
Towards the Design of an Industrial Network Node

M.Chaudier, J.P Gelas, L.Lefèvre INRIA/LIP Ecole Normale Supérieure de Lyon

IWAN 2005 November 21-23 2005 – Sophia Antipolis, France

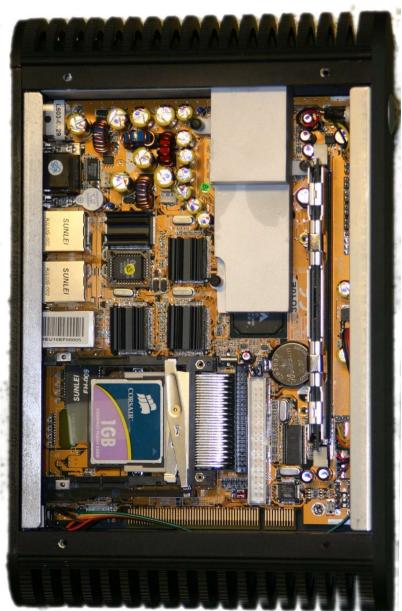
Motivations

- Everything started in a cooperative industrial maintenance and monitoring project (TEMIC project).
- But, no active equipement available on the market place!

Scenario requirements

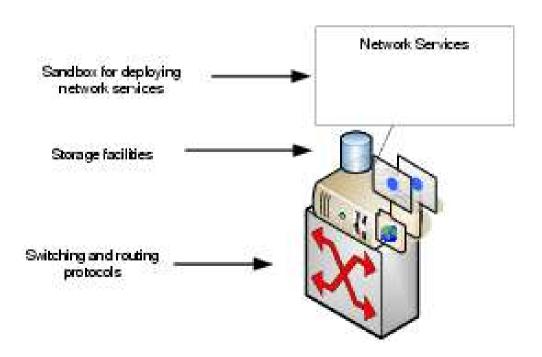
- Easily and efficiently deployable hardware in industrial context.
- Easily removable at the end of the maintenance and monitoring contract.
- Devices must fit industrial requirements:
 - reliability
 - fault-tolerance
- Devices must be *autonomic*!
 - auto-configurable
 - re-programmable

Our approach

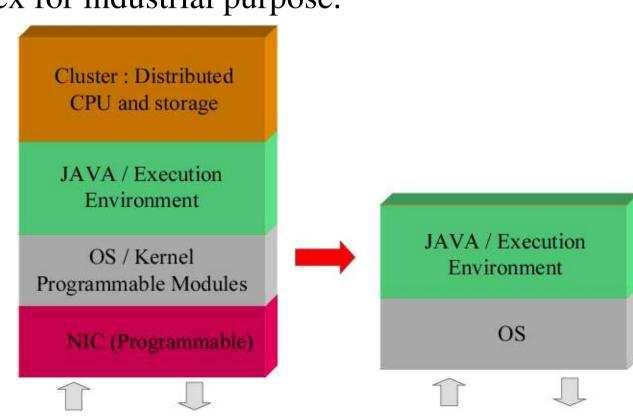

- Designing an Industrial Autonomic Network Node (IAN²):
 - Using a reliable and embedded hardware
 - Running on a low resource consumption node OS
 - Proposing an adapted EE
 - Designing a set of services
 - Evaluating solution in controled and industrial scenario

- A transportable solution.
- Reduced risk of failure:
 - fanless
 - no mechanical hard disk drive
- VIA C3 1GHz, 256MB RAM, 3xNIC Gbit Ethernet, 1GB Compact Flash,...

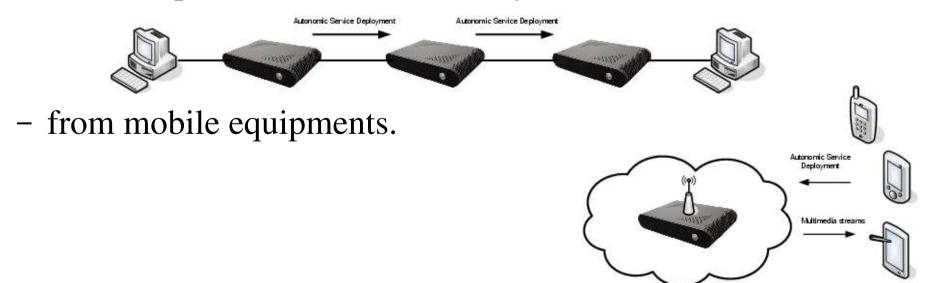
Node Operating System


- Indutrial Autonomic Network Node (IAN²) runs over Btux (bearstech.com)
- Btux is based on a GNU/Linux OS (kernel 2.6.12)
 - rebuilt from scratch
 - small memory footprint
 - reduced command set available
 - remotely upgradable

IAN² Software Architecture


Our Industrial Autonomic Nework Node architecture supports:

- wired and wireless connections,
- CPU facility,
- storage capabilities.


Execution Environment

- The EE is based on the *Tamanoir (INRIA)* software suite, a high performance execution environment for active networks.
- Tamanoir: Too complex for industrial purpose.
- Tamanoir^{embedded}:
 - reduced code complexity,
 - removed unused class and methods,
 - simplify service design.

Autonomic Service Deployment

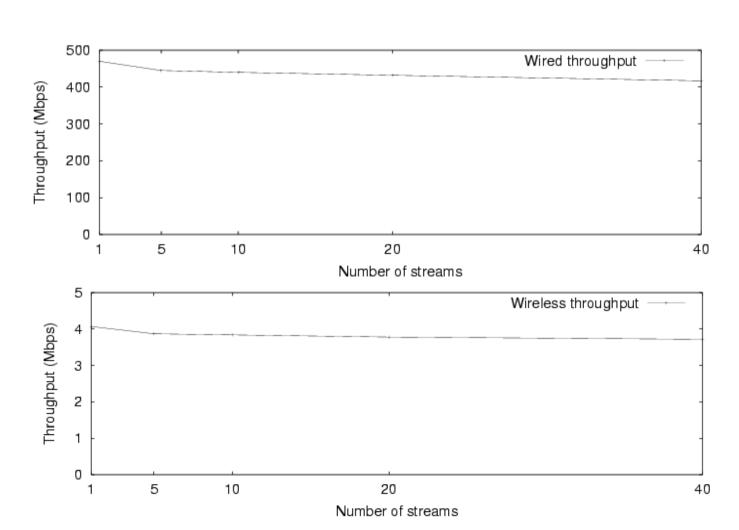
- Tamanoir is written in Java and suitable for heterogeneous services.
- Provides various methods for dynamic service deployment/update:
 - from a service repository to a Tamanoir Active Node (TAN),
 - from the previous TAN crossed by the active data stream,

Network Performances

• Based on *iperf* (bandwidth, jitter, loss) on two topologies.

• IAN² failed to obtain a full Gbit bandwidth due to the limited embedded CPU and chipset.

Configuration	Throughput	cpu send	cpu recv	cpu gateway
back-2-back	488 Mbps	90%	95%	N/A
gateway (1 stream)	195 Mbps	29%	28%	50%
<pre>gateway (8 streams)</pre>	278 Mbps	99%	65%	70%

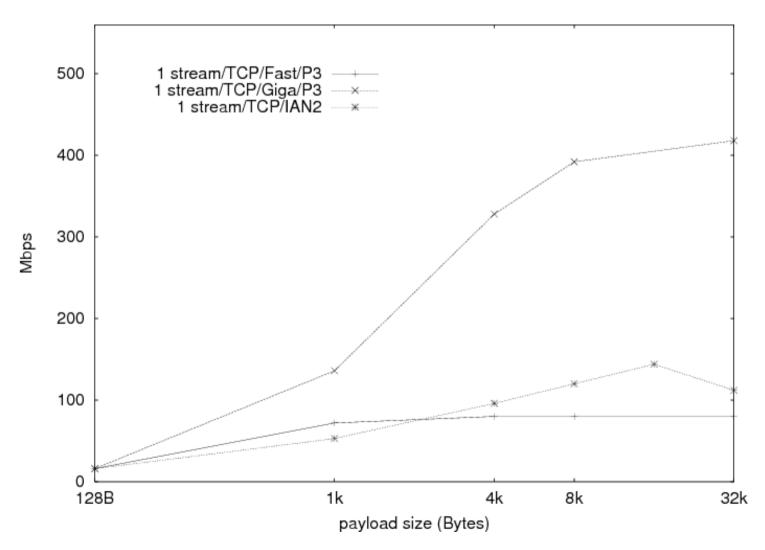

Network Performances

• GigaEthernet:

480 Mbps

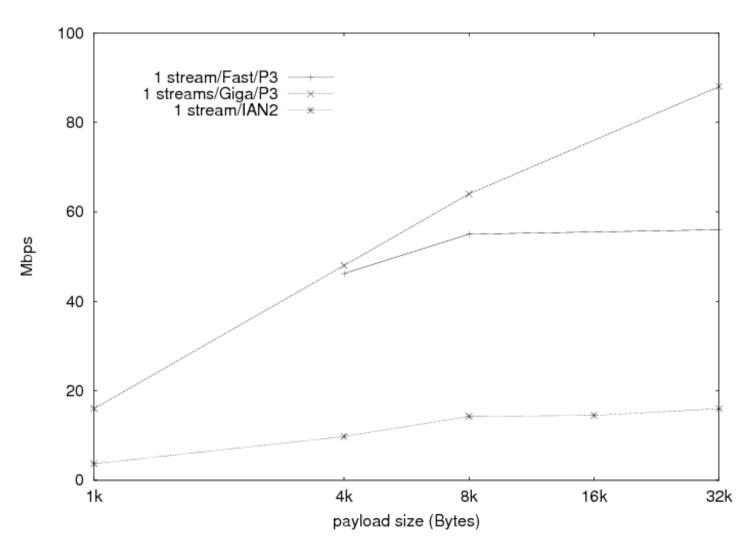
• Wireless (802.11b):

4 Mbps


Autonomic Performances

- We ran two different active services:
 - A lightweight service (MarkS)
 - A heavyweight service (GzipS)
- EE and services run in a SUN JVM 1.4.2

	4kB	16kB	32kB	56kB
MarkS	96	144	112	80
GzipS	9.8	14.5	15.9	16.6


(Throughput in Mbps)

Autonomic Performances

• Performance comparison with standard system over lightweight service.

Autonomic Performances

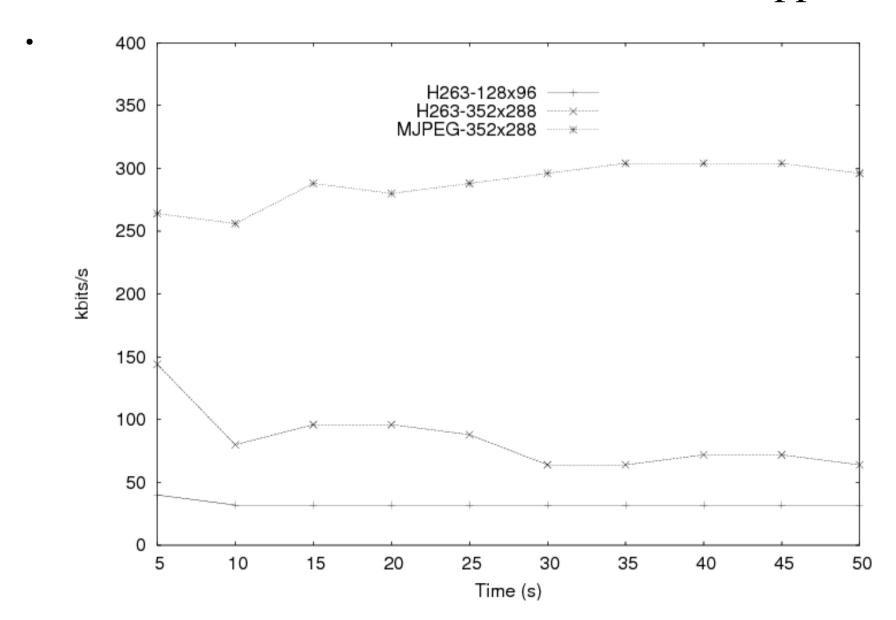
Performance comparison with standard system over heavyweight service.

Performances within Multimedia context application

• Transmit and adapt a video stream: a real evaluation of our industrial autonomic node.

 Without adaptation 	Format / Size	Usr CPU load
step, CPU use is	MJPEG/720x480 H263/352x288	< 1 % 98,7 %
negligible.	H263/176x144	99,3 %
negngioie.	H263/128x96	99 %

• Then, CPU load is totally due to the processing.


Performances within Multimedia context application

• We measure the ouput data rate on a active node using a wireless network when transmiting an adapted video file to a PDA.

Output Format/Resolution	Entry File/Output File	Transmitting time	PDA loading time
MJPEG/720x480	14794 KB / 14794 KB	4 min 50 sec	5 min 10 sec
H263/352x288	14794 KB / 1448 KB	22 sec	2 min 55 sec
H263/176x144	14794 КВ / 365 КВ	8,5 sec	1 min 30 sec
H263/128x96	14794 КВ / 179 КВ	3,8 sec	1 min 18 sec

• Even with a limited CPU, the IAN² provides efficient adaptation which reduces the amount of transported data and globally improves performances of the application.

Performances within Multimedia context application

Conclusions

- Description of the IAN² prototype of industrial autonomic network node
 - hardware choice
 - software solution
- Evaluation of performances
 - processing power
 - networking
 - Execution Environment
- Results are far from a current desktop performances, however...

Conclusions (cont'd)

- However, for « low » bandwidth network (Fast Ethernet, xDSL or Wireless networks), IAN² can perfectly support a large class of reliable autonomic services.
- Switching from academic (experimental) project to an industrial project is a real challenge.
- Next step concerns the development of new autonomic services.

Acknowledgments

Members of the TEMIC project:

SWI company,

Université de Franche Comté (LIFC),

Université de Haute Alsace (GRTC)

L. Haond and L. Montagne from Bearstech company

Questions?

{mchaudie|llefevre|jpgelas}@ens-lyon.fr

http://perso.ens-lyon.fr/jean-patrick.gelas/tamanoir