

TEMIC: a New Cooperative Platform for Industrial Tele-Maintenance

Mohamed Brahma¹, Martine Chaudier², Eric Garcia³, Jean-Patrick Gelas², Hervé Guyennet³, Fabien Hantz³, Laurent Lefèvre², Pascal Lorenz¹, Henri Tobiet⁴

Université de Haute Alsace IUT- Colmar - France
 INRIA RESO / LIP (UMR CNRS, ENS, INRIA, UCB), Ecole Normale Supérieure LYON - France
 LIFC Laboratoire d'Informatique de l'Université de Franche-Comté Besançon - France
 SWI – SA Mulhouse- France

Laurent.lefevre@inria.fr

DFMA 2006 - Penang, Malaysia - May 16, 2006

Solutions for wireless innovation

Motivations

- Proposing new solutions for industrial maintenance
 - A set of sensors (even multimedia) to supervise an industrial process
 - Experts and maintenance technical people with mobile equipments (PDA, tablets, cellulars)
- TEMIC project : funded by RNRT

TEMIC architecture

- Three-level architecture:
 - Collection and Surveillance/Supervision,
 - allows data collection from sensors and different types of industrial interfaces,
 - performs wireless data acquisition via Wi-Fi adhoc networks,
 - is dedicated for real-time process supervision and control.
 - Intervention and Reporting,
 - allows maintenance management via mobile terminals (e.g. PDA),
 - performs wireless information reporting on maintenance activities,
 - is dedicated for real-time system maintenance (maintenance management software).
 - Diagnosis and Collaboration
 - allows collaborative actions via extended networks and communication facilities (e.g. videoconferencing via the Internet),
 - performs decisional diagnostics and forwards corrective actions to recover the process.

Collection / Supervision

Intervention and reporting

Whole TEMIC architecture

Let's now focus on a small part of TEMIC project : Collection and monitoring through autonomic facilities

Adaptation services in the network : Scenario requirements

- Easily and efficiently deployable hardware in industrial context.
- Easily removable at the end of the maintenance and monitoring contract.
- Devices must fit industrial requirements:
 - reliability
 - fault-tolerance
- Devices must be *autonomic*!
 - auto-configurable
 - re-programmable

Our approach

- Designing an Industrial Autonomic Network Node (IAN²):
 - Using a reliable and embedded hardware
 - Running on a low resource consumption node OS
 - Proposing an adapted EE
 - Designing a set of services
 - Evaluating solution in controled and industrial scenario

Hardware platform

- A transportable solution.
- Reduced risk of failure:
 - fanless
 - no mechanical hard disk drive
- VIA C3 1GHz, 256MB RAM, 3xNIC Gbit Ethernet, 1GB Compact Flash,...

Software Execution Environment: Node Operating System

- Indutrial Autonomic Network Node (IAN²) runs over Btux (bearstech.com)
- Btux is based on a GNU/Linux OS (kernel 2.6.12)
 - rebuilt from scratch
 - small memory footprint
 - reduced command set available
 - remotely upgradable

$Software\ {\tt Execution\ Environment:}\\ IAN^2\ Software\ Architecture$

Our Industrial Autonomic Nework Node architecture supports:

- wired and wireless connections,
- CPU facility,
- storage capabilities.

Software Execution Environment: Execution Environment

- The EE is based on the *Tamanoir (INRIA)* software suite, a high performance execution environment for active networks.
- Tamanoir: Too complex for industrial purpose.
- Tamanoir^{embedded}:
 - reduced code complexity,
 - removed unused class and methods,
 - simplify service design.

Software Execution Environment: Autonomic Service Deployment

- Tamanoir^{embedded} is written in Java and suitable for heterogeneous services.
- Provides various methods for dynamic service deployment/update:
 - from a service repository to a Tamanoir Active Node (TAN),
 - from the previous TAN crossed by the active data stream,

Experimental Evaluation: Network Performances

• Based on *iperf* (bandwidth, jitter, loss) on two topologies.

• IAN² failed to obtain a full Gbit bandwidth due to the limited embedded CPU and chipset.

Configuration	Throughput	cpu send	cpu recv	cpu gateway
back-2-back	488 Mbps	90%	95%	 N/A
gateway (1 stream)	195 Mbps	29%	28%	50%
gateway (8 streams)	278 Mbps	99%	65%	70%

Experimental Evaluation: Network Performances

- GigaEthernet:
 480 Mbps
- Wireless (802.11b):
 - 4 Mbps

Experimental Evaluation: Autonomic Performances

- We ran two different active services:
 - A lightweight service (MarkS)
 - A heavyweight service (GzipS)
- EE and services run in a SUN JVM 1.4.2

	4kB	16kB	32kB	56kB
MarkS	96	144 145	112 15 0	80 16 6
GZIPS	9.0	14.0	12.9	10.0

(Throughput in Mbps)

Experimental Evaluation: Autonomic Performances

• Performance comparison with standard system over lightweight service.

Experimental Evaluation: Autonomic Performances

• Performance comparison with standard system over heavyweight service.

Scenario : adaptation with videostreamS

Mobile client

Performances within Multimedia context application

• Transmit and adapt a video stream: a real evaluation of our industrial autonomic node.

• Without adaptation	Format / Size	Usr CPU load
step, CPU use is	MJPEG/720x480 H263/352x288	< 1 % 98,7 %
negligible.	H263/176x144 H263/128x96	99,3 % 99 %

• Then, CPU load is totally due to the processing.

Performances within Multimedia context application

• We measure the ouput data rate on a active node using a wireless network when transmiting an adapted video file to a PDA.

Output Format/Resolution	Entry File/Output File Tr	ransmitting time	PDA loading time
MJPEG/720x480	14794 КВ / 14794 КВ	4 min 50 sec	5 min 10 sec
H263/352x288	14794 КВ / 1448 КВ	22 sec	2 min 55 sec
H263/176x144	14794 КВ / 365 КВ	8,5 sec	1 min 30 sec
H263/128x96	14794 КВ / 179 КВ	3,8 sec	1 min 18 sec

• Even with a limited CPU, the IAN² provides efficient adapatation which reduces the amount of transported data and globally improves performances of the application.

Performances within Multimedia context application

Conclusions

- Description of the IAN^2 prototype of industrial autonomic network node
 - hardware choice
 - software solution
- Evaluation of performances
 - processing power
 - networking
 - Execution Environment
- Results are far from a current desktop performances, however for « low » bandwidth network (Fast Ethernet, xDSL or Wireless networks, sensors networks), IAN² can perfectly support a large class of reliable autonomic services.

TEMIC future works

- Current deployment on industrial sites
- Switching from academic (experimental) project to an industrial project is a real challenge.
- Next step concerns the development of new autonomic services.

Questions?

Laurent.lefevre@inria.fr