations may be considered.

Let us recall that an application typically man-
ages several client sessions. Each client session can
span over a single flow or over multiple flows. The
involved flows can be used for either signaling or
data exchange between the client and the server
throughout the session lifespan (Fig. 3).

Typical examples include regular services such
as file transfer, interactive Web sessions, e-com-
merce services, remote login, and email, as well as
most recent Internet services such as video stream-
ing, multimodal conferencing, live broadcast of
events, video-on-demand services, and voice over
IP. These Internet services have different high
availability requirements and constraints in terms
of allowed packet loss ratio, delay sensitivity, and
transport- and session-level awareness (Table 1).

Network layer failover is not enough to trans-
parently recover the already established sessions
for most of these services. In particular, critical
TCP-based services require robust transport-level
failover as avoid interruption of the already estab-
lished TCP flows in case of failure of the legiti-
mate processing server. A first example can be a
simple connection to a database server. When the
connection terminates, all the uncommitted trans-

actions handled over this connection are aborted, requiring
the user to explicitly initiate them over a new established TCP
flow. A second example references the Border Gateway Pro-
tocol (BGP) routing process. BGP is a TCP-based protocol
deployed on border routers to connect between different
administrative Internet domains. When a connection is broken
with a peer, the router first floods the network with messages
to propagate the failure of the peer BGP router. A second
flood is required to propagate its recovery. A third example
concerns voice over IP applications using H.323. H.323 signal-
ing uses TCP at its transport protocol. Hence, when the flow
is interrupted, the whole end-to-end signaling is broken.

One of the critical challenges that led to this work is the
observation that the current fault tolerance frameworks are
neither transport-level- nor session-level-aware. This article

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 35

■ Figure 1. Constraints of fault tolerance frameworks.

Performance

Fault t
oler

ance

Re
so

ur
ce

s

Overhead of the
resource consumption

• CPU, memory, I/O usage
• Bandwidth usage
• Energy usage
• ...

Existing FT frameworks

The strength of the fault
model

• Fault detection granularity
• Group communication style
• Fault recovery granularity
• Transparency of the failure recovery
• ...

Overhead of the
fault handling procedure

• Fault detection latency
• Replica launch latency
• Fault recovery latency
• ...

■ Figure 2. a) Passive redundancy; b) active redundancy.

(i) (ii)

Client #1

Client #2

Replica
#1

Replica
#2

Master dispatcher

Client #n

Client #1

Client #2

Replica
#1

Replica
#2

Master dispatcher

Client #n

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200836

gives a comprehensive overview of fault tolerance concepts,
approaches, and issues. We show how the redundancy of
application servers can be used to ensure efficient failover of
Internet services in case of failure of the legitimate processing
servers.

THE ORGANIZATION OF THE SURVEY

The rest of this survey is organized as follows. We give an
overview of the fault models and types. We describe the major
failure detection protocols and mechanisms, and outline their
applicability in both synchronous and asynchronous systems.
We revisit the states that must be replicated during failure-
free periods. We address the methods that can be used to
replicate these states, and discuss their limitations and perfor-
mance during failure-free and failure periods. We deal with
the failure recovery mechanisms and provide a comprehensive
overview of the different operations required to provide fault
tolerance support at the network, transport, session, and
application levels. Finally, we conclude by summarizing the
lessons learned and positioning the already discussed mecha-
nisms against large-scale distributed replication and failure
recovery approaches such as those advocated by the domain
name system (DNS) and peer-to-peer (P2P) networks.

INTERNET SERVER FAULT MODELS AND
FAILURE DETECTION APPROACHES

This section deals with failure concepts. First, we recall the
fault models and distinguish between the possible types of
faults for Internet services. Second, we give an overview of
failure detection approaches. Finally, we outline the applica-

bility of these approaches to synchronous and asynchronous
systems.

FAULT TYPES AND MODELS

Failures can occur due to software or hardware malfunction-
ing, at the client or server side, or in the network path sepa-
rating the sender from the receiver. Client-side faults concern
the client device. Network-side faults include the corruption,
delay, reordering, duplication, and loss of packets crossing the
network due to possible link failures or persistent network
congestion. Server-side faults result in the silence or malfunc-
tioning of the processing server, for instance, due to the fail-
ure of one or many of its processes, persistent overload, or
failure of some of its components (processor damage due to
radiation or electrical noise, memory buffer overflow, power
supply interruption, storage device corrupted blocks, network
interface buffer overflow, etc.).

A system may exhibit arbitrary faults [1–3]. Faults can
occur according to two different models. The first model ref-
erences the worst case and identifies the Byzantine fault class
[4]. A fault is said to be Byzantine when it occurs arbitrarily
and maliciously, causing the system to behave incorrectly. A
typical example of a Byzantine server fault consists of trans-
mitting incorrect messages from a faulty server. For instance,
a TCP-based faulty server may send a TCP RST or FIN data-
gram, causing the remote client to abandon or close the con-
nection. When the client-side connection state is lost, the TCP
connection can no longer be transparently restored. The sec-
ond model references the best case and defines the fail-stop
fault class. Fail-stop faults or perfect failures have a determin-
istic impact on a subsystem component and cause it to die
silently. The faulty component behavior is inactivity during
failure. Hence, fail-stop faults are easy to detect.

In general, fault detection is accomplished by means of
some simple heartbeat-based protocols. Some fault injection
research [5, 6] has shown that in practice, most faults obey to
the fail-stop model, meaning that if any component of the
node fails, the entire node is assumed to crash.

In the rest of this article we focus on the server side fail-
ures and use the terms fault, failure, and crash interchange-
ably.

■ Figure 3. A session abstraction.

Signaling over TCP

Data exchange over TCP

Ctrl data exchange over UDP

Host A

Single user session

Host B

■ Table 1. High availability constraints for representative applications.

Application Application
protocol

Transport
protocol

Multiple-
flow-based

Loss-
sensitive

Delay-
sensitive

File transfer FTP TCP Yes No No

Email SMTP TCP Yes No No

Web HTTP TCP No No No

Remote terminal access TELNET TCP No No ~ ms

Remote file server NFS TCP or UDP Yes No No

Real-time audio-video
HTTP/FTP
RTP/RTCP
SIP/H.323

TCP
UDP
TCP or UDP

Yes Yes ~150 ms

Voice over IP SIP/H.323 TCP OR UDP Yes Yes ~150 ms

Instant messaging SIP/H.323 TCP No No Yes/no

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 37

FAILURE DETECTION APPROACHES

Failure detection is the first building block in a fault-tolerant
framework. Two properties are desirable for this component.
First, it should detect failures as soon as they occur so that
the framework can quickly trigger the failure recovery proce-
dure. Second, it must be robust enough to ensure that only
one error-free instance of the service is running at once.

In the following we first assume fail-stop failures where the
absence of proof of aliveness is taken as evidence of failure.
Then we give an overview of the software and hardware fail-
ure detection approaches. Second, we discuss the applicability
of the perfect failure detection approaches to asynchronous
systems.

Perfect failure detection [2] is based on the explicit and
periodic exchange of heartbeat messages between replicas
during error-free periods (Fig. 4).

Heartbeat-message-based monitoring obeys either the pull
model or the push model. In the pull model (Fig. 5) the moni-
tor process periodically asks the monitored host or process for
availability information.

In practice, the monitor process arms a fixed or an adap-
tive timeout on receipt of an availability message from the
monitored host. Assuming a very small network packet loss
rate, consecutive losses of heartbeat replies mean the failure
of the monitored host. The exchange of ICMP ping messages
is a simple pull-based protocol used for host monitoring pur-
poses.

In the push model (Fig. 6) the monitored process periodi-
cally sends availability information to the peer listening moni-
tor process.

δ is chosen such that it approximates the sum of the heart-
beat request and reply transmission and processing times,
while n is a configurable parameter denoting the number of
retries prior to declaring the suspected node as in failure.

Heartbeat messages can be exchanged over one-to-one
unicast channels, or one-to-many broadcast or multicast chan-
nels. Nonetheless, for the sake of less network bandwidth
occupancy as well as better scalability, the exchange of multi-
cast-based heartbeat messages is strongly recommended [7],
and heartbeat messages are typically small (~150 bytes).

Cluster membership protocols are often based on heart-
beat message exchange. A new host announces its member-
ship to the cluster by periodically sending a heartbeat message
to the monitor process. The absence of heartbeat messages
from a given node causes its removal from the list of the
active nodes within the cluster.

The above described protocols are generally used to detect
a node or link failure. However, an error may occur at a
smaller granularity than hosts, causing, for instance, one pro-
cess to crash on the partially unavailable host while all the
other processes still operate correctly. However, the imple-
mentation of error detection protocols at smaller granularity
such as at the process level seems more complex and more
costly. Watchdog timers are an inexpensive method of process

and node error detection. They can be used to monitor user
space processes such as Web servers, database servers, swap
memory, or network interfaces. Their basic idea is that the
process being monitored must reset a timer before it expires.
Otherwise, it is assumed to have failed. Since error detection
is based entirely on the time between timer resets, only pro-
cesses with relatively deterministic runtimes can be monitored.
The major limitation of this approach is that it only provides
an indication of possible process failure. Indeed, a partially
failed process may still be able to reset the timer. Moreover,
the fault type coverage is limited, as neither the data nor the
results handled by the monitored process are checked.

Different implementations of watchdog timers exist cover-
ing both hardware and software timers. The Linux operating
system provides full support for watchdog circuits. A watch-
dog device can be connected to a system to allow the kernel
to determine whether a given process hangs. Softdogs are on
the other hand internal timers updated as soon as a process
writes to /dev/watchdog. A possible high availability orient-
ed use of softdogs is the monitoring of the heartbeat-based
monitoring process itself.

Perfect failure detection is an important concept necessary
to build reliable and highly available frameworks. In particu-
lar, when the replicas share access to a storage device such as
a database or file system, read and write operations on the
stored data must be committed once by the available legiti-
mate processing node to keep the whole framework in a con-
sistent state. Several approaches have been proposed to
provide a processing node with exclusive access to a shared
resource. These approaches fall into two categories: the quo-
rate software-based class [8] and the fencing hardware-based
class [9].

The quorate-based class [8] involves the concept of quo-
rum, which means voting sufficiency. Its basic idea is to assign
a quorum to at most one single elected replica in the cluster.
This approach applies well during failure-free periods, but

■ Figure 4. Heartbeat monitoring abstraction.

Node #1 Node #n

Heartbeat
manager

Heartbeat
messages

■ Figure 5. Pull-based heartbeat monitoring.

The monitor process
function failure_detector(Host h)

Send {Heartbeat_Hello} to the receiver
Wait δ
On receive {Heartbeat_Reply}

return up;
After n*δ

return crashed;
The monitored process
procedure Availability_announce()

Forever
On receive {Heartbeat_Hello}

Send{Heartbeat_Reply} to the monitor

■ Figure 6. Push-based heartbeat monitoring.

The monitor process
function failure_detector(Host h)

On receive {Heartbeat_Hello} from h
return up;

After n*δ
return crashed;

The monitored process
procedure Availability_announce()

Forever
Send{Heartbeat_Hello} to the monitor

Wait δ

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200838

performs less well when a non-perfect failure happens.
Indeed, if the failed node resumes its activities while an elect-
ed node has taken over the service, the accessed shared data
is no longer in a consistent state.

The fencing based class [9] provides fencing functions fol-
lowing two different models. The first model is system-reset-
based [10]. It achieves perfect failures by killing the suspicious
node. By the way, Shoot The Other Node In The Head
(STONITH) [11] uses a network power switch to remotely
shut down or reboot the failed node. Watchdog timers can
also be used to reliably initialize a hardware reset on the sus-
picious node in a STONITH-like manner.

The second model addresses the limitations of system-reset-
based solutions by providing resource-based fencing [12] where
the resource reservation process is embedded within the
shared resource itself. Hence, resource-driven clusters assume
that the storage is qualified to perform the reservations. For
instance, SCSI reservations [12] are often used to ensure that
SCSI storage is exclusively owned by a single node.

In asynchronous systems perfect failure detection is hard to
achieve [13]. Indeed, purely asynchronous systems are charac-
terized by having no finite upper bound on the transmission
delay of messages or the processing delay. Thus, the use of
time-based failure detectors is not suited to asynchronous
environments.

SERVICE REPLICATION CONCEPTS,
APPROACHES, AND ISSUES

The replication concept aims to allow the recovery of a ser-
vice by replicating each of its related states on a number of
replicas. Should the primary processing server fail, the traffic
is taken over by an elected backup node.

Lot of approaches exists to coordinate between replicas
during failure-free periods. Among these approaches, we
name the leader/follower [14], active replication [15], check-
pointing [16], message logging [17], and hybrid approaches
[18]. Challenges to state replication include transparency, low
overhead, and consistency.

Transparency means that no changes are required at the
client or server side to provide state replication. Overhead
refers to the cost of the replication process during failure-free
periods (e.g., in terms of additional delay and resource usage).
Consistency means that replicas maintain the same view of the
replicated state. However, for highly nondeterministic applica-
tions such as multithreaded, random-number-based, or time-
based applications, keeping replicas in a consistent state is not
a trivial problem. The choice of a given replication policy
should achieve the best trade-off between these constraints
and the characteristics of the highly available service.

Before dealing with the replication mechanisms, let us
recall the states that must be properly preserved among
redundant nodes. Servers typically maintain a service state for
each handled client session. This state is required to sustain
communication with the client. A single client session can
involve one or multiple flows for the signaling and data
exchange between the client and server.

Client-transparent fault tolerance means that service is
recovered without interrupting already established sessions
and avoiding the explicit participation of the client side in the
failover operation.

In order to achieve a transparent failover, a consistent
server side state must be available at the backup nodes for
each already established session. In case of failure of the pri-
mary processing node, a replica is elected to recover the
already established sessions.

For a given client session, the server side state includes all
the information required to identify the service. Hence, it
includes the flow- as well as application-level states associated
with the handled session.

The flow state is the network abstraction defining the com-
munication channel used by the application to communicate
with the remote hosts. It is defined at the transport level as
the address known and used by the client to access the ser-
vice. For services built on top of IP such as ICMP, the service
identity is simply the destination IP address used by the
clients to reach the server. For services built on top of the
transport layer, the service identity also includes the TCP or
UDP destination port number identifying the service running
on the target host.

In addition, servers typically maintain some state while
providing the service for both reliable and unreliable commu-
nications. For connection-oriented communications such as
those based on TCP, the server maintains a transport-level
state at each endpoint. This state is used to implement the
functionalities provided by the protocol such as reliable pack-
et delivery, flow, and congestion controls. Transport-level
states are updated by the kernel upon the arrival or departure
of a datagram. For instance, a TCP state includes the
sequence and acknowledgment numbers, advertisement win-
dow value, and so on. More important, it includes all the
client packets that have been acknowledged by the server and
are not yet processed by the application layer as well as all the
data to be sent to the client. TCP stores the client packets
received by the server in its receive queues. Since the client is
no longer able to retransmit the acknowledged data, it is
important not to consequently lose this data as a result of a
server fault. On the other hand, connectionless communica-
tion protocols such as UDP do not provide any functionality
guaranteeing the reliable execution of a service. The flow
state is restricted to the socket structure, which basically
describes the end-to-end flow identifiers.

Several flows may be associated with the same user session.
These flows may be required for signaling and data exchange
throughout the session lifespan. A session state is the abstrac-
tion provided for the application layer to describe the associa-
tion between the communicating endpoints. This association
includes the flow states associated with the concerned session
as well as the associated application level state, if defined. In
contrast to the open systems interconnection (OSI) communi-
cation model, which provides functions for setting up, tearing
down, interrupting, or resuming a session from an agreed syn-
chronization point, the TCP/IP stack provides no explicit sup-
port for session handling. In order to provide session-aware
fault tolerance, a fault tolerant framework must be able to
properly identify and replicate all the states associated with a
highly available session.

While a connection state is restricted to issues including
sequence, error, and congestion control for a particular end-
to-end connection, an application state provides the frame-
work for additional application-level conversations. An
application is either stateful or stateless. A stateful application
maintains an explicit user-level application state. This state
includes the information needed to perform application-level
services such as compression, authentification, and multiparty
conferencing. Typically, the application-level server side main-
tains specific protocol states required to correctly handle the
incoming requests for the entire lifetime of the application,
across multiple client requests and connections. Three-tier
architectures keep most of the application state on a separate
server host such as a remote database server (Fig. 7). When
the time required for reading the application state from the
storage device is less than the time needed to transmit the

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 39

request on the wide network, this approach incurs a small
latency in the end-to-end delay.

Once the primary server fails, the service is recovered on
an elected replica (Fig. 8). In practice, the network identity
takeover at the replica is not enough to prevent breaking the
already established flows. For instance, the replica needs to
re-establish the connection-oriented flow with the remote
database server before resuming read and write operations on
consistently stored application states. For stateless applica-
tions such as telnet or HTTP, each application-level request
looks to the server like a distinct self-contained request. This
means that it is processed independent of its predecessors,
and there is no application-level client state to be preserved at
the server side. Therefore, session-aware failover requires
only to properly recovering the states of each flow involved in
the session. However, when the stateless application server is
extended to provide extra-services such as authentification or
user connection tracking, the user session spans over a virtual
session. At the application level, the virtual session is imple-
mented using cookies, SSL session identifiers, and so on.
More often, these values are used at the server side to index
the stored data and preferences on a per-user basis. Well-
known means to store these states include in-memory process-
es such as Java Servlets and Active Server Pages or flat files
on shared file systems (CODA, NFS, etc.), as well as more
sophisticated database storage systems such as Oracle or
MySQL systems.

THE SEMI-ACTIVE REPLICATION APPROACH
(LEADER/FOLLOWER REPLICATION)

The basic idea of the semi-active replication approach, also
referred to in the literature as leader/follower replication [14],
is to have a replica perform each nondeterministic action first.
Then the leader notifies each follower with the results of the
action that was performed successfully. Finally, each follower
uses this information to keep itself in a consistent state com-
pared to the leader (Fig. 9).

The semi-active replication approach performs well for
read-only files but seems less appropriate when the service
involves files to be concurrently modified by other processes,
using, for instance, the write() system call. This approach also
performs very poorly when keeping the replica states consis-
tent requires transfers of large volumes of information. Final-
ly, this approach is not suited to replicate the state of busy
servers because their throughput might be severely affected.

THE ACTIVE REPLICATION APPROACH

The active replication approach [15] requires all the clients to
receive and concurrently process the offered network traffic.

Its main objective is to ensure that all replicas maintain the
same consistent states while guaranteeing that only one server
is replying to clients at a given time (Fig. 10).

While the leader does not need to forward any data to the
follower(s), further processing is required to ensure that the
follower(s) perform the same processing as the leader and
produce the same data as well. For instance, an active replica-
tion system may require the leader to notify the follower(s) of
how many bytes it has successfully read or modified. Such an
operation seems necessary when the replicas have different
processing capabilities or the upper layer service exhibits non-
deterministic behavior.

A building block for each active replication architecture
deals with the way each replica reliably receives the offered
network traffic sent to the leader. Different techniques can be
used for that purpose. The first technique is based on proto-
cols originally considered for setting up group membership. In
particular, we name the atomic multicast protocols [19] used
to reliably deliver the offered network traffic to a group of
replicas. However, this approach requires that both clients
and servers be reliable-multicast-aware, that is, able to send
and receive data via atomic broadcast/multicast-aware applica-
tion programming interfaces (APIs).

An alternative solution consists of delivering the traffic
exchanged between the clients and the replicas to an interme-
diate gateway or proxy that would reliably perform one-to-
many message delivery to the replicas on one hand and
many-to-one message delivery to the clients on the other hand.
The major drawback of this approach is that it implies addi-
tional overhead due to the cost of translation of the offered
unicast messages to outgoing multicast messages during fail-
ure-free periods. Moreover, this approach adds a potential sin-
gle point of failure, which corresponds to the gateway or proxy.

An alternative approach suggests having each replica pas-
sively intercept and process the traffic originally offered to the

■ Figure 7. Application state on a dependable storage system.

Inter-request state 2

Request 1 Reply 3

Dependable
storage
system

Server

Client

■ Figure 8. Application state recovery from a storage system.

Inter-request state 2

Dependable
storage system

4

5

Reply 6

Request 1

ServerServer

Client

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

primary server. This approach requires the follower to be fast
enough to keep up with the leader processing hardware and
software capabilities to avoid penalizing the performance of
end-to-end highly available communication during failsafe
periods. Different topologies can be used to allow this config-
uration. These are the router topology, Address Resolution
Protocol (ARP) proxy topology, and shared Ethernet topolo-
gy.

In the router topology (Fig. 11) the follower is configured
as the router for the leader host. The router has at least two
interfaces; one of them listens to the Ethernet segment that
the router shares with the leader.

The idea is to add a routing rule to the router’s routing
table that all packets having as destination IP address the
leader’s IP address should be first sent to the follower, which
is set up to forward these packets to the leader. Similarly, the
leader has a routing rule according to which all outgoing
packets are first sent to the follower, which will forward them
to the router. While this topology allows the follower to cap-
ture all traffic flowing between the client and the leader, its
use remains uncommon in practice since it may be impossible
to change the router’s routing table for a given domain.

The proxy ARP topology (Fig. 12) assumes that the leader
and follower are connected to the same LAN. When the gate-

way receives a packet having as destination IP address the
leader’s IP address, it issues an ARP request asking for the
corresponding physical address. The follower, configured to
perform ARP spoofing, replies with its own network interface
hardware address. Once it receives the traffic, the follower
forwards it to the leader through a second network interface.

The main drawback of this topology is that it incurs an
additional delay to the end-to-end communication during fail-
safe periods. This delay corresponds to the time needed by
the intermediate node to issue the forwarding decision.

The Ethernet topology (Fig. 13) is more flexible than the
previous topologies and seems particularly interesting when
the ARP proxy approach is prohibited in the network for
security reasons. Its basic idea is to decouple the follower
node from the proxy as well as from the router. However, it
assumes that the follower is connected to the same shared
Ethernet segment as the leader. The follower listens to the
unicast, multicast, and broadcast traffic exchanged over the
Ethernet medium. In particular, it listens to the traffic flowing
between the client and the leader.

However, for both performance and traffic isolation, most
modern Ethernet topologies are switch-based. The broadcast
medium is replaced by a crossbar device that prevents one
host from tapping the traffic destined to another host. Hence,
when the primary and backup hosts are connected to the
same Ethernet switch, the switch traffic isolation property
implies that the follower will not be able to listen to the traffic
destined to the other hosts in the network. Different solutions
can be engineered to allow passive network tracing and inter-
ception. The first solution consists of using port mirroring
capable switches, which provide the administrator with the
capability of forwarding or mirroring the traffic flowing to or
from one or many of its ports to some or all of the other ports
of the switch. The second alternative consists of using multi-
cast or broadcast enabled topologies to allow a backup node
to listen to traffic originally destined to a primary processing
server (Fig. 14).

The basic idea of the multicast-based topology is to stati-
cally associate both the primary and backup nodes to the
same link layer group (by associating a single Ethernet multi-
cast address to each replica). A standard switch would then
automatically copy the incoming traffic destined to the prima-
ry node to all its outgoing ports. In particular, the backup
node taps the full duplex traffic flowing between the primary

IEEE Communications Surveys & Tutorials • 2nd Quarter 200840

■ Figure 11. The router topology.

LAN (Ethernet)
LAN/Ethernet

WAN/LAN
Client Router

Leader Follower

■ Figure 12. The proxy ARP topology.

LAN (Ethernet)

WAN/LAN

LAN/Ethernet

Client Gateway

Leader Follower

Proxy ARP

■ Figure 10. The active replication approach.

Primary

Output
consolidation

Backup

- Atomic multicast
- Atomic broadcast
- Traffic sniffing
- Etc.

Input processing

■ Figure 9. The semi-active replication approach.

Input

Leader Follower

Output

Notification

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 41

node and the clients. The major drawback of this solution is
its high packet rate due to packet duplication, possibly leading
to overload of both the backup’s NIC and the LAN links.
Moreover, since the backup is involved in more tasks, such as
listening, filtering, and modifying the intercepted traffic, it is
possible that it fails to intercept some packets exchanged
between the primary and the clients. This issue should be con-
sidered by the failover mechanism as well. A first solution
consists of recovering the lost packets from the primary node.
A second alternative consists of recovering the lost packets
from an alternate logger or gateway machine, which would
keep in-memory windows of the packets flowing between the
clients and the primary node for a finite period of time.

THE CHECKPOINTING APPROACH

In the checkpointing approach [16], the server state is periodi-
cally copied either to a standby server(s) or to a stable storage
(Fig. 15).

In the event of failure of the primary node, the most
recent checkpoint is recovered, and the processing resumes
using the restored state. Different checkpointing approaches
exist. They differ in terms of their frequency and completion
time. The most aggressive checkpointing approach is incre-
mental checkpointing. It aims to maximizing the consistency of
the replicated states by performing checkpoints each time a
critical state change occurs at the primary node. The major
drawback of this approach is its cost in terms of CPU con-
sumption at the primary node as well as in terms of added
latency to the end-to-end communication. A second approach
is time-line based checkpointing where a state is checkpointed
each period of time. The time-to-checkpoint value depends on

the measured failure frequency. A small value leads to very
frequent state checkpoints and important overhead during
failure-free periods. However, it offers fewer rollback opera-
tions in the event of failure. Other approaches suggest ran-
domly checkpointing the replicated states or reducing the
checkpointing overhead by guessing the optimal number of
checkpoints that should be taken for a given system.

THE MESSAGE LOGGING APPROACH

Message logging [17] can be applied at the flow or application
level. Its main idea is to redundantly store or log all the mes-
sages delivered to the primary server on stable storage or a
replica (Fig. 16).

For reliability purposes, a message would not be processed
until an acknowledgment is received from the replica or stor-
age device confirming that the message has been successfully
stored.

During failsafe periods, replicas are idle. Once the primary
server fails, the logged messages are replayed and reprocessed
on the elected replica. Different approaches exist for message
logging. Pessimistic message logging [20] consists of logging a
message into a stable storage as soon as it is received. Depen-
dency-based message logging [21] proposes to copy each
received message into a volatile log space. This space will be
flushed into stable storage once it becomes full. Optimistic
message logging [21] also copies the incoming message into a
volatile log space, but proposes to flush it on stable storage
periodically or when the number of logged messages reaches a
given threshold.

THE HYBRID APPROACHES

Since frequent state checkpointing is costly, alternatives to it
have been proposed. A first approach combines checkpointing
with message logging [18]. The idea then consists of logging
all the messages received since the last checkpoint. When a
fault occurs, the most recent checkpointed state is recovered,
followed by replaying all the messages logged since the last
checkpoint to reach a consistent prefailure state. Compared to
checkpointing each state change, the overhead during failure-
free periods is reduced. However, recovery time is increased.
A second approach [18] addresses the nondeterminism at the
application level and suggests actively replicating the flow
level state while logging the application level messages.

DISCUSSION: A COMPARISON OF REPLICATION APPROACHES

The choice of one replication approach should take into
account the constraints of the replicated service. In particular,
it should consider the sensitivity of the service to packet loss
and end-to-end delay as well as the required failover model
characteristics in terms of transparency, performance, and
consistency, during both failure-free and failure periods. In

■ Figure 13. The Ethernet-based topology.

LAN (Ethernet)

WAN/LAN

LAN/Ethernet

Client Gateway

Leader Logger

Follower

■ Figure 14. Passive traffic interception in a multicast/broadcast
topology.

Switch
Router/GW

Client #1

Primary

Backup

Client #2

Client #n

■ Figure 15. Abstraction of checkpointing operations.

Checkpoint Crash

Checkpoint
rollback

Primary

Stable storage

Backup

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

Table 2, we compare the above described replication
approaches according to resources usage, provided level of
consistency, overhead during failure--free periods, and perfor-
mance during failures (e.g., in terms of recovery time).

Overhead during failure-free periods is defined as the
delay incurred by the primary server during failsafe periods. It
can result from waiting for a replica’s acknowledgments
before the primary sends back replies to clients. The recovery
time is the time needed to bring the backup node to a consis-
tent state, similar to the prefailure state of the primary node.
During this period service is unavailable, meaning that the
processing of already active flows is either frozen or interrupt-
ed while new offered traffic is rejected. Hence, this period
should be as short as possible to efficiently mask failures when
time-sensitive services are involved.

Both the active replication and message logging schemes
require the application servers to be deterministic enough to
result in the same output when provided with the same input.
However, in practice, servers may exhibit nondeterministic
behaviors due to multithreading or the use of time- or ran-
dom-number-based variables. The active replication approach
seems to offer the best recovery time value while involving
more resources during failure-free periods. On the other
hand, the message logging approach requires a large failover
time since all the messages received prior to the failure must
be replayed.

FAILURE RECOVERY APPROACHES AND ISSUES

This step is required following failure detection. It consists of
resumption of normal operations of the failed server on an
available backup node. Its objective is to increase both the
availability and reliability of the replicated service. Availability
consists of allowing lately arriving requests to be processed
transparently to the client side in the event of failure of the
legitimate processing server. Reliability of the service requires
avoiding interruption of already established sessions during
the failover procedure.

The failure recovery procedure requires first electing a
backup node among a set of available replicas. In order for
the backup to transparently take over the offered network
traffic, it should first take over the identity of the failed host.
This step, known as network identity takeover, provides a basic
level of service availability. However, it does not allow any
improvement of service reliability because it does not prevent
interruption of already established sessions if they involve
connection-oriented flows. In order to avoid restarting already
established connection-oriented flows from scratch, further
steps are required at the upper layers. These steps consist of
resuming the already replicated service from a consistent
state, at either the transport, session, or application level. In
the following we provide an overview of already known tech-
niques used to achieve consistent client transparent failover at
the network, transport, session, and application levels.

NETWORK-LEVEL FAILOVER

Network-level failover consists of providing replicas the means
to take over the network identity of the legitimate processing
server if it fails. It provides an acceptable level of service
availability for stateless services since it allows the elected
replica to transparently process the traffic originally offered to
the failed node.

Different approaches have been proposed to provide the
network level redundancy. The IETF 802.3ad link aggregation
group proposed the link aggregation protocol [22] which
allows the use of multiple Ethernet network interfaces or links
in parallel to provide both increased throughput and availabil-
ity capabilities. The same concept is called EtherChannel by
Cisco, Link Trunking and IP multipathing by Solaris, and
Channel Bonding or Network Interface Card (NIC) Teaming
in Linux. The basic idea is to aggregate redundant network
interfaces at the link level to give the network layer the illu-
sion of dealing with a single network interface. Once the pri-

IEEE Communications Surveys & Tutorials • 2nd Quarter 200842

■ Figure 16. Abstraction of the message logging operations.

Primary

Output
processing

Input processing

Backup

(1) Log empty
(2) Msg logging

- Atomic multicast
- Atomic broadcast
- Traffic sniffing
- Etc.

■ Table 2. A comparison of state replication mechanisms.

Active replication Message logging Checkpointing

Resource usage –Requires a dedicated backup –Requires an idle backup –Frequent checkpoint is costly

State preservation
frequency –States are created on the fly –Connection-level messages are logged

–Application-level messages are logged –With every state change, etc.

Recovery time –Short –Long (message log replay) –Less than the time required in the
logging scheme

Failure-free
overhead

–Active replication scheme
dependent –Additional delay –The commit delay overhead

Nondeterminism
handling

–Must be handled by the active
replication method

–Issue for the connection and
application level –Undefined

Need for message
interception

–Depends on the primary/
backup topology

–Depends on the primary/backup
topology

–Depends on the primary/backup
topology

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 43

mary interface fails, an available NIC assumes its network-
level address. Unlike channel bonding, IP multipathing pro-
vides the ability to failback to the primary network interface
when the latter is restored to operational status. Aggregation
also provides the capability of load balancing the inbound
traffic across multiple network interfaces so as to achieve a
higher throughput rate.

ARP-spoofing-based network identity takeover [23] pro-
vides the means to take over the network identity of a failed
server using link layer ARP spoofing. Should the primary
node fail, a backup node takes over the virtual IP address of
the service. It starts then flooding the network with gratuitous
ARP messages announcing the new association between the
virtual service address and the link layer address of the lately
elected primary (Fig. 17).

Fake [24] is an ARP spoofing based IP Takeover imple-
mentation for Linux. It is usually used conjunctly with Mon
[25] and IpFail [26], which both provide failure detection
capabilities.

The same idea has been used in the Virtual Router Redun-
dancy Protocol (VRRP) [27], which standardized Cisco’s Hot
Standby Router Protocol [28]. VRRP is a nonproprietary
redundancy protocol that provides routers with high availabili-
ty capabilities. It builds the concept of a virtual router or vir-
tual gateway, which abstracts a cluster of routers servicing
hosts connected to the same network, instead of using a single
physical router or gateway (Fig. 18).

VRRP covers both the active/standby and active/active sce-
narios. The active/active scenario uses load sharing techniques
to improve replica utilization [29]. However, in the
active/standby scheme, only the master node acts on behalf of
the group at a given time by performing routing and replying
to the ARP or ICMP packets. The master node periodically
broadcasts gratuitous ARP messages to publish the associa-
tion between the medium access control (MAC) address and
the virtual IP address of the router or gateway. This MAC
address has been fixed by the Internet Engineering Task
Force (IETF) to 00-00-5E-00-01-XX, where the last byte cor-
responds to the configured virtual router identifier (VRID).
Moreover, the master node periodically multicasts availability
offers to all the replicas. An offer includes the priority of the
node, virtual router identity, advertisement interval value, and
so on at a given time; the master router has the highest priori-
ty value. Failure to receive a multicast packet from the master
router for a period longer than three times the advertisement
timer causes the replicas to assume master node failure. The
virtual router then transitions to an unsteady state where an
election process is initiated to select the new master router
among the available replicas. On the other hand, planned fail-

ures force the priority of the master node to zero to speed up
the takeover procedure.

VRRP can be used over Ethernet networks as well as mul-
tiprotocol label switching (MPLS) and token ring networks.
Most router vendors provide VRRP-enabled routers. VRRP
implementations are also available for Linux and BSD.
Keepalived [30] is a VRRPv2-based implementation for Linux
that provides high availability capabilities to active/standby
LVS-based clusters. The Common Address Redundancy Pro-
tocol (CARP) [31] is a nonproprietary and unrestricted alter-
native to HSRP and VRRP.

A third network identity takeover mechanism assumes the
grouping of replicas in a cluster of nodes (Fig. 19). The
incoming traffic is first offered to the entry point to the clus-
ter where network address translation is performed on the
incoming traffic before assigning it to a master server. When
the legitimate processing server fails, the dispatcher statically
assigns the incoming traffic to an available replica by translat-
ing the service virtual IP address to the replica’s private IP
address. The major drawback of this approach is that it intro-
duces the entry point to the cluster (the dispatcher) as a
potential single point of failure.

TRANSPORT-LEVEL FAILOVER

Transport layer protocols rely on an explicit association
between a service and its physical location for the wired Inter-
net. Hence, when a host fails, the corresponding end-to-end
flow terminates. Transport-level failover approaches aim to
ensure the survivability of the active flows even in case of fail-
ure of the legitimate processing node. The reliability of the
already established flows is indeed increased by backing every
related flow state on a number of replicas. Should the primary
server fail, the flow is taken over by an elected backup while
avoiding its interruption.

The currently proposed solutions for high availability at the
transport level are divided into two families. First are the
client-aware solutions, requiring changes to the client operat-
ing system (OS) as well as to the application server. Second
are the client-transparent solutions, moving most of the fault
tolerance work to either the target server or an intermediate
proxy. In the following we focus on the active replication-
based client-transparent approaches.

Connectionless protocols have no native support for reli-
ability. For the sake of reduced latency, time-constrained
services as well as most of the legitimate services running

■ Figure 17. ARP-spoofing-based IP takeover.

IP addr

Server

IP addr

Server

Client

■ Figure 18. VRRP/HSRP-based IP takeover.

VIP IP @

VRRP / HSRP

Internal IP @ #1

IP @ int1
Gateway: IP @ #1

Internal IP @ #2

IP @ int2
Gateway: IP @ #2

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200844

in the network such as DNS or NTP are UDP-based. Most
of these services provide critical functionalities to the users.
Hence, it is desirable to provide high availability features
even for UDP-based communications. Connection-oriented
services, however, involve more controls. In particular, TCP
maintains a server state for each peer involved in a commu-
nication. TCP states store all the information required to
perform error, sequence, and f low control . Different
approaches have been proposed to provide TCP with high
availability means. FT-TCP [32], transparent connection
failover [33], and ST-TCP [34,35] are representative frame-
works providing transport level failure recovery capabilities.
They perform differently during failsafe and failure peri-
ods.

FT-TCP [32] is based on wrapping the TCP/IP stack into
north and south modules operating between the TCP/IP lay-
ers and the network interface driver on one hand, and between
the application server and the TCP layer on the other hand.
Two modules are used on each replica to keep both the con-
nection and the application states synchronized. The primary
node first intercepts the incoming traffic as well as the system
call results and writes them on an independent storage system.
When write() operations are successfully acknowledged, the
primary node sends back replies to the client. In parallel, the
backup node reads the data on the stable buffer and uses it to
synchronize its states. The major limitation of FT-TCP is that
it significantly modifies both the primary and backup nodes.
Moreover, changes on the primary node imply additional
resources usage and delay to the end-to-end communication
during failure-free periods.

In the transparent connection failover scheme [33], the
backup node directly intercepts the incoming traffic. It pro-
duces data that is first sent to the primary node. The latter
merges it with the data it already produced and then sends
the resulting data back to the client. As we can see, the time
saved by allowing the backup node to directly handle the
legitimate traffic is wasted during the data merging process at
the primary. Moreover, this approach incurs increasing usage
of the primary’s resources.

In ST-TCP [33, 34] the backup node passively intercepts the
traffic flowing between the primary server and the clients. The
TCP layer receive queue at the primary is modified such that it
keeps a copy of any TCP segment already read by the applica-
tion until a corresponding acknowledgment is sent back by the
backup node. This aacknowledgment informs the primary that
the data has been successfully processed at the backup. The
main disadvantage of ST-TCP is its cost during failsafe peri-
ods. Indeed, when the backup server is not as fast as the legiti-
mate processing server, the latter advertises reduced congestion
windows to the clients, resulting in less end-to-end throughput.
Moreover, in case of failure of the primary node jointly with
datagram loss at the backup, ST-TCP leads to inconsistent
replicated states at the backup server.

SESSION AND APPLICATION LEVEL FAILOVER

Some regular services as well as most next-generation IP ser-
vices involve multiple and heterogeneous flows for the same
session. These flows are required for signaling and data
exchange all along the session lifespan. Hence, failing over an
already established session on an available replica requires to
failback each associated state on the elected replica, be it a
kernel- or an application-level state.

However, due to possible nondeterministic behavior at the
application level, keeping replicas in a consistent state
remains a nontrivial problem. Particularly, the active replica-
tion based approach doesn’t apply natively to a wide range of
applications. Other approaches have been proposed to handle
the application-level inconsistency at the replicas during fail-
ure-free periods. A first approach consists of synchronizing
the system calls generated at each replica by making the back-
up(s) intercept and use the primary’s systems calls. While this
approach has the advantage of being application internals
unaware, it suffers from large overhead, particularly when the
application executes a large number of system calls. An alter-
native solution consists of identifying the possible sources of
any nondeterministic behavior at the application level. Repli-
cas are then synchronized at those points (e.g., via messages).
Content inspection can be used to identify the sources of non-
determinism at the application level. A third alternative con-
sists of using checkpointing-based techniques such as those
promoted by the Service Availability Forum (SA Forum) [36].
OpenAIS [37] and OpenClovis [38] are checkpointing-based
frameworks requiring changes to the server side. Changes
basically consist of placing checkpointing breakpoints into the
server code, triggering the saving of the primary’s application
level states at the peer replica(s).

CONCLUSION AND LESSONS LEARNED

One of the factors that led to this work is the observation that
current fault-tolerant frameworks are not adapted to next-
generation Internet services. Indeed, these frameworks have
to meet different challenges related to fault model robustness
as well as fault model performance and resource consump-
tion, during both failure-free and failure periods. In particu-
lar, currently proposed fault tolerance frameworks are neither
transport- nor session/application-level-aware, even though
the concerned services range from regular services such as file
transfer to more recent services such as multimodal confer-
encing and voice over IP.

In this survey, we provide a comprehensive overview of the
building blocks of fault tolerance frameworks. First, we focus
on describing the different existing Internet server fault mod-
els. Then we outline the state-of-the-art failure detection
approaches, and discuss their applicability to synchronous and
asynchronous systems. Second, we deal with service replica-
tion concepts and approaches. We recall the different states
required to be replicated on redundant replicas. These states
belong to the network, flow, and service levels. In a second
step we describe the state replication approaches. We outline
their major limitations, and compare their performance dur-
ing failure-free and failure periods. These approaches are the
leader/follower, active replication, checkpointing-based, mes-
sage-logging-based, and hybrid approaches. In particular, we
show that the active replication approach offers the best
recovery time value while being resource consuming during
failure free periods. We also show that both the active replica-
tion and message logging approaches assume that servers are
deterministic enough to result in the same output when pro-
vided with the same input. Finally, we focus on failure recov-

■ Figure 19. Static NAT-based IP takeover.

Client #1
Primary #1

Backup #1

Primary #n

Backup #n

Client #2

Client #n

Dispatcher
NAT enabled

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 45

ery approaches for the network, flow, and session levels. Fail-
ure recovery consists of resuming the failed service starting
from the last available consistent state rather than restarting
the service from scratch. Network-level failure recovery pro-
vides a replica the means to take over the network-level iden-
tity of the failed server. Different mechanisms have been
proposed such as the aggregation of network interfaces, the
use of ARP spoofing, the use of the Virtual Router Redun-
dancy Protocol as well as the use of network address transla-
tion. However, while providing an acceptable level of service
availability for the stateless services, network-level failure
recovery mechanisms provide no means to recover already
established flows or sessions with the failed node. Transport-
and session-level failure recovery approaches are required to
avoid restarting already established flows or sessions from
scratch. We focus on client transparent failover approaches,
outlining in particular their performance during both failure-
free and failure periods.

Other alternatives for high availability have been proposed.
Distributed approaches provide service and data high avail-
ability capabilities. For instance, the DNS system allows the
replication of sites to failback client requests on an available
server in the event of failure of the legitimate processing serv-
er. The major disadvantage of the DNS system is the impact
of its caching mechanism on the failure recovery period.
Moreover, the DNS system provides no means to recover
already established flows or sessions. Peer-to-peer networks
provide a means to achieve improved availability of data and
services by replicating the data over the Internet. However,
some peer-to-peer topologies still involve particularly critical
servers such as the bootstrap nodes. These nodes are involved
during the bootstrap of given peer-to-peer services. According
to some models, bootstrap servers may still communicate with
peer nodes following a client/server communication. The state
replication methods discussed here are valuable means to
enhance the reliability of such critical components.

REFERENCES

[1] T. Anderson and P. A. Lee, Fault Tolerance: Principles and
Practice, Prentice Hall, 1981.

[2] T. Anderson and P. A. Lee, “Fault Tolerance Terminology Pro-
posals,” Proc. 12th Int’l. Symp. Fault Tolerant Computing,
1982.

[3] J. C. Laprie, “Dependable Computing and Fault Tolerance:
Concepts and Terminology,” Dig. 15th Fault-Tolerant Comput-
ing Symp., 1985.

[4] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” Proc.
3rd Symp. Op. Sys. Design and Implementation, Feb. 1999.

[5] W. Torres-Pomales, “Software Fault Tolerance: A Tutorial,”
NASA Langley Research Center, Hampton, Virginia, Oct. 2000.

[6] F. B. Schneider, “Byzantine Generals in Action: Implementing
Failstop processors,” Proc. ACM Trans. Comp. Sys., May 1984.

[7] R. Aggarwal et al., “Internet Draft: BFD For MPLS LSPs,” Net-
work Working Group, Mar. 2007.

[8] J. Bottomley, “Implementing Clusters for High Availability,”
Proc. USENIX Conf., July 2004.

[9] L. Marowsky, “A New Cluster Resource Manager for Heart-
beat,” Jan. 2004.

[10] K. Kopper, Linux Enterprise Cluster: Build a Highly Available
Cluster with Commodity Hardware and Free Software, Prentice
Hall, May 2005.

[11] www.linux-ha.org/STONITH
[12] J. Bottomley, “Shared Storage Clusters,” SteelEye Tech. Tuto-

rial, 2000.
[13] C. Fetzer, “Perfect Failure Detection in Timed Asynchronous

Systems,” IEEE Trans. Comp., 2003.
[14] D. C. Schmidt and C. O’Ryan, “Leaders/Followers, A Design

Pattern for Efficient Multi-Threaded I/O Demultiplexing and
Dispatching,” Siemens res. rep., 2000.

[15] L. Wang, W. Zhou, and W. Jia, “The Design and Implementa-

tion of an Active Replication Scheme for Distributing Services
in a Cluster of Workstations,” J. Sys. and Software, 2001.

[16] O. Laadan, D. Phung, and J. Nieh, “Transparent Checkpoint-
Restart of Distributed Applications on Commodity Clusters,”
Proc. IEEE Int’l. Conf. CLUSTER 2005.

[17] E. N. Elnozahy and W. Zwaenepoel, “On the Use and Imple-
mentation of Message Logging,” Dig.. 24th Fault-Tolerant
Comp. Symp., 1994.

[18] N. Aghadie, “Transparent Fault Tolerant Network Services
Using Off-the-Shelf Components,” Ph.D. res. rep., 2005.

[19] S. Deering, “RFC 1112: Host Extensions for IP Multicasting,”
Network Working Group, Aug. 1989.

[20] Y. Huang and W. Yi-Min, “Why Optimistic Message Logging
Has Not Been Used in Telecommunications Systems,” Proc.
25th Int’l. Symp. Fault-Tolerant Computing, 1995.

[21] R. E. Strom and S. A. Yemini, “Optimistic Recovery in Dis-
tributed Systems,” Proc. ACM Trans. Computing Sys., 1985.

[22] SysKonnect white paper, “The Link Aggregation Protocol
According to the IEEE 802.3ad,” 2002.

[23] C. Fetzer and N. Suri, “Practical Aspects of IP Take-Over
Mechanisms,” Proc. 9th IEEE Int’l. Wksp. Object-Oriented Real-
Time Dependable Sys. 2003.

[24] www.vergenet.linux.net/linux/fake/
[25] www.linuxvirtualserver.org/software/Mon/
[26] www.linuxvirtualserver.org/software/IpFail
[27] S. Knight et al., “ RFC 2338: Virtual Router Redundancy Pro-

tocol ,” Network Working Group, Apr. 1998.
[28] T. Li et al., “RFC 2281: Cisco Hot Standby Router Protocol

(HSRP),” 1998.
[29] R. Hinden, “RFC 3768: the Virtual Router Redundancy Proto-

col,” Network Working Group, Apr. 2004.
[30] http://www.keepalived.org
[31] OpenBSD Programmer’s Manual pages, Section 4, “CARP:

Common Address Redundancy Protocol,” 0ct. 2003.
[32] D. Zagorodnov et al., “Engineering Fault-Tolerant TCP/IP

Servers using FT-TCP,” Proc. Int’l. Conf. Dependable Sys. and
Networks, 2003.

[33] R. Koch et al., “Transparent TCP Connection Failover,” Proc.
Int’l. Conf. Dependable Systems and Networks, DSN 2003.

[34] M. Marwah, S. Mishra, and C. Fetzer, “A System Demonstra-
tion of ST-TCP,” Proc. Int’l. Conf. Dependable Sys. and Net-
works, 2005.

[35] M. Marwah, S. Mishra, and C. Fetzer, “TCP Server Fault Toler-
ance Using Connection Migration to a Backup Server,” Proc.
Int’l. Conf. Dependable Sys. and Networks, 2003.

[36] http://www.saforum.org
[37] http://www.openais.org
[38] http://www.openclovis.com

BIOGRAPHIES

NARJESS AYARI (narjess.ayari@orange-ftgroup.com) is a Ph.D. stu-
dent and research engineer at France Telecom R&D Laboratories,
Lannion, and a member of the RESO team at the LIP laboratory in
the Ecole Normale Supérieure de Lyon (ENS-Lyon) in France. She
received her engineering diploma in computer science from the
National School of Computer Science of Tunis (ENSI) in 2001, and
an M.Sc. in networking and distributed systems from the same
school in 2003. Her current research interests include network
traffic load balancing, high availability, QoS. and admission con-
trol in wired networks. Her Web site is http://perso.ens-lyon.
fr/~narjess.ayari

DENIS BARBARON (denis.barbaron@orange-ft.com) graduated in
computer science with a diploma of specialized higher studies
from the University of Science of Nantes, France, in 1994. He has
worked with several telecom companies in France since 1988. He
joined FT R&D in 1997 as an R&D engineer. Since 2005 he has
been a senior expert in cluster architectures at France Telecom
R&D Laboratories, Lannion. His actual research interests focus on
carrier grade telecom service platforms.

LAURENT LEFEVRE [M] (laurent.lefevre@inria.fr) obtained his Ph.D. in
computer science in January 1997 at Laboratoire Informatique du
Parallélism (LIP), Ecole Normale Supérieure de Lyon, France. From

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200846

1997 to 200 he was an assistant professor in computer science at
Lyon 1 University. Since 2001 he is a permanent researcher in
computer science at INRIA, the French Institute for Research in
Computer Science and Control. He is member of the RESO team
(High Performance Networks, Protocols and Services) at LIP. He
has organized several conferences in high performance network-
ing and computing, and is member of several program commit-
tees. He has co-authored more than 70 papers published in
refereed journals and conference proceedings. He takes part in
several research projects. His research interests include autonomic
networking, high performance active networks, active services,
high performance network protocols, grid and cluster computing
network support, active grid, distributed shared memory systems,
and data consistency. His Web site is http://perso.ens-lyon.fr/lau-
rent.lefevre

PASCALE PRIMET (pascale.primet@ens-lyon.fr) is a senior scientist
(directrice de recherche) at INRIA. Based at Ecole Normale
Supérieure de Lyon (ENS-Lyon), within LIP, she currently leads the

RESO project team at INRIA. This team is specialized in communi-
cation protocols and software optimization for high-speed net-
works and grid environments. From 1989 to 2001 she worked as
a researcher and lecturer at Ecole Centrale de Lyon (ECL). In 2001
she joined INRIA as a researcher. In 2001–2002 she managed the
Networking Work package of the European IST Data Grid project.
In 2002–2003 she was the scientific coordinator of e-Toile, the
first national RNTL grid platform project funded by the French
Research Ministry. She is a member of the Steering Committee of
the GRID5000 project, responsible for the networking area. She
has been a co-chair of the GGF Data Transport Research Group.
She is general chair of the GridNets conference, a member of the
steering committee of the PFLDnet workshop series, was HPDC
’06 workshop chair, and was session QoS and security chair of
the 1st ITU-GGF workshop. She is a member of several interna-
tional conferences’ program committees (Vecpar, EuroPAR,
AGMN, pfldnetELLIPSIS). She is an expert in networking for the
National Research and Science Center and the National Research
Agency, and a member of the GLIF community. She has published
more than 60 research papers on networks, protocols, and grids.

Authorized licensed use limited to: INRIA. Downloaded on September 15, 2009 at 11:07 from IEEE Xplore. Restrictions apply.

