Towards the Hierarchical Group
consistency for DSM systems : an

efficient way to share data objects

Laurent Lefevre, Alice Bonhomme

INRIA RESO Team — LIP Laboratory — Lyon, France
laurent.lefevre@inria.fr

DSM

m Scalability for large scale systems (clusters
with hundred of nodes)

Plan

m Consistencies in DSM : formal comparison
and graphical visualization

» The Hierarchical Group Consistency
proposal

m Deployment in DOSMOS system
m First experiments
m Conclusions

Consistencies

m To be efficient : DSM must manage different

copies of shared data (objects or pages) to allow
concurrent operations

m How to be sure of the value read in a data copy ?

m Since last decade : dozens of consistencies have
been proposed tor DSM

m Most of them : models with slight differences

Consistencies

B > main consistencies
= Strong :

m Atomic consistency : Perfect model, difficult to implement on
multi processor architecture

m Sequential consistency : from Lamport. All processes see
same actions on shared memory. Execution result like in
sequential order.

m Weak :

m Release consistency : based on Acquire / Release operations -
3 conditions must be respected :

= Before any access operation all previous acquire must be
processed

= Before a Release, all pending access (writing or reading) must
be processed for all processes

= Synchronization operations must be sequentially consistent
= Lazy release consistency

Consistencies

m Entry consistency : Each shared data is explicitly associated
to a synchronization variable. Before an Acquire all pending
accesses associated with this Acquire must be processed.

m Scope Consistency : based on Entry consistency. Add an
implicit association between synchronization variables and
shared data.

= Cohrence domain : limited view of memory where we can
perform acquire and release opeartions. All modifications only
visible in a dmoain.
= Conditions :
= Before an Acquire in a domain, all pending operations
must be performed

m Before a shared access done by process P, all pending
Acquire done by P must be performed

Problems

There are many more, but equivalent for a
programmer... and difficult to add them
in a distributed application.

How to clearly understand their difference
and compare them ?

We need 3 definitions : memory consistency,
execution of program and synchronization
order

Memory consistency

m A memory consistency model M is a two-tuple
(Cypy SYN,) where Cy is the set of possible
memory accesses (read, write, synchronization)
and SYN); is an inter-processes synchronization
mechanism to order the execution of operations
from different processes.

m Execution order of synchronization accesses
determines the order in which memory accesses
are perceived by a process.

m For each application : several possible
executions.

Execution of program

= An execution of the program PRG under
consistency model M, denoted as Ey/(PRG), is
defined as an ordering of synchronization
operations of the program

m With the ordering of synchronization operations, the
execution of all related operations are also ordered.
Thus, we define the synchronization order of an
execution.

Synchronization order

m The synchronization order of an execution
E\i(PRG) under consistency model M, denoted
as SOy(Ey\(PRG)), is defined as the set of
ordinary operation pairs ordered by the
synchronization mechanism SYN),

= Hence, for any consistency model M, we can
define C,; and SO,(E\(PRG)). C,; deals with
how the programmer has to program, and SOy,
gives the rules used to generate the result.

Formal comparison

= 2 models M1 and M2 are equivalent iff :
" G = G
= a correct program PRG for M1 is also correct for M2

= if 2 compatible executions E,;;(PRG) and E,;,(PRG)
give the same result.

m E,;(PRG) and E,,(PRG) are said compatible
executions if

= there does not exist (u,v), 2 synchronization
operations such that (u,v) € Ey;(PRG) and (vu) €
Eyp(PRG)

Example 1

m Release consistency RC different from Entry
Consistency EC

Example 2

Graphical visualization

Graphical visualization

Accesses between
barriers Time remaining

When %@ All the Time

Critical sections
between Acquire and Release

All Processes

with synchronization

All Memory Space

What m

Memory Objects linked =~ Memory Space
with synchronization

Strong consistencies

Release consistencies

m Relaxes When axis

Entry consistency

m Relaxes What axis

Need a new model

m Relaxes Who axis

= Not all processes
share same data

= Do not apply
consistency on all
data

Hierarchical Group

Consistency

s HGC model is defined by :
8 Cyge = read(x), write(x), Acq(l), Rel(l), Sync(l)

® U,V € SOcc(Exec(PRG)) iff 3 a synchronization
variable 1 to which u and v are associated such that: u

is performed before Rel(l) and v is performed after
Rel(1).

® OR u is performed before Sync(l) and v is performed
after Sync(l)

s HGC is different from EC and RC due to the add
of new sync operation (barrier restricted to a
synchronization variable).

m Groups : set of
processes
sharing same
data

m Can be

organized
hierarchically

m Different
consistencies can
be deployed in
different groups
or on different
data

= No consistency
1s maintained
between groups

DOSMOS

m Distributed Objects Shared MemOry System

m Provided on top of standard message passing
libraries (PVM / MPI)

m Multi-threaded / multi-processes

m 3 classes of processes :

= Application processes
= Memory processes
= Link processes

= Implements Release consistency and HGC
model

m Invalidation / update protocols
m Dynamic / static owner

2 kind of accesses

= Local operations inside a group with the
same consistency

= Distant operations between groups

through the Group Memory Manager
(Link Process)

Action 2

[
[
[
-Fl..--.-

Object X
Release Consistency Lazy Release Consistency

2 kind of accesses

Intra group

Inter group

acess access
Reading operation |[max :2 max : 4

min : 0 min : 2
Writing operation max : 1 max : 3

min : 0 min : 3

m Hasily allow a personalized consistency
for each shared data

m Groups statically defined by user

= May be difficult : assisted development tools
to design applications

Experiments

global synchro

Performance Gain

43.3 %

41.9 %

39 %

Experiments

2 groups |4 groups
1 synchro |32.7 % 39.8 %
2 synchro [29.8 % 33.5 %
4 synchro [19.5 % 28.7 %

m First experiments on multi-cluster
architecture show improvement of around
20 % for 2 groups

Conclusion and future works

= Presented of a new consistency model and
implementation

= Focus more on programmer point of view
than of consistency differences

m Providing dynamic adaptive groups
= Deploying HGC based systems on high
performance dedicated Grid

m Using HGC in DSM based clustered high
performance active nodes

