EXECUTION ANALYSIS OF DSM APPLICATIONS: A DISTRIBUTED AND SCALABLE APPROACH

Lionel Brunie, Laurent Lefèvre et Olivier Reymann Laboratoire de l'Informatique du Parallélisme Ecole Normale Supérieure de Lyon 69364 LYON Cedex 07, France (lbrunie, llefevre, oreymann)@lip.ens-lyon.fr

SPDT 96 - 22th May 1996

Plan

- What is a DSM system ?
- The DOSMOS system
- Why monitoring a DSM application ?
- A model for DSM application monitoring
 - Trace detection and collection : **Event Manager Process**
 - Trace management : *Meta-Object concept*
 - Analysis and visualization of execution traces: ${\it Visualization\ process}$
- Implementation and architecture
 - Meta-Objects
 - System architecture
- Protocols : write, read, acquire, release operation protocols
- Experiments
- Conclusion and futur works

What is a DSM system ?

- Designed for distributed memory architectures
- Allows transparent accesses to shared data
 - Virtual shared memory systems
 - Object based distributed shared memory systems
- Hides the inter-process communication

Figure 1: A taxonomy of DSM systems

The designing goals of DOSMOS

- Providing an easy-to-use programming environment
- Breaking the centralization of the memory accesses
- Scalability
- Portability

Basics of DOSMOS

- Dedicated processes (AP, MP...)
- Array allocation
- \bullet Hierarchical structuring of application processes
- Optimized weak consistency protocols
- Mixing PVM and DOSMOS code
- From distributed systems to parallel machines

About Array splitting up

shared float A(14,20)[3,5];

Figure 2: Example of a split matrix

- Increase of the number of objects
- Improve the object distribution over the processors
- \bullet reduce the false sharing and the access bottleneck

Clustering using hierarchic groups

Processes that share a common set of variables are gathered.

- \implies Limit the number of variable copies in the system
- \implies Reduce the cost of the consistency maintenance

DOSMOS architecture

Figure 4: DOSMOS system: an example of software configuration with two groups and three objects A, B and C

Why monitoring a DSM application ?

- Informations :
 - DSM system administration
 - Shared data
- Detections :
 - Bottlenecks
 - Ping-Pong effects
 - No-sharing
 - Specific features

A model for DSM application monitoring

Trace detection and collection : **Event Manager Process**

This process takes charge of the collection of the information concerning traces and its management.

- Do not overload the DSM system with the monitoring task
- Generate distributed trace files
- Easy to implement
- Definition of a communication protocol between the system and the monitoring tool

Trace management

- To store the events in a file on disk
 - For a post-mortem use
- \bullet Use a dedicated structure : the ${\bf Meta-Object\ structure}$

This is a data structure that contains trace information about the operations performed on a variable.

- Such a structure is linked to each variable
- Managed by an Event Manager Process
- Data stored in a judicious way
- Adapted for on-line analysis and optimization

DOSMOS-Trace architecture

Figure 5: DOSMOS-Trace: example of monitoring environment

Figure 6: Protocol implemented to collect the trace information about a write operation.

Figure 7: Protocol implemented to collect the trace information about a read operation.

Figure 8: Protocol implemented to collect the trace information about an Acquire operation.

Release operations

Figure 9: Protocol implemented to collect the trace information about a Release operation.

Analysis and visualization of execution traces

The $Visualization \ process$ provides two kinds of diagrams

- Diagrams showing variable accesses according to time
- Diagrams showing statistical results on variable accesses

Figure 10: DOSMOS-Trace: the Visualization Process (VP) \implies E.M.P.

Diagrams showing statistical results on variable accesses

- Number of readings during a time interval
- Number of writings during a time interval

Figure 11: Number and origin of the read accesses performed on an object vs execution time (in black: inter-group accesses)

Figure 12: Number and origin of the read accesses performed on an object vs execution time (note this execution does not include inter-group accesses)

Histories

Diagrams showing variable accesses according to time

- History of accesses performed by the processes
- History of accesses performed on the variables

Figure 13: Object activity vs execution time

Figure 14: Process activity vs execution time

DOSMOS-Trace environmement

т., •	1
Intrusion	
III OF OROTO II	

Configuration	1	2	3	4		
Execution time	21.90	40.00 (+83%)	$48.20 \ (+120\%)$	$28.30 \ (+29\%)$		

Table 1: Execution time (in seconds) for several configurations

Ratio \ Configuration	1	2		2		3		4	
R=1	43.80	61.90	(41%)	70.10	(60%)	50.20	(15%)		
R=2	65.70	83.80	(28%)	92.00	(40%)	72.10	(10%)		
R=3	87.60	105.70	(21%)	113.90	(30%)	94.00	(7%)		

Table 2: Calculated execution time (in seconds) for different (computation/shared data access) ratios

Conclusion

- Weak intrusion
- Flexibility
- System scalability
- Meta-object : good storage structure for on-line analysis
- User-orientation
- \bullet Independence
- \implies A distributed debugger for DSM systems

Adress: http://www.ens-lyon.fr/ llefevre/DOSMOS/Dosmos.html