
Towards the Hierarchical Group
consistency for DSM systems : an
efficient way to share data objects

Laurent Lefèvre, Alice Bonhomme

INRIA RESO Team – LIP Laboratory – Lyon, France
laurent.lefevre@inria.fr

DSM

n Scalability for large scale systems (clusters
with hundred of nodes)

Plan

n Consistencies in DSM : formal comparison
and graphical visualization

n The Hierarchical Group Consistency
proposal

n Deployment in DOSMOS system
n First experiments
n Conclusions

Consistencies

n To be efficient : DSM must manage different
copies of shared data (objects or pages) to allow
concurrent operations

n How to be sure of the value read in a data copy ?
n Since last decade : dozens of consistencies have

been proposed for DSM
n Most of them : models with slight differences

Consistencies
n 5 main consistencies

n Strong :
n Atomic consistency : Perfect model, difficult to implement on

multi processor architecture
n Sequential consistency : from Lamport. All processes see

same actions on shared memory. Execution result like in
sequential order.

n Weak :
n Release consistency : based on Acquire / Release operations -

3 conditions must be respected :
n Before any access operation all previous acquire must be

processed
n Before a Release, all pending access (writing or reading) must

be processed for all processes
n Synchronization operations must be sequentially consistent
n Lazy release consistency

Consistencies

n Entry consistency : Each shared data is explicitly associated
to a synchronization variable. Before an Acquire all pending
accesses associated with this Acquire must be processed.

n Scope Consistency : based on Entry consistency. Add an
implicit association between synchronization variables and
shared data.

n Cohrence domain : limited view of memory where we can
perform acquire and release opeartions. All modifications only
visible in a dmoain.

n Conditions :
n Before an Acquire in a domain, all pending operations

must be performed
n Before a shared access done by process P, all pending

Acquire done by P must be performed

Problems

There are many more, but equivalent for a
programmer… and difficult to add them
in a distributed application.

How to clearly understand their difference
and compare them ?

We need 3 definitions : memory consistency,
execution of program and synchronization
order

Memory consistency
n A memory consistency model M is a two-tuple

(CM, SYNM) where CM is the set of possible
memory accesses (read, write, synchronization)
and SYNM is an inter-processes synchronization
mechanism to order the execution of operations
from different processes.

n Execution order of synchronization accesses
determines the order in which memory accesses
are perceived by a process.

n For each application : several possible
executions.

Execution of program
n An execution of the program PRG under

consistency model M, denoted as EM(PRG), is
defined as an ordering of synchronization
operations of the program

n With the ordering of synchronization operations, the
execution of all related operations are also ordered.
Thus, we define the synchronization order of an
execution.

Synchronization order

n The synchronization order of an execution
EM(PRG) under consistency model M, denoted
as SOM(EM(PRG)), is defined as the set of
ordinary operation pairs ordered by the
synchronization mechanism SYNM

n Hence, for any consistency model M, we can
define CM and SOM(EM(PRG)). CM deals with
how the programmer has to program, and SOM
gives the rules used to generate the result.

Formal comparison
n 2 models M1 and M2 are equivalent iff :

n CM1 = CM2
n a correct program PRG for M1 is also correct for M2
n if 2 compatible executions EM1(PRG) and EM2(PRG)

give the same result.

n EM1(PRG) and EM2(PRG) are said compatible
executions if
n there does not exist (u,v), 2 synchronization

operations such that (u,v) Î EM1(PRG) and (v,u) Î
EM2(PRG)

Example 1
n Release consistency RC different from Entry

Consistency EC

Example 2

Graphical visualization

Graphical visualization

Strong consistencies

Release consistencies

n Relaxes When axis

Entry consistency

n Relaxes What axis

Need a new model

n Relaxes Who axis
n Not all processes

share same data
n Do not apply

consistency on all
data

Hierarchical Group
Consistency

n HGC model is defined by :
n CHGC = read(x), write(x), Acq(l), Rel(l), Sync(l)
n u,v Î SOHGC(EHGC(PRG)) iff $ a synchronization

variable l to which u and v are associated such that: u
is performed before Rel(l) and v is performed after
Rel(l).

n OR u is performed before Sync(l) and v is performed
after Sync(l)

n HGC is different from EC and RC due to the add
of new sync operation (barrier restricted to a
synchronization variable).

n Groups : set of
processes
sharing same
data

n Can be
organized
hierarchically

n Different
consistencies can
be deployed in
different groups
or on different
data

n No consistency
is maintained
between groups

DOSMOS
n Distributed Objects Shared MemOry System
n Provided on top of standard message passing

libraries (PVM / MPI)
n Multi-threaded / multi-processes
n 3 classes of processes :

n Application processes
n Memory processes
n Link processes

n Implements Release consistency and HGC
model

n Invalidation / update protocols
n Dynamic / static owner

2 kind of accesses

n Local operations inside a group with the
same consistency

n Distant operations between groups
through the Group Memory Manager
(Link Process)

2 kind of accesses

Intra group
acess

Inter group
access

Reading operation max : 2
min : 0

max : 4
min : 2

Writing operation max : 1
min : 0

max : 3
min : 3

n Easily allow a personalized consistency
for each shared data

n Groups statically defined by user
n May be difficult : assisted development tools

to design applications

Experiments

global synchro 1 2 4
Performance Gain 43.3 % 41.9 % 39 %

Experiments

2 groups 4 groups

1 synchro 32.7 % 39.8 %

2 synchro 29.8 % 33.5 %

4 synchro 19.5 % 28.7 %

n First experiments on multi-cluster
architecture show improvement of around
20 % for 2 groups

Conclusion and future works

n Presented of a new consistency model and
implementation

n Focus more on programmer point of view
than of consistency differences

n Providing dynamic adaptive groups
n Deploying HGC based systems on high

performance dedicated Grid
n Using HGC in DSM based clustered high

performance active nodes

