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Abstract—Reducing energy consumption is part of the main
concerns in cloud and HPC environments. Today servers energy
consumption is far from ideal, mostly because it remains very high
even with low usage state. An energy consumption proportional
to the server load would bring important savings in terms of
electricity consumption and then financial costs for a datacenter
infrastructure. In this paper, we propose a platform composed
of heterogeneous architectures to achieve proportional computing
goal. We select low power ARM processor for a light load, and a
range of regular x86 servers when performance is required. We
propose a comparative study of benchmark execution in order
to find the best configuration depending on the current load and
show the effective results in terms of energy proportionality.

Keywords—heterogeneous architectures, energy proportionality,
virtualization, emulation, ARM processor

I. INTRODUCTION

With the explosion of data in last few years and its
evolution tendency for the future, the need for datacenters is
growing faster and faster. Whether they are directed towards
cloud or HPC applications, their number is exploding, and
so is their energy consumption. In [1], authors estimate that
worldwide datacenters consumed up to 270 TWh in 2012,
which accounts for almost 2% of global energy consumption.
Therefore this represents the main limitation for building such
an infrastructure because electricity is the most important cost.
In addition, inside a datacenter not all the consumed energy
goes to computing. Despite the fact that there are some loses
due to power conversion, and that a subsequent fraction of the
total energy is needed for the cooling infrastructure, servers are
in most cases always powered on even if they are idle. The
problem is that when a server is up but idle (powered on but
without activity), its energy consumption is already significant,
and wasted. Some idle servers can consume as high as 50%
of its maximum power consumption when fully loaded.

The need to achieve proportional energy consumption in
virtualized large-scale clusters, grids and clouds, has been
raised for the first time by Luiz Andre Barroso and Urs
Holzle in 2007 [2]. They conducted experiments in a Google
datacenter, and noticed that servers are mostly used at a load
between 10 and 50%. This means they are rarely completely
unused, and therefore in a state where they could be shut down,
and also rarely at full performance, where they are the most
energy efficient. The energy consumed when a machine is idle
is called the static consumption and this is the issue we want
to tackle in our work. For example on Fig.1 from Barroso and
Holzle paper, the static consumption represents 50% of the
peak. Our goal is to reduce this static cost as much as possible,
and to extend the dynamic consumption to 100%. Graphically,

we want to replace the green curve by a straight line starting
from 0 and going to the peak in a fully proportional way.
An architecture with such a consumption pattern would bring
significant energy savings.

Fig. 1. Server power consumption and energy efficiency from 0 to 100%
utilization (Figure from [2])

We start this paper by an overview of some related works
on energy efficiency and proportionality in next section. Then
we detail our different contributions in section III, and describe
our experimental platform in section IV. Along section V
we comment the obtained experimental results. To wrap up
our article we draw some conclusions and propose some
perspectives in section VI.

II. ENERGY EFFICIENCY AND PROPORTIONALITY

Energy savings in clouds and HPC infrastructures is a
popular and quite recent research field. Many works have
been done in this area to find solutions to optimize the
utilization of resources inside datacenters. A famous approach
is consolidation which consists in gathering the working load
on the fewest number of servers to be able to switch off the
unused ones. This can be achieved thanks to virtualization
which allows several independent operating systems to coexist
on a single physical machine. Live migration [3] is the mech-
anism used to dynamically move virtual machines through
physical servers without impacting applications running inside.
Performing consolidation aims at saving energy by freeing
lightly loaded machines. The goal is to switch unused servers
off, or put them in a low power mode, and only turn them on
when they are needed. This idea is not as simple as it seems
because switching off and on a server takes time and consumes
extra power. Hence these actions must be well decided to
actually save energy. Most consolidation approaches are based
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on heuristics algorithms, which are variants of the bin packing
problem, but other alternatives have been proposed and tested
such as constraint programing [4], genetic algorithms or Ant-
Colony metaheuristics [5]. Another green leverage is DVFS,
which stands for Dynamic Voltage and Frequency Scaling.
The principle is to adapt the frequency of the processor to
the current server needs, because the energy consumption
decreases when the frequency is reduced. However like other
leverages, important energy savings can only be reached if
those actions are performed wisely, and this will rely on a
good knowledge or prediction model of the workload. In [6],
the authors propose to monitor performance counters in order
to get current profiles of running systems and predict their
evolutions. This system allows to take decisions according to
the predictions and thus make more effective energy savings.

But these approaches have some limitations, they only
try to reduce the overall energy consumption. Consolidation
enables the servers to be fully loaded, where they are the
most efficient, but the problem of high static consumption
remains. With our work we want to bring a solution which
eliminates static costs by trying to reach energy proportionality.
The goal is to approach a nearly null consumption at idle
state, and then a linear consumption proportional to the load.
If such a proportional hardware, or system, could exist, then
consolidation would not necessarily be needed because the
energy efficiency of the system would be constant.

Regarding proportional computing, some works [7] [8],
propose metrics to evaluate the proportionality of an archi-
tecture. The first one compares the consumption curve as a
function of load, to the ideal proportional linear curve. While
the second one defines two separate metrics: one to measure
the difference between idle and maximum consumption, and
another to measure the linearity of this consumption. These
metrics are then applied to existing architectures to study the
evolution of the hardware from this point of view through
recent years. The architectures are in general more and more
proportional, but it is noted that meanwhile the gap between
maximum and idle consumption is reduced, the linearity is
degraded. Perfect proportionality is then not reached yet and
still seems far away.

Consequently, one solution to achieve the goal of energy
proportionality is to use several architectures with different per-
formance and consumption characteristics. This is the concept
used in heterogeneous multicore processors, which are also
called hybrid processors. Different companies have proposed
their implementation of this concept like ARM with their
big.LITTLE processor [9] which combines a low-power pro-
cessor with a high-performance one, or Nvidia with their new
Tegra K1 processor [10] that couples ARM processors with
GPU accelerators. Inside those systems, the applications are
chosen to run on the processor that best suit their computing
needs. Moreover, they feature a shared cache memory thanks to
a cache coherence interconnect system that eases the migration
of tasks between the processors.

Fig.2 depicts the architecture of big.LITTLE hybrid pro-
cessor according to ARM itself. On the left, Cortex-A15 plays
as the ’big’ processor and on the right Cortex-A7 is the
’little’ one. The particularity of this proposition resides in the
CCI module, functioning with interruptions, which brings full
coherency between the two processors. This concept allows

a nearly transparent task migration from one processor to
another, and this enables to better fit to the evolutions of
application resource needs. ARM proposes different forms of
utilization of this architecture : CPU Migration and Global
Task Scheduling. In the first one, each big core is paired with
a little one, and only one core of each couple can be active
at a time. Whereas in the second form, all cores are viewed
in a global way and any core can be active or shut down
independently. The last option offers more flexibility but also
more complexity and brings many challenges for the system
management.

Fig. 2. big.LITTLE system architecture (figure from ARM white paper [9])

Hybrid multiprocessor is an innovative approach, but for
the moment they are dedicated to mobile devices. The idea
behind this concept is to extend battery life duration for
mobile devices, so to consume as little as possible during
the idle periods, while delivering good performances when
needed, for instance for game playing or video watching.
Our goal is to extend this concept at a datacenter scale. We
want to exploit ARM processors with low power consumption
when the load is low and keep the traditional servers for the
performance. Although our idea is inspired from this concept,
the two approaches differ on some points. Hybrid processors
involve threads migrations while at machines level it implies
migrations of virtual machines or applications containers. This
kind of migrations represents a challenge because it is not
easy to have a shared memory among heterogeneous machines.
Furthermore, as the heterogeneity resides at the architecture
level, the design of applications or virtual machines are
different. Next challenge is to find the most effective and
appropriate way to take advantage of the different architectures
characteristics by performing migrations at the right time.

In [11] they consider having heterogeneous architectures
with stateless web servers. A set of hardware composed of
Raspberry Pi, Intel Atom and Intel i7 is considered. It shows
that for a load up to 50 requests per second, it is more
interesting to use a combination of low power processors (Pi
and Atom) than using one i7. Doing so, the power consumption
curve gets closer to the ideal proportional. However, this work
only applies to this specific application type, and for more
complex applications such as statefull web servers, additional
mechanisms are implied. Our work targets a vaster range of
applications that is why we focus on virtual machines to be
the most general possible.



III. CONTRIBUTIONS

A. Objectives

Our goal is to always execute applications on the most
suitable architecture at any time. The most suitable architecture
is the one that consumes the least for the current performance
needed by the application. When the performance requirements
of the applications evolve, the architecture where it is currently
executing may no longer be the most suitable, and we may
need to move the application to a different architecture. For
instance if the CPU load decreases, the application should be
migrated to a less powerful and less consuming architecture in
order to save energy, but if it increases, the application must be
transferred to a more powerful architecture in order to satisfy
its needs and not impact negatively on its execution. To do
this, we use live migration which is widely used in today’s
datacenters, but the architecture heterogeneity that we bring
makes it more difficult and we have to find a way to enable
live migration between heterogeneous machines.

As previously said, proportional hardware does not exist
yet, hence we decide to choose different pieces of hardware
to approach a proportional one. Nowadays, datacenters are
mostly composed of x86 processor based servers. Since the
2000s, almost all these processors, built by Intel and AMD,
have 64 bits memory addressing. They have a good perfor-
mance/price ratio, and are the most widespread. However,
their main drawback is their high power consumption in
idle state. We consequently focus on very low consumption
processors to see if we can counteract these static costs.
It appears that ARM processors offer the best compromise
between performance and power consumption. Indeed, ARM
processors are historically designed for embedded systems so
the low power consumption was the main constraint. But now
they are more and more designed for mobile devices such as
smartphones and tablets, thus they are becoming more and
more powerful. In addition, some of them recently include
virtualization extensions. This last point has strengthened our
idea to bring those processors into a datacenter.

B. Virtualization challenge

Our first concern is to study the existing virtualization
solutions and find if some of them are compatible with both
ARM and x86 architectures, and if they can be used to perform
live migration, or have a mechanism of checkpoint/restart.
We also want to study other specifications such as operating
systems, kernel versions, to see which solution is the least
restrictive. Our objective is to select a technology upon these
criteria, which will be a good basis to develop an extended
migration that works between heterogeneous architectures.

We consider two main categories : virtual machines and
application containers. We focus on open source solutions, that
is why we selected KVM and Xen hypervisors for the virtual
machine approach, and LXC and OpenVZ for containers.

Although application containers seem to be a promising
technology with a very light virtualization process and then
a very low overhead, it implies many constraints. Linux
containers only work with Linux based OS, and the guest
shares the same operating system as well as the same kernel

TABLE I. COMPARIZON OF VIRTUALIZATION SOLUTIONS

Virtual machines Linux containers

Xen KVM LXC OpenVZ

On x86 yes yes since 2.6.29 patched kernel

On ARM since 3.7 since 3.9 since 2.6.29 patched kernel

Live not yet yes, but

migration yes yes (CRIU project) not on ARM

Guest OS any any only Linux based only Linux based

version as the host. Moreover we observe that checkpointing
for containers is still a feature in development whereas live
migration is well implemented in hypervisors like Xen or
KVM. OpenVZ has a functional live migration but it works
only on x86 hosts. As far as LXC is concerned, developers are
not planning to implement any kind of live migration, but some
work is done about checkpoint and restart of LXC containers
inside the CRIU project - which stands for Checkpoint/Restore
In Userspace.

This comparison leads us to select the virtual machine
solution as it is the most common approach in datacenters
and also the most general solution as it does not impose any
restriction on application type. The two propositions KVM and
Xen are quite equivalent, we have chosen the first one because
of previous work experience with it.

C. Virtual machine and emulation

As we propose to gather two different physical architec-
tures, ARM and x86, in the same datacenter, it means we also
have to make a choice for the virtual machine architecture. Our
idea is to select one architecture for all the virtual machines.
When the virtual and the physical machines share the same
architecture then we benefit from the virtualization extensions.
On the contrary, if the two architectures are different, we have
to use emulation. Emulation is a concept which allows to
execute programs compiled for an architecture different from
the host we have. It consists in an hardware abstraction and
the program will be executed through dynamic translation of
the binary instructions.

For this purpose we have chosen QEMU emulator because
it is closely related to KVM. In fact QEMU can detect if
the virtual machine and the host have the same architecture,
in this case emulation is not needed and it automatically
uses virtualization extensions of the hardware. Hence our
idea is based on the assumption that it could be possible to
migrate one virtual machine of fixed architecture between two
different hosts. During the migration, the system should just
have to switch from emulation to virtualization extensions,
or the opposite, according to the architecture of the source
and destination hosts. Status of our work about migration is
detailed in section V-E.

Figure 3 pictures the two alternatives for the virtual ma-
chine and their underlying functioning. First and last cases
have low overhead thanks to the virtualization extensions while
the two cases needing software translation suffer from a high
performance impact. The resulting overhead of emulation is
discussed in section V-A.
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Fig. 3. Emulation / Virtualization extensions

IV. EXPERIMENTAL PLATFORM

A. Hardware and power monitoring

We have selected the ARM Cortex-A15 processor for its
low power, its good performances and its virtualization exten-
sions. It is a quite recent processor, its first implementation was
done by Samsung with the Exynos5250 SoC. The first device
powered by this chip is the Samsung Chromebook released
in 2012. One year later, HP released the HP Chromebook
11 which has this same SoC and similar technical charac-
teristics. As their code names suggest, these notebooks come
with Google’s Chrome Operating System, but to be able to
use KVM software and virtualization extensions we need a
Linux distribution. Moreover as mentioned in Table I, the
Linux kernel version should be equal or posterior to 3.9.
We have managed to make the Samsung Chromebook boot
an Ubuntu 12.04 with a Linux kernel 3.13, and installed
QEMU 2.0 and KVM for virtualization extensions. We use
a Plogg, an external watt-meter to get instantaneous power
consumption of the notebook. Resulting experiments with an
ARM virtual machine are detailed in section V-D. Concerning
the experiments with binaries execution which do not require
virtualization experiments we use the HP Chromebook. We
made it run an Ubuntu distribution based on the ChromeOS
kernel already installed. To get power consumption information
we use powerstat Ubuntu package that gets monitoring data
from the battery via ACPI.

For x86 architecture the choice is much larger. In order to
benefit from servers with power monitoring, we have run our
experiments on the Grid’5000 testbed. Grid’5000 is a French
experimental platform, geographically distributed over 11 sites
in France and Luxembourg, dedicated to scientific research
concerning large scale infrastructures. We have chosen an
Intel Xeon and an AMD Opteron from monitored clusters
located respectively in the cluster named Taurus of Lyon
and the Parapluie cluster of Rennes. We find relevant to
select two kinds of x86 servers because it allows to highlight
the possible differences between two generations and two
constructors of quite similar servers. Both servers run a Debian
Wheezy operating system with QEMU 1.7 installed. In Lyon,
electrical consumption is acquired thanks to watt-meters from
Omegawatt and accessible on Grid’5000 intranet, whereas in
Rennes monitored PDU from EATON are used and power data
is fetched via SNMP requests.

Characteristics of the hardware are detailed in the following
table, as well as a comparison of power consumption and
native performances.

TABLE II. SUMMARY OF SELECTED HARDWARE

Codename Chromebook Taurus Parapluie

Fullname Samsung // HP 11 Dell HP Proliant

Chromebook PowerEdge R720 DL165 G7

Architecture ARMv7 32 bits x86 64 bits x86 64 bits

CPU 2 x 2 x 2 x

Cortex-A15 Intel Xeon E5-2630 AMD Opteron 6164

Total cores 2 12 24

Power

consumption 5 – 25 W 96 – 227 W 180 – 280 W

Release year 2012 // 2013 2012 2010

One striking point here is the huge difference between idle
consumptions. Parapluie idle power is more than 20 times
greater than the Chromebook, and 2 times greater than Taurus.
The upper bound corresponds to the maximum measured
power consumption when the processor is fully loaded.

B. Benchmarks

As x86 virtual machine on ARM host is not fully functional
at the time we are writing, we made experiments with QEMU
User Emulation which allows to execute binaries compiled
for a different architecture by dynamically translating the
instructions during the execution. Not all programs can be
executed with this type of dynamic translation, we need an
application compiled with statically linked libraries. For this
purpose, we have chosen the nbench [12] benchmark program.
It is a simple application written in C, which is composed of
several subprograms designed to test CPU capabilities of a
machine. We have chosen the Idea encryption program for
integer computation and the Fourier algorithm regarding float
computation.

Because QEMU User Emulation is restrictive and does
not allow to execute cloud applications, we also made some
experiments with actual virtual machines. We have selected
a database based benchmark in order to illustrate the cloud
aspect of our work. TPCC-UVA benchmark [13] is a free
and open-source implementation of the standardized TPC-C
benchmark from Transaction Processing Performance Council.
It consists in a set of requests against a PostgreSQL database
containing 9 data tables whose size differ according to input
specifications.

V. EXPERIMENTS RESULTS

Throughout the following subsections we present both HPC
and cloud scenario with different benchmarks and experiments.
In the goal of evaluating if emulation is a good perspective,
we measure the emulation overhead, mainly in terms of
performance but also concerning energy consumption. Next, to
show the benefits of having heterogeneous architectures inside
one datacenter, we execute the same program on each selected
hardware and observe its behavior. This is a necessary step
to be able to know which hardware is the most interesting in
terms of power consumption for each level of performance.

A. Emulation overhead

TABLE III shows the overhead of emulation, by dynamic
translation, for each selected hardware and for two types of
computing benchmark. Column ’Int’ refers to Idea encryption



TABLE III. OVERHEAD OF EMULATION FOR EACH HARDWARE

Native Emulation Overhead
Int Float Int Float Int Float

Chromebook
(ARM) 8233,9 27251 932,46 604,07 8,83 45,11
Taurus
(x86) 102893,9 380437 11479,22 11153,06 8,96 34,11
Parapluie
(x86) 113569,8 320823 15239,46 12599,76 7,45 25,46

program, and ’Float’ to Fourier algorithm of nbench bench-
mark. The first column is the maximum number of iterations
per second for a native execution, and the second one is for
an execution of the ’opposite’ architecture binary via QEMU
user emulation program.

The last column whose title is ’Overhead’ represents the ra-
tio between emulation performances and native performances.
We realize that the order of magnitude of the overhead is
the same no matter the underlying physical architecture. For
integer computation the emulation is around 7 to 9 times
slower, while for float computation the overhead is much
important, from 25 to 45 times, the largest being for the
Chromebook.

Even if x86 processors are natively more powerful than
ARM ones, (about 12 to 13 times in our examples) the
important overhead causes the emulation to slow down a lot
all the processors. We can even notice for float computing that
the ARM native execution is in fact more powerful than the
emulated execution on x86 servers. Indeed, if we consider an
ARM compiled float computation, the Chromebook reaches
27251 iterations per second whereas Taurus and Parapluie
reach respectively 11153,03 and 12599,76 iterations per sec-
ond. In the following sections, we discuss the performances
together with the corresponding energy consumption of each
hardware.

B. Comparison study of binaries executions

In these experiments, the aim is to make a comparative
study of the two solutions for the virtual machine architecture
as depicted in Figure 3. Except here we are not dealing with
full virtual machines but only with binaries execution, natively
or through dynamic translation.

The following two figures, 4 and 5, show the average power
consumption for an evolving number of iterations per second,
from 0 to maximum, of the IDEA benchmark from nbench.
The curve starting point is the average power consumption at
idle state, and the ending point of each curve corresponds to
the average power during a complete execution of the bench-
mark. We have slightly modified the nbench benchmark by
introducing ’nanosleep’ calls in order to reduce the maximum
performance and then get more data points. We have chosen
to run the benchmark five times with five different duration of
sleep for which we get the maximum number of iterations per
second reached and the average power consumption during the
execution. We have in total 5 data points for each hardware
curve and we approach these points with a linear fitting.

Each graph plots three curves corresponding to our three
selected hardware presented in TABLE II. The most powerful
is the server from Rennes cluster (Parapluie), and it defines
the maximum scale of our graphic. The two left curves are

also endless because we reproduce the power consumption
scheme we obtain for one experiment as if we can have several
servers of each type and cumulate their performance. The least
powerful hardware is the Chromebook plotted in green, but
because of its very low consumption it can be repeated several
times and still fit in the graph. The maximum performance of
one single Chromebook is symbolized by the vertical purple
dashed line. On the opposite, when we repeat server Taurus
from Lyon, it shortly becomes out of scale because its static
idle consumption is too important.

Figure 4 corresponds to the case depicted in Figure 3(b)
where the executed program is compiled for ARM architecture.
The program is executed natively on Chromebook, green curve,
and through dynamic translation on Taurus and Parapluie, red
and black curves. On the opposite, Figure 5 represents what
happens in the case of Figure 3(a) where the target architecture
is x86 and the emulation only concerns Chromebook. When
we compare the two graphs, and especially when we observe
the maximum number of iterations per second, we can find the
overhead of emulation introduced in section V-A. The overall
total performance is reduced by 7.45 times when we use an
ARM binary.
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For the ARM program on Fig. 4, we see that x86 architec-
tures perform quite poorly, and if the execution of the program
could be done on two ARM platforms, then it would always be
the most relevant configuration concerning energy consump-
tion. If we cannot consider parallel design of the program,
then Taurus would be the chosen platform from approximately
8000 to 110000 iterations per second, and Parapluie would be
elected passed this threshold of performance. This create a
result not far from energy proportionality, and this aspect is
discussed in next section V-C.

On the other hand, for x86 program on Fig.5, the perfor-
mance of ARM platform is very low because it is reduced due
to dynamic translation. Consequently, what we can observe
on the zoom area is that the Chromebook would be chosen
until about 900 iterations per second if no parallelization,
and until approximately 3600 iterations per second, which



represents 4 Chromebook nodes, if possible. Considering the
last perspective, the energy consumption is thus reduced for
the first 1/30th of the total performance, and the global shape
is still far from proportionality.
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Fig. 5. Average power consumption (watts) according to number of iterations
per second of the same x86 program (IDEA benchmark) on 3 different
hardware devices

C. Towards energy proportionality

In this section we want to picture how far from propor-
tionality our solution could be. According to the results from
last section, we have selected the least consuming hardware
for each level of performance. On Fig.6, we plot only these
selected parts of curves, as well as the ideal proportional
consumption we aim at, represented as a blue line. The ideal
curve is indeed a strict proportional line starting from 0 and
reaching the maximum point. This maximum refers to the
average power consumption needed to reach the maximum
number of iterations of the most powerful hardware of our
platform. We have only considered a 1-1 relation by selecting
only one hardware at a time and not consider a multiple
number of Chromebook nodes as explain in previous section.

We can see that the ARM hardware leads to huge energy
savings, in fact the green curve is way under the ideal, except
for the very beginning because its idle power consumption is
not equal to zero. Moreover, having these two different x86
servers is also a good leverage and allows to better stick to
the ideal proportionality line. This confirms the assumption we
made when selecting two different kinds of x86 hardware, and
we can interpolate and imagine that even more recent servers
would add more proportionality.

Nevertheless, even if ARM solution seems not far from
proportionality, it is not optimal at all because it wastes the
potential performance of x86 servers. We have to look at the
proportionality comparison of x86 solution in Figure 7. In
this case, the gains from ARM hardware are only profitable
for a reduced part of low performance, that we can only
see on the zoomed part of the graph. The most predominant
hardware is Taurus, we realize that Parapluie only brings a
small improvement in performance but consumes a lot more
than Taurus most of the time. This can be justified by the fact
that the Dell PowerEdge R720 is the most recent server of
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our selection, and the energy efficiency aspect must have been
better considered during its design.

We conclude on these results that it is necessary to find
other pieces of hardware that would fit between Chromebook
and Taurus, and would help to approach the ideal proportional
consumption. Indeed the ARM Cortex-A15 is a great low
power processor that brings promising energy savings, but the
performance gap between itself and x86 servers is too large.
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Fig. 7. x86 solution compared to ideal proportionality (IDEA benchmark)

D. ARM virtual machine and Database benchmark

Measuring the impact of emulation on cloud applications
requires virtual machines. We could only do this part with an
ARM virtual machine because x86 emulation in QEMU from
ARM devices is not fully effective for the moment. We have
built a Debian Wheezy virtual machine of ARM architecture
that emulates the board Versatile Express A15 containing one
virtual ARM Cortex-A15 processor, with a 4 Go virtual disk.
As it has one virtual CPU, it only executes itself on one core
of each host machine.



For the purpose of the TPCC-UVA benchmark the VM
includes a PostgreSQL 9.3.4 database. Tables of the database
represent the activities of a wholesale supplier including trans-
actions for entering, delivering orders, recording payments,
monitoring the stock level in the warehouses. The main input
data of the benchmark is the number of warehouses, and the
other tables are populated accordingly. The principal output
result is a number called ’tpmC-uva’ which is the number
of performed transactions per minute. Other outputs are also
given such as the percentage of well-done transactions, re-
sponse time and think time, for each type of transactions. The
number tmpC only concerns transactions of type ’New Order’.

We have performed the same execution of the benchmark
over our three selected machines. We have set the following
inputs : database is populated with 1 warehouse, ramp-up
period is set to 20 minutes and measurement period is 2 hours.
Figure 8 shows the evolution of the throughput over time of
the benchmark execution. The throughput is represented by
the number of transactions per minute. We can notice the
ramp-up period which is the first period until time t = 1200
seconds. After this period is the measurement period when
data is collected to compute benchmarks outputs.
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On the Chromebook the virtual machine is executed via
virtualization extensions whereas Taurus and Parapluie use
emulation software. We conclude that there is not a big
performance difference between the three machines for this
scenario. For all machines the throughput stabilizes around
11 to 12 transactions per minute for this execution. Parapluie
server plotted in blue is more efficient than the Chromebook
for most of the measurement time except for the last thirty
minutes. On the opposite, Taurus server is most of the time
the least powerful.

The following two graphs present the distribution of the
response time of two types of transactions. Fig.9 concerns
New Order transactions and Fig.10 Payments transactions.
These results confirm the ones shown by Fig.8. For New
Order transactions on first graph, Parapluie offers a very short
response time, very close to zero, for few transactions and then
for most of them the response time is around 0.2 seconds. This
pattern is reproduced also for Payment transactions for both
Parapluie and Taurus, while Chromebook’s response time is

more compacted around a single value. We can justify this
result by the sometimes unstable behavior of the emulation
software. We also find the same pattern we present in the
section V-A about emulation overhead. Indeed here Parapluie
seems to benefit from the best emulation capabilities. But to
confirm this, these results should be compared with an execu-
tion of the same benchmark inside an x86 virtual machine.
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Fig. 9. Response time distribution for New Order transactions
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Fig. 10. Response time distribution for Payment transactions

As energy consumption is concerned, we find again the
same order : Parapluie is the most consuming machine with an
average power consumption of 173 watts during the execution
time of the benchmark. Taurus’s average power is around 128
watts and between 9 and 11 watts for the Chromebook. These
values are less high than in section V-B because here only one
core of each machine is executing the virtual machine and not
all the processors are fully loaded.

Based on the results of this scenario, we can say that the
Chromebook is the best option if we consider both energy
consumption and performance. We have run the same exper-
iment but with a database populated with 2 warehouses, and
this larger scenario shows a difference in performance between
the two architectures. Indeed the Chromebook cannot handle
more than 12 transactions per minute, whereas Parapluie and
Taurus are able to treat all the requests with success, reaching
around 24 transactions per minute. This scenario revealed the
weakness of the ARM processor, and the interest in switching
to more powerful processors when needed.



E. Live migration impacts

We have performed some experiments of live migration
with the ARM based virtual machine used in last section
V-D. For this purpose we used Libvirt version 1.2.9 as VM
manager. Hardware used is an HP 7800 server with an Intel
Xeon E5620 CPU, and the previously described Samsung
Chromebook. They are both monitored with external watt-
meters Watts’upPro and power data is acquired and stored via
Kwapi API [14]. At the current status of our first experiments,
only migration from the server to the Chromebook works.
Figure 11 presents the extra power consumption of each host
during the process of virtual machine migration. In fact in
order to focus only on the overhead consumption implied by
the migration, we have removed the static idle consumption.

The live migration duration is 8 seconds for this example,
which corresponds to a data transfer of 53 Megabytes. The
two physical machines are linked with a 1GB switch and
cables, but as the Chromebook does not have an Ethernet port,
we use an Ethernet to USB 2.0 adapter which may reduce
the network throughput. Concerning power consumption, we
notice a significant overhead for the source host, about 9 watts
when starting the migration. On the destination host there is
an increase in power consumption when receiving the virtual
machine but then the power stabilizes shortly.

These are some first steps in our work about heterogeneous
migrations between Big and Little. We will continue our
investigations about all the parameters which can affect the
migration behavior and see how they can be enhanced.

Fig. 11. Extra power consumption during live migration of ARM virtual
machine from Big (HP server) to Little (Chromebook)

VI. CONCLUSION AND PERSPECTIVES

The work presented in this paper is in early research
stage, and is a proposition and a study of solutions to tackle
the challenge of energy proportionality. To the best of our
knowledge, this is the first approach dealing with "big.little"
concept in order to reach some energy proportionality for HPC
and Cloud infrastructures. In this paper, we have shown the
potential interest of generalizing the "big.little" concept for
the purpose of a perfect energy proportionality.

Some issues, not yet in the scope of our work, should
be considered as future perspectives. For our proposition of

emulation to be effective we need an operational x86 virtual
machine emulation from ARM hosts, as well as an operational
live migration between heterogeneous architectures. Regarding
this issue, for the moment the cost induced by migrations is
not taken into account. This cost may vary respecting the size
of the virtual machine and even the type of applications. In a
similar idea, taking decisions of migrations is very important
and represent another challenge in itself. Decisions are even
more crucial as the cost of the migration is high. Performing
migrations in the most suitable way to reach energy propor-
tionality require a good knowledge of the running applications,
or a good system to profile and predict future application
needs. Further studies on targeted applications seem to be an
inevitable step to propose and build solutions for proportional
computing.
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