
Internship Report - Church Synthesis and
Uniformization of Relations on Words
Léo Exibard1

1 Département d’Informatique
E.N.S de Lyon
France

This work was conducted under the supervision of Emmanuel Filiot: Département
d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium.

Contents

1 Introduction 1
1.1 Context and motivations . 1
1.2 Preliminaries . 3

2 Uniformization with regards to k-inclusion 6
2.1 Semantics with origin . 6
2.2 The k-uniformization problem . 7
2.3 The proof . 7

3 Uniformization of unions of deterministic transducers 11
3.1 Delays . 12
3.2 Generalized Twinning Property . 14
3.3 Decidability of the GTP . 20
3.4 Main result . 20

4 Conclusion 20
4.1 Our contribution . 20
4.2 Future work . 20

A Proofs 22
A.1 Proof of lemma 2.12 . 22
A.2 A constructive proof for lemma 3.15 . 22

B Context of the internship 24

1 Introduction

1.1 Context and motivations
Transducers Automata are finite state machines that are designed to recognize languages.
Similarly, we can define transducers (abbreviated NFT, for nondeterministic finite transduc-
ers), which can be understood as automata with outputs: at each transition, they read a
letter or a word, and they output another word. These devices recognize relations, between
the input words and the output words.

Transducers can also model interactive systems: the environment inputs words, the
system outputs other words, and the sequence of events is valid if the word that results from
the interaction is in a given language.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Church Synthesis and Uniformization

Verification Computer aided verification is a branch of theoretical computer science whose
contributions are mathematical formalisms for modelling and reasoning on hardware and
software systems. In the automata-based approach to verification [24], the system to design
is modeled at a high level of abstraction as an automaton that defines the set of its possible
behaviours. All its behaviours should respect a set of correctness properties, classically
expressed within a temporal logic [18]. The model-checking technics [7, 20, 8] are based on
these foundations, and have seen substantial developments in the last two decades. However,
the theory of model-checking has mainly focused so far on reactive systems.

System synthesis goes a step further than model-checking. Its aim is to automatically
generate a program that satisfies a given specification. The underlying goal is to improve
program reliability and optimize design constraints, like time and human errors, by getting
rid of the low-level programming task, replacing it with the design of high-level specifications.
The challenge of automatic synthesis, long ago introduced by Church [6], is difficult to realize
for general-purpose programming languages. However in recent years, there has been a
renewed interest in feasible methods for the synthesis of application-specific programs, which
have been, for instance, successfully applied to reactive systems [17, 16, 10, 12, 21].

Since the actions of the environment in which the system is executed are uncontrollable,
the synthesis is classically formalised as a game theoretic problem, where the environment is
seen as an adversary [23]. It was first formalised by Church [6]: two players (the environment
and the system) alternate in choosing a bit in {0, 1}. The game lasts for an infinite number
of rounds and the interaction generates an infinite word s over {0, 1}. The winning condition
for the system is given by a language R of infinite words. The system wins the game if s ∈ R.
The goal of the system is therefore to find a strategy P such that whatever the environment
does, all the possible executions of the game, where the system plays according to the strategy
P , belongs to the winning language R. The set R represents the set of good executions, that
the system must try to ensure. It is usually modelled as a set of requirements defined in
some logic (MSO, temporal logic, . . .). A strategy P is a function that, given the whole
history of the play (i.e. a finite word over {0, 1}) tells the system whether to output 0
or 1. Such a strategy may not exist, in which case we say that requirements R are not
realizable. Otherwise, the synthesis problem asks to generate a finite representation of a
winning strategy P (a program). When the requirements are defined in MSO, the synthesis
problem is decidable [5] and moreover, if the requirements are realizable, they are realizable by
simple finite state programs (Moore machines). This famous result by Büchi and Landweber
was later on refined by Pnueli and Rosner, who proves that when the requirements are given
in linear time temporal logic (LTL), the problem is 2ExpTime-complete. The basic framework
of Church and synthesis has also motivated a very active domain of research: the theory
of games played on graphs. In this setting, the game arena is a graph whose vertices are
intended to model the states of the system and the edges the actions of both the system and
the environment.

Limitations So far, the theory has mainly focused on reactive systems, modeled as simple
finite state transducers that alternatively receive a bit and produce one single bit (Moore
machines). This abstraction is too restrictive to model more complex systems, such as string,
list or stream processing programs. Strings and lists can be viewed as words, and therefore
we will refer to these programs as word processing programs. In a word processing program,
one may want to delete some parts of the word, or swap two subwords, or duplicate some
information. Such systems are not reactive, in the sense that the system does not have to
produce the output in a synchronous manner.

L. Exibard 3

Unified framework for synthesis Extensions of the classical setting of synthesis to quantita-
tive, multi-components and probabilistic systems are now actively studied. Still, the focus is
on reactive systems. To overcome this limitation, another way to generalise Church’s setting
is to relax the notions of strategies and requirements. We propose the following generalisation.
Given two classes of (finite or infinite) word transformations R and F over some alphabet Σ,
such that F are functions, the problem Church(R,F) asks, given a transformation R ∈ R,
if there exists a transformation f ∈ F such that (i) R and f have the same domain, and
(ii) f ⊆ R. The transformation R is called the requirements, and f , which must be a
function, is called the program. Condition (i) ensures that any input word produced by the
(uncontrollable) environment can be processed by f . Condition (ii) ensures that f is correct
with respect to the requirements. This novel generalisation establishes a bridge between the
synthesis and language theory communities, by providing a unified framework for synthesis,
under which fall some important particular cases.

Known instances For example, the problem Church(Reg2, Moore), where here Reg2 stands
for any requirement R defined as a regular language of infinite words over the product
alphabet Σ2 (and therefore a particular kind of transformations), and Moore stands for
any program represented as a Moore machine, is decidable when R is defined in MSO, by
Büchi-Landweber’s theorem [5]. The particular instance Church(LTL, Moore) has been studied
by Pnueli and Rosner [19]. The instance Church(NFT, FFT), where FFT are functional NFT,
has always a positive answer and is known as the uniformisation of rational relations in
transducer theory [3]. As another instance of the problem, this uniformisation theorem has
been extended to two-way transducers [9]. Finally, the problem Church(Reg2, DelayStrat),
where DelayStrat are strategies that can delay their actions, has been considered in [15].

Targeted instances The final goal of this work is to examine Church(NFT, DFT): can a
nondeterministic transducer be uniformized by a deterministic one?

This may also shed light on Church(MSOT, DFT): can a relation defined in monadic
second order logic be uniformized by a deterministic transducer?

Solved subcases We were able to decide Churchk(NFT, DFT), which is a particular case
where we strenghtened the notion of equivalence: the uniformizer cannot wait for too
long before outputting its answer. But the main result of this work is the decision of
Church(∪DFT, DFT): we characterized the union of deterministic transducers which are
uniformizable, by a decidable property.

1.2 Preliminaries
1.2.1 Words and languages
We first remind some notations over words and languages, then extend the classical framework
to improve the readability of our proofs. In this paper, A, B and Σ are finite alphabets, and
ε is the empty word, whatever the alphabet.

I Definition 1.1 (Mismatch). Let u, v ∈ Σ∗. We say that u and v mismatch if ∃i ∈
{0, . . . , min(|u|, |v|), u[i] 6= v[i]

I Definition 1.2 (Prefixes). Let u, v ∈ Σ∗. We say that u is prefix to v, and we denote u 4 v,
if ∃v′ ∈ Σ∗ such that v = uv′.

4 Church Synthesis and Uniformization

I Definition 1.3 (Longest common prefix). For u, v ∈ Σ∗, we denote by u ∧ v the longest
common prefix of u and v, ie the δ ∈ Σ∗ such that δ 4 u, δ 4 v and ∀a ∈ Σ, δa 64 u or
δa 64 v. We can notice that ∧ is commutative and associative. This allows us to extend this
notation to finite sets of words: for all v1, · · · , vn ∈ Σ∗, we denote

∧n
i=1 vi = v1 ∧ · · · ∧ vn.

Now, we extend the free monoid associated with an alphabet to a group:

I Definition 1.4 (Group associated with an alphabet). Let Σ be a finite alphabet. For all
a ∈ Σ, we assume that there exists a−1 such that aa−1 = a−1a = ε: a−1 is the inverse of a.
We will always assume that ∀a ∈ Σ, a−1 /∈ Σ. The set of the inverses of the elements of Σ is
denoted by Σ−1.

The group associated with Σ is then ΣG = (Σ + Σ−1)∗, modulo the congruence given by
the identities aa−1 = a−1a = ε. For example, aa−1b ≡ b ≡ bc−1c.

Formally, we say that u ≡ v if v can be obtained from u by using the following rules,
defined for all a ∈ Σ ∪ Σ−1, finitely many times: aa−1 ↔ a−1a, a−1a↔ ε, aε↔ εa, εa↔ a.

Then, we define ΣG = (Σ + Σ−1)∗
/≡. Now, every word u = u1 · · ·un ∈ ΣG has an inverse:

u−1 = u−1
n · · ·u−1

1 ∈ ΣG.

We also define a length over this group:

I Definition 1.5 (Length over ΣG). We already have a length defined over (Σ+Σ−1)∗, which
consists in discounting the letters: ∀u = u1 · · ·un ∈ (Σ + Σ−1)∗, |u|(Σ+Σ−1)∗ = n. We extend
this to:

|·|ΣG :
{

ΣG → N
ũ 7→ min

v≡ũ
|v|(Σ+Σ−1)∗ = min{n ∈ N

∣∣ ∃u1, · · · , un ∈ Σ ∪ Σ−1, ũ ≡ u1 · · ·un}

}

In the following, if u ∈ (Σ + Σ−1)∗, |u| will denote |ũ|ΣG . We can notice that if u ∈ Σ∗,
|u|Σ∗ = |ũ|ΣG .

We finally define a distance over Σ∗.

I Definition 1.6 (Distance over Σ∗). For u, v ∈ Σ∗, we define d(u, v) = |u|+ |v| − 2|u ∧ v|

I Remark. This distance can also be defined as ∀u, v ∈ Σ∗, d(u, v) = |v−1u|ΣG = |u−1v|ΣG

1.2.2 Transducers
Here, we follow the introduction given in [2].

I Definition 1.7 (Transducer). Let A, B be two finite alphabets. A transducer (we will
also write NFT, which stands for nondeterministic finite transducer) T over A∗ ×B∗ is a
quadruple T = (Q, E, I, F) where:

Q is the set of states
E ⊆ Q×A∗ ×B∗ ×Q are the transitions
I is the set of initial states
F is the set of final states

A transition (p, u, v, q) is also denoted as p
u|v−−→ q. The word u is the input, and the word

v the output. Similarly to automata, we define a path labeled by input u and output v as:
p0

u0|v0−−−−→ p1
u1|v1−−−−→ · · · un|vn−−−−→ pn+1, also denoted p0

u|v−−→
T

pn+1. A path is successful if p0 is
an initial state and pn+1 a final state. We will also use the term run.

For p ∈ Q, we denote by Tp = (Q, E, {p}, F) the transducer T in which we start from p.

L. Exibard 5

I Definition 1.8 (Associated relation). The relation associated with T is:
RT =

{
(u, v) ∈ A∗ ×B∗

∣∣ u|v is the label of a successful path
}

.
If RT is a function, we say that T is a functional transducer (abbr. FFT). We de-

fine dom(T) = π1(RT), and Im(T) = π2(RT) where π1 and π2 are the projections
respectively on the first and on the second component. For u ∈ dom(T), we denote
T (u) =

{
v ∈ B∗

∣∣ (u, v) ∈ RT
}

. For readability, when RT is a function, we write T (u) = v

instead of T (u) = {v}.

0

1 2

3 4

a|b

ε|bb

a|b

a|ab

b|ε

Figure 1 A transducer recognizing the relation (a, b)+(a, ab) + (b, bb)

I Definition 1.9 (Equivalence between transducers). Two transducers T1 and T2 are said to
be equivalent if they represent the same relation, ie if RT1 = RT2 .

Now, we define some classes of transducers.

I Definition 1.10 (Real-time, letter-to-letter and sequential transducer). A transducer is said
to be real-time if it is labeled over A×B∗. It is said to be letter-to-letter when it is labeled
over A×B (those transducers are very useful to model reactive systems).

A transducer is said to be sequential if it is real-time, if it has a unique initial state and
if the automaton obtained by projecting away the output words on the transitions of T is
deterministic.

I Remark. A sequential transducer is necessarily functional.

We can relax this definition to subsequential transducers, which are allowed to output
something from their final states.

I Definition 1.11 (Subsequential transducer). A subsequential transducer T over A × B∗

is a sequential transducer D = (Q, E, {i0}, F) extended with a function ρ : F → B∗. It

computes the function fT :
{

dom(D) → B∗

u 7→ vρ(p) where i0
u|v−−→
D

p ∈ F

}
. We will also call

them deterministic transducers, or DFT.

I Definition 1.12 (•T). Let T = (Q, E, I, F) be a transducer. We define an operator
•T : Q×A∗ → P(Q), where P(Q) is the set of the parts of Q:
∀p ∈ Q, p •T ε = {p}
∀p ∈ Q,∀u ∈ A+, p •T u = {q ∈ Q

∣∣ ∃v ∈ B∗, p
u|v−−→
T

q}
When T is subsequential, we denote p •T u = q instead of p •T u = {q}.

6 Church Synthesis and Uniformization

Figure 2 Uniformization of R by f

We can also cite another class of transducers, the 2-ways. A 2-way transducer is a
transducer allowed to go back and forth in the input: we add to each transition a direction of
reading, either right or left, and the head moves accordingly. We won’t define them formally,
since we will only quote them as an example.

In the rest of this paper, we will assume that our transducers are real-time.

1.2.3 Relations
Here, we define some notations over the relations.

I Definition 1.13 (Relations and prefixes). For (w, x) ∈ Σ∗ × T ∗ and R ⊆ A∗ × B∗, we
define (w, x)R =

{
(wu, xv) ∈ Σ∗A∗ × T ∗B∗

∣∣ (u, v) ∈ R
}

. In particular, it allows us to add
or delete prefixes to the words in dom(R) or Im(R).

1.2.4 Synthesis
This notion is thoroughly presented in [22].

I Definition 1.14 (Realizability). Let R ⊆ X × Y be a relation of domain D ⊆ X. Let
f : D → Y be a total function. f is said to realize R if ∀X ∈ D, (X, f(X)) ∈ R. In other
words, dom(f) = dom(R) and f is a sub-relation: f ⊆ R.

I Definition 1.15 (Uniformization). Let R be a class of relations, F a class of functions, and
R ∈ R. We say that R is uniformizable in F if ∃f ∈ F which realizes R.

We now define the decision problem Church(R,F) we will try to decide for some instances.

I Definition 1.16 (Church(R,F)). Let R be a class of relations, F a class of functions.
Church(R,F) is the following decision problem:

Input: R ∈ R (finitely represented)
Output: Is R uniformizable in R.

The synthesis problem asks to generate (a finite representation of) f if such an f exists.

2 Uniformization with regards to k-inclusion

2.1 Semantics with origin
Here, we introduce a stronger definition of equivalence between transducers: the outputs
also have to be (almost) synchronized. This notion was introduced in [4].

L. Exibard 7

I Definition 2.1 (Origin). Let T be a (real-time) transducer over A×B∗, and P = p0
u0|v0−−−−→

p1
u1|v1−−−−→ · · · un|vn−−−−→ pn+1 a run in T . The origin function o : {1, . . . , |v|} → {1, . . . , |u|} of

P is defined by o(j) = i such that |v0 · · · vi−1| < j ≤ |v0 · · · vi|, ie ∀j ∈ {1, . . . , |v|}, v[j] was
outputed while reading ui.

If T is subsequential, then we extend o : {1, . . . , |v|} → {1, . . . , |u|+1}, with the convention
that the position of a word outputted at a final state is |u|+ 1.

The relation with origin associated with T is then:
Ro =

{
(u, v, o)

∣∣ there exists a run P in T labeled by u|v with o as origin function
}

By relaxing these new semantics, we define the k-inclusion of two transducers T1 and T2:
T1 can produce its output with at most k delay with respect to the output T2.

I Definition 2.2 (k-inclusion). Let T1, T2 be two transducers over A×B∗.
We say that T1 ⊆k T2 when

∀(u, v, o) ∈ Ro(T1),∃(u, v, o′) ∈ Ro(T2),∀j ∈ {1, . . . , |v|}, |o(i)− o′(i)| ≤ k

2.2 The k-uniformization problem
Here, we want to decide whether it is possible to uniformize a nondeterministic transducer T
by a deterministic transducer which is k-included in T .

I Definition 2.3 (Churchk(NFT, DFT)). Let T be a nondeterministic transducer. Does
there exist D a deterministic transducer such that dom(D) = dom(T) and D ⊆k T ?

I Example 2.4. We study in fig. 3 the transducer E which is 2-uniformizable, but not
1-uniformizable: on an input aax, where x ∈ {a, b}, any uniformizer must wait to know the
input x to output anything. Indeed, RE(aaa) = αα, RE(aab) = ββ and αα ∧ ββ = ε.

0 1 2 3

4 5 6 7

a|α a|ε a|α

a|β a|ε b|β

(a)

0 1 2

3

4

a|ε a|ε
a|αα

b|ββ

(b)

Figure 3 The transducer E and a 2-uniformizer for E

I Theorem 2.5 (Churchk(NFT, DFT)). For all k ∈ N, Churchk(NFT, DFT) is in ExpTime.

I Remark. Here, k is not part of the input.

2.3 The proof
We resort to game theory: we are going to build a two-players safety game over a graph
involving players I (for input) and O (for output) where Player O has a winning strategy iff
T is uniformizable.

8 Church Synthesis and Uniformization

2.3.1 Safety games
In this section, we follow the introduction given in [14], but we restrict to finite, turn-based
safety games. In game theory, safety games involve two players, Player O and Player I. The
protagonist Player O has to stay in safe states, whereas the antagonist Player I tries to lead
him to unsafe states.

I Definition 2.6 (Arena). An arena is a directed labeled graph A = (V = VO]VI , T, ΣI∪ΣO),
where:

VO is the set of O-vertices, which belongs to Player O.
VI is the set of I-vertices, which belongs to Player I.
ΣI , ΣO are two alphabets, used to label the transitions.
I Remark. Transitions are labeled to improve the readability of our proof.
T ⊆ (VI × ΣI × VO)︸ ︷︷ ︸

actions of I

] (VO × ΣO × VI)︸ ︷︷ ︸
actions of O

are the transitions, or moves.

I Remark. Since the game is turn-based, transitions go from Vα to Vα.
There must be no dead end for O: every state owned by O must have at least one outgoing
transition.

Now, we describe the progress of the game. In the following, to talk equally about
Player O and Player I, we will denote Player α, his opponent being Player α.

I Definition 2.7 (Play). A token is placed on an initial vertex v0 ∈ V . Then, when v is
an α-vertex (α ∈ {O, I}), Player α choses a transition, and moves the token to the end of
this transition. The game keeps going until Player I decides to stop. He has to, otherwise
he loses. Thus, a finite play of length n is a word π = π0π1 · · ·πn ∈ (VIVO)∗VI such that
π0 = v0, πn ∈ VI and for all 0 ≤ i ≤ n− 1, (πi, πi+1) ∈ T .

We finally add a winning condition.

I Definition 2.8 (Safety game). Let π be a play of length n. A safety game is an arena
extended with a set of unsafe states U . Player I wins when he leads Player O to an unsafe
state, ie when π ∩ U 6= ∅. Otherwise, Player O wins.

We now define the notion of strategy:

I Definition 2.9 (Strategies). A strategy λα for Player α is a mapping that maps any finite
play whose last state v is in Vα to a state v′ such that (v, v′) ∈ T .

The outcome of a strategy λα of Player α is the set:

OutcomeG(λα) =
{

π = π0 . . . πn ∈ V ∗ ∣∣ ∀0 ≤ j ≤ n− 1, πj ∈ Sα ⇒ πj+1 = λα(π0 . . . πj)
}︸ ︷︷ ︸

finite plays

∪
{

π = π0π1 · · · ∈ V ω
∣∣ ∀j ∈ N, πj ∈ Sα ⇒ πj+1 = λα(π0 . . . πj)

}︸ ︷︷ ︸
infinite plays

A strategy λα for Player α is winning if α always wins using this strategy, whatever his
opponent plays. For Player I, it means that OutcomeG(λI) ⊆ V ∗UV ∗, and for Player O, we
get OutcomeG(λI) ∩ V ∗UV ∗ = ∅.

I Theorem 2.10 (Determinacy). A class of games G is said to be determined if ∀G ∈ G,
either Player I or Player O has a winning strategy. Finite safety games are determined.

Proof. This is a consequence of Zermelo’s theorem. J

L. Exibard 9

I Theorem 2.11 (Winning strategies). Let G be a finite safety game. We can decide in
linear time if Player O has a winning strategy. Otherwise, Player I has a winning strategy.

Proof. A proof of this theorem can be found in [14]. J

Now, we can prove our statement.

Proof. Let T = (S, E, I, F) be a nondeterministic transducer.
We first describe the safety game.

2.3.2 Reduction to a safety game
The vertices of this safety game are P(S) × P(S) × F

(
S × {0, . . . , k},P(ΣMk)

)
× {I, O}

where P(S) denotes the set of the parts of S, F(A, B) denotes the set of the functions
from A to B and where M is the length of the longest output of a transition of T . A state
(P, Q, d, C) corresponds to:

P is the current set of states we can reach from the initial states with regards to the
inputs and outputs that have already been chosen.
Q is the current set of states we can reach from the initial states only with regards to the
inputs.
d represents our delays: d(q, i) is the set of words from which we have to chose one word
to output in the following i steps to keep q as a valid state (otherwise, it will mean we
haven’t been able to catch up). For convenience, we will also represent the elements of
the set d(q, ·) by annotated words δq ∈ ∆q = d(q, 0)(0)× d(q, 1)(1)× · · ·× d(q, k)(k) ⊆ V =
(B + Nk)∗ + (B−1 + Nk)∗.
We define three operations over these words: for w ∈ B∗, w−1δq is the annotated word
obtained by eliminating the longest prefix of w (without taking the annotations into
account). w−1∆q is then the natural extension of this function. strip(δq) is δq without
its annotations. Now, lshift(δq) is δq where every annotation d(i) has been replaced by
d(i−1). We can similarly extend lshift to ∆q.
C ∈ {I, O} is the current player.

Now, we describe the edges: Player I can
Input a letter, by playing (P, Q, d, I) u−→ (P ′, Q′, d′, O) where:

P ′ = P

Q′ = Q • u

d′ = d

Then, Player O has to chose a word v ∈ B2Mk to output.
I Remark. Player O won’t need outputs longer than 2Mk, because the delays to cover
are at most of length Mk, and O is not allowed to be more than k steps ahead of I.
She plays (P ′, Q′, d′, O) τ,v−−→ (P”, Q”, d”, I) where:

We update d:

∆q :=
⋃

p
u|w−−→

T
q

lshift
(

v−1∆pw(k+1)
) ⋂

V

P” = (P • u)\{q ∈ (P • u)|δq = ∅} (the states which delays are outdated)
Q” = Q′

End his input. He has to end his input eventually, otherwise he loses.

10 Church Synthesis and Uniformization

{0,4}
{0:ε,4:ε}

{1,5}
{1:α(2),5:β(2)}

{2,6}
{2:α(1),6:β(1)}

{3}
{3:ε}

{7}
{7:ε}

a|ε a|ε

a|αα

b|ββ

(a) A compact representation of the safety game of
the 2-uniformization of fig. 3a

{0,4}
{0:ε,4:ε}

{1,5}
{1:α(1),5:β(1)}

{2,6}
{6:ε}

{2,6}
{2:ε}

{2,6}
∅

{7}
∅

{3}
{3:ε}

{3}
∅

{7}
{7:ε}

a|ε

a|α

a|β

b|ε

a|α

b|_

a|_

b|β

(b) The safety game correponding to the
1-uniformization of fig. 3a

This game is finite, since there is a finite number of vertices, and the number of transitions
is also bounded: at each step, I choses a letter in a (finite) alphabet, and O choses a word of
length at most 2Mk.

The unsafe states for O are then the (P, Q, d, I) such that P ∩ F = ∅ and Q ∩ F 6= ∅.
Let us show that Player O has a winning strategy iff T is uniformizable:

2.3.3 A winning strategy is a uniformizer
First, if O has a winning strategy, then we build a uniformizer D = (S′, E′, I ′, F ′) for T :

The states of D are S′ = P(S)×P(S)×F
(
S × {0, . . . , k},P(ΣMk)

)
.

For any state (P, Q, d), for any u, the transition labeled by u is (P, Q, d) u|v−−→ (P • u, Q •
u, d′), where v is O’s answer to this move of I, and d′ the updated d.
The initial state is I ′ = (I, I, ε).
The final states F ′ are the states such that P and Q contains a final state.

We extend our transducer with ρ :
{

F ′ → B∗

(P, Q, d, I) 7→ strip(δq) where q ∈ P ∩ F

}
Clearly by construction, our transducer D is subsequential. Now, let us show that it is a
proper uniformizer, ie D ⊆k T . Let u = u0u1 . . . un ∈ A∗. We examine what happens when
I plays successively u0, u1, . . . , un.

If u /∈ dom(T) then, even if there is a path labeled by u in D, this path ends in (P, I •u, d),
where (I • u) ∩ F = ∅: u isn’t recognized by D.

If u ∈ dom(T), then the game ends in (Pn+1, Qn+1, dn+1, I). Since Qn+1 = (I•u)∩F 6= ∅,
we have Pn+1 ∩ F 6= ∅, otherwise we would be in an unsafe state, and we assumed that O

prevented that. Thus, u is accepted by D: let (u, v, o) ∈ Ro(D) be the triple associated to u

by D. D being deterministic, (u, v, o) is unique.
Now, let (Pi, Qi, di, I)0≤i≤n+1 be the I-states visited by the play, and (vi)0≤i≤n+1 the

corresponding outputs. We then build a run in T labeled by u|v which satisfies the delay
condition: we start from qn+1 = f ∈ Pn+1 ∩ F . At each step, we chose qi an origin of a
transition to qi+1 responsible for δqi+1 : qi verifies ∆qi ∩ viδqi+1wi 6= ∅ where qi

ui|wi−−−−→ qi+1.

We then chose a δqi
∈ ∆qi

∩ vi∆qi+1wi. Thus, we have a run q0
u0|v′

0−−−−→ q1
u1|v′

1−−−−→ · · · un|v′
n−−−−→ qn

in T .
We show by induction on 0 ≤ i ≤ n that for all 0 ≤ i ≤ n, v0 . . . viδqi+1 = v′

0 . . . v′
i

If i = 0, then δq1 = v−1
0 εv′

0, and then v0δq1 = v′
0

L. Exibard 11

If 1 ≤ i ≤ n, then we have δqi+1 = v−1
i δqiv

′
i. By induction, we have v0 . . . vi−1δqi =

v′
0 . . . v′

i−1, so v0 . . . vi−1viδqi+1 = v0 . . . vi−1viv
−1
i δqi

v′
i = v0 . . . vi−1δqi

v′
i = v′

0 . . . v′
i−1v′

i

Thus, we have v0 . . . vnδqn+1 = v′
0 . . . v′

n. Since vn+1 = δqn+1 , we finally get v0 . . . vn+1 =
v′

0 . . . v′
n: the outputs are the same.

Moreover, the delays are respected: let o′ be the origin function of the run labeled by
u in D. We show that ∀0 ≤ i ≤ n, o′(i) ≤ o(i) + k: let 0 ≤ i ≤ n. We examine when v′

i is
outputted. We have δqi+1 = lshift(v−1

i δqi
v′

i
(k+1)). Let j be the first moment when the last

letter of v′
i is outputted. Since the delay associated with v′

i decreases from one at each new
letter of input, we have j ≤ i + k, so v′

i is outputted at most at step i + k (otherwise we would
have δqj

/∈ (B + Nk)∗ + (B−1 + Nk)∗, so our run wouldn’t be valid), and so o′(i) ≤ o(i) + k.
Consequently, |o′(i)− o(i)| ≤ k.

We have shown that if O has a winning strategy, then T is k-uniformizable.

2.3.4 A uniformizer is a winning strategy
Conversely, if T is k-uniformizable, then let D be a deterministic transducer which uniformizes
T . We build from D = (S′, E, {i0}, F ′) a winning strategy of our game: at each input a

of Player I from a state (P, I • u, d, I) which leads to (P, (I • u) • a, d, O), we answer by
outputting the word w labelling the transition (i0 • u) a|w−−→ q in D if such transition exists,
and ε otherwise.

Now, let u0, . . . , un be a sequence of inputs given by I. We denote u = u0 . . . un, and
(Pi, Qi, di)1≤i≤n+1 the sequence of states owned by O visited by the play. We denote by
(P0, Q0, d0) the initial state (I, I, ε). Let us show that all states are safe.

If u ∈ dom(T) = dom(D), then let i0
u0|v′

0−−−−→ p1
u1|v′

1−−−−→ · · ·
un−1|v′

n−1−−−−−−−→ pn
un|v′

n−−−−→

fn+1
v′

n+1−−−→ be the run labeled by u in D and o′ its origin function. Now, let q0
u0|v0−−−−→

. . .
un|vn−−−−→ qn+1 a run in T , with o as origin function, such that v′

0 . . . v′
nv′

n+1 = v0 . . . vn =
v and ∀j ∈ {1, . . . , |v|}, |o(i)− o′(i)| ≤ k. Such run exists because D uniformizes T .
We now show that delays are respected:
I Lemma 2.12. ∀0 ≤ i ≤ n+1, qi ∈ Pi∧(v′

0 . . . v′
i−1)−1v

(k−(i−1))
0 v

(k−(i−2))
1 . . . v

(k)
i−1 ∈ ∆qi

Proof. This technical proof can be found in annex at page 22. J

From this lemma, we can deduce that O stays in safe states: we never have Pi ∩ F = ∅
and Qi ∩ F 6= ∅.

We have shown that the strategy we built was winning.
The equivalence between a winning strategy and a uniformizer shows that, by building

and solving this game, we can decide Churchk(NFT, DFT). The size of this game is 22|Q| ×(
|Σ|lk

)|Q|×k. Thanks to 2.11, this game can be solved in linear time, so this leads us to an
exponential execution time: Churchk(NFT, DFT) is in ExpTime.
I Remark. If k is part of the input, Churchk(NFT, DFT) is in 2-ExpTime.

J

3 Uniformization of unions of deterministic transducers

We first introduce the notion of delays between words. It is closely related to the notion of
longest common prefix. This notion is defined for two words in [11], but here, we adopt a
slightly different point of view, and generalize it to sets of words. In this section, we prove

12 Church Synthesis and Uniformization

some lemmas to help the reader get a better understanding of the notion. These lemmas will
also help us in the proof of our main result.

3.1 Delays
I Definition 3.1 (Delays). For two words u, v ∈ Σ∗, we denote by D(u, v) = v−1u the
delay between u and v. We can also extend it to a set of words, by examining the de-
lays towards the longest common prefix: For v1, · · · , vl ∈ Σ∗, we define ∆({v1, . . . , vl}) :{
{1, . . . , l} → B∗

i 7→
(∧l

j=1 vj

)−1
vi

}

I Lemma 3.2 (Sets of words and delays). Let {ui}i∈I , {vi}i∈I ∈ Σ∗I be two finite sets
of words, and let w, x ∈ Σ∗. If ∀i ∈ I, D(ui, w) = D(uivi, x), then ∀i, j ∈ I, D(ui, uj) =
D(uivi, ujvj).

Proof. We assume that ∀i ∈ I, D(ui, w) = D(uivi, x). Then, let i, j ∈ I. We have{
w−1ui = x−1uivi

w−1uj = x−1ujvj
, so

{
uivi = xw−1ui

(ujvj)−1 = u−1
j (xw−1)−1 , which means that (ujvj)−1uivi =

u−1
j (xw−1)−1(xw−1)ui, which finally leads to D(ui, uj) = D(uivi, ujvj). J

I Lemma 3.3 (Stable delays). ∀u, v, w, x ∈ Σ∗, we have D(u, w) = D(uv, wx) ⇔ ∀l, m ∈
N, D(uvl, wxl) = D(uvm, wxm)

Proof. We show by induction on l ∈ N that ∀l ∈ N, D(uvl, wxl) = D(u, w)
If l = 0, then we trivially have the identity.
Let l ≥ 0. D(uvl+1, wxl+1) = x−lx−1w−1uvvl = x−lD(uv, wx)vl = x−lD(u, w)vl =
x−lw−1uvl = D(uvl, wxl) = D(u, w)

The converse is given by l = 0 and m = 1. J

I Lemma 3.4 (Delays and prefixes). ∀u, v, w, x ∈ Σ∗ such that |v| 6= 0 or |x| 6= 0, D(u, w) =
D(uv, wx)⇒ (u 4 w ∧ uv 4 wx) ∨ (w 4 u ∧ wx 4 uv)

Proof. Let u, v, w, x ∈ Σ∗ such that |v| 6= 0 or |x| 6= 0, and D(u, w) = D(uv, wx).
If w 4 u, then ∃u′ ∈ Σ∗, u = wu′, ie D(u, w) = u′. Then, D(uv, wx) = (wx)−1uv = u′,
so uv = wxu′: wx 4 uv

Symmetrically, if u 4 w, then uv 4 wx.
The third case is impossible: u and w cannot mismatch. Otherwise, ∃δ ∈ Σ∗,∃u′w′ ∈
Σ∗,∃a, b ∈ Σ, u = δau′, w = δbw′, so D(u, w) = w−1u = w′−1b−1au′. Then, D(uv, wx) =
x−1w′−1b−1au′v, so, since |v| 6= 0 or |x| 6= 0, |D(uv, wx)| > |D(u, v)|: D(u, v) 6=
D(uv, wx).

J

The next lemma states that if a loop leads to different delays, then it can be used to
produce infinitely many different delays.

I Lemma 3.5 (Infinitary condition). ∀u, v, w, x ∈ Σ∗, D(u, w) 6= D(uv, wx) if and only if{
D(uvi, wxi)

∣∣ i ≥ 0
}

is infinite.

Proof. We first notice that if v = x = ε, then ∀i ∈ N, D(u, w) = D(uvi, wxi) and the
equivalence holds. We now assume that v 6= ε or x 6= ε. We treat the different cases:

L. Exibard 13

u and w mismatch: ∃δ ∈ Σ∗,∃u′w′ ∈ Σ∗,∃a, b ∈ Σ, u = δau′, w = δbw′, so D(u, w) =
w−1u = w′−1b−1au′. Then ∀i ∈ N, D(uvi, wxi) = x−iw−1uvi = x−iw′−1a−1bu′vi. Con-
sequently, ∀i ∈ N, |D(uvi, wxi)| = i · |x| + |w′| + 2 + |u′| + i · |v|: since v 6= ε or x 6= ε,
{|D(uvi, wxi)|}i∈N −−−→

i→∞
∞, so it takes inifinitely many values:

{
D(uvi, wxi)

∣∣ i ≥ 0
}

is
infinite.
w 4 u: ∃u′ ∈ Σ∗, u = wu′, ie D(u, w) = w−1u = u′. We have ∀i ∈ N, D(uvi, wxi) =
x−iw−1uvi = x−iu′vi. Then, ∀i ∈ N, |D(uvi, wxi)| ≥ |i · |v| − |u′| − i · |x|| ≥ |i · |v| − i ·
|x|| − |u′|.

If |v| 6= |x|, then |i · |v| − i · |x|| − |u′| −−−→
i→∞

∞, and then {|D(uvi, wxi)|}i∈N −−−→
i→∞

∞:{
D(uvi, wxi)

∣∣ i ≥ 0
}

is infinite.
Else, we show that there exists l ≥ 0 such that uvl and wxl mismatch:
∗ If uv and wx mismatch then l = 1 is suitable.
∗ Otherwise, since w 4 u and |v| = |x|, we have wx 4 uv. Let v′ ∈ Σ∗ be such that

uv = wxv′, ie D(uv, wx) = v′. Now, let l ≥ 1 such that |x|l > |v′| = |u′|. We have
uvl+1 = wxv′vl = wu′vl+1.

We can’t have wxl+1 4 uvl+1, otherwise
{

wxl+1 4 wxv′vl

4 wu′vl+1 ie
{

xl 4 v′vl

xlx 4 u′vl+1 and

so, since |x|l ≥ |v′| = |u′|,
{

v′ 4 xl

u′ 4 xl
, which means u′ = v′, ie D(u, w) = D(uv, wx)

Since uvl and wxl mismatch, we already showed that {D(uvli, wxli)
∣∣ i ≥ 0} is infinite.

Since {D(uvli, wxli)
∣∣ i ≥ 0} ⊆ {D(uvi, wxi)

∣∣ i ≥ 0}, {D(uvi, wxi)
∣∣ i ≥ 0} is also

infinite.
Conversely, if D(u, w) = D(uv, wx) then, thanks to lemma 3.3, we get ∀i ∈ N, D(uvi, wxi) =
D(u, w), so

{
D(uvi, wxi)

∣∣ i ≥ 0
}

is finite. J

I Lemma 3.6 (Increasing delays). ∀u, v, w, x ∈ Σ∗, we have D(u, w) 6= D(uv, wx) ⇔ ∀l 6=
m, D(uvl, wxl) 6= D(uvm, wxm)

Proof. If ∃l < m, D(uvl, wxl) = D(uvm, wxm), then, since {D(uvi, wxi)}i∈N can be defined

by induction {D(uvi, wxi)}i∈N =
{

D(u, w) if i = 0
x−1D(uvi−1, wxi−1)v if i > 0 we can deduce that

{D(uvi, wxi)}i≥l is periodic, and takes finitely many values. Consequently, {D(uvi, wxi)}i∈N
takes finitely many values, which contradicts lemma 3.5.

The converse is given by l = 0 and m = 1. J

Here, we shed light on the relation between delays and their generalization.

I Lemma 3.7 (Delays). ∀{vi}i∈I , {wi}i∈I ∈ Σ∗I , ∆({vi}i∈I) = ∆({viwi}i∈I) ⇔ ∀m, n ∈
I, D(vm, vn) = D(vmwm, vnwn)

Proof. The direct implication is given by lemma 3.2. Let us show the converse.
In the following, we will denote δ =

∧
i∈I vi and δ′ =

∧
i∈I viwi. Here, we assume that

∃l ∈ I, wl 6= ε, otherwise the lemma is trivial. So, thanks to lemma 3.4, we have, by
comparing to wl, ∀i, j ∈ I, either vi 4 vj and viwi 4 vjwj , or vj 4 vi and vjwj 4 viwi.
Consequently, ∃n ∈ I, δ = vn, ∃p ∈ I, δ′ = vpwp. Moreover, since vn 4 vp, we get
vnwn 4 vpwp, so, since δ′ = vpwp 4 vnwn, we finally have δ = vn and δ′ = vnwn. Then,
∀j ∈ I, ∆({vi}i∈I)(j) = δ−1vj = v−1

n vj = D(vj , vn) = D(vjwj , vnwn) = (vnwn)−1vjwj =
δ′−1vjwj = ∆({viwi}i∈I)(j). In conclusion, ∆({vi}i∈I) = ∆({viwi}i∈I). J

14 Church Synthesis and Uniformization

I Lemma 3.8 (Generalized delays). This lemma is a version of 3.6 for generalized delays:
let {vi}i∈I , {wi}i∈I ∈ Σ∗I . If ∆({vi}i∈I) 6= ∆({viwi}i∈I), then ∀l, m ∈ N, ∆({viw

l
i}i∈I) 6=

∆({viw
m
i }i∈I)

Proof. We use lemmas 3.6 and 3.7. J

I Definition 3.9 (Relations and prefixes: an extension). Here, we define a relation similarly
to what we did for the subsequential transducers: the following can be seen as the definition
of an output function for the inital states of a nondterministic transducer.

For a transducer T = (Q, E, I, F) over A∗ ×B∗, a set of states {q1, · · · , qk} ⊆ Q and a
function I : {q1, · · · , qk} → Σ∗, we define the relation over A∗ × Σ∗B∗

IRT =
{

(u, v) ∈ A∗ × Σ∗B∗ ∣∣ v = I(qi)w where qi
u|w−−→
T

f is a succesful path
}

I Lemma 3.10 (Uniformizing continuations). Let T =
n⋃

i=1
Dj be the union of l determinis-

tic transducers. Let u1, u2 ∈ A∗ such that

D1 p1

u1|v1−−−−→ q1
u2|w1−−−−→ r1

...
...

...
...

Dl pl
u1|vl−−−→ ql

u2|wl−−−−→ rl

We define

I1 :
{
{q1, · · · , ql} → B∗

qi 7→ ∆({vj}1≤j≤l)(i)

}
, I2 :

{
{r1, · · · , rl} → B∗

qi 7→ ∆({vjwj}1≤j≤l)(i)

}
.

If I1
⋃l

j=1 Dj is uniformizable, then so is I2
⋃l

j=1 Dj.

Proof. The idea is to use a uniformizer for I1
⋃l

j=1 Dj , and start from q = i • u1. J

In the following, we generalize the Twinning Property defined by Choffrut, which charac-
terizes the subsequential functions (see e.g [2]).

3.2 Generalized Twinning Property
In this whole section, we assume without loss of generality that all states are coaccessible.
Here, we give a characterization of the uniformizable transducers in ∪DFT: when delays
explode, we must be able to drop some runs and recursively uniformize the chosen subset.

0 1 2 3

4 5 6 7

a|α a|ε a|α

a|β a|ε b|β

c|ε

c|α

Figure 4 A union of two deterministic transducers which is not uniformizable

I Example 3.11. We invite the reader to try and grasp the necessity of dropping a run with
fig. 4: the loops over states 2 and 6 forces the uniformizer to drop either the first transducer

L. Exibard 15

or the second. Otherwise, it will have to memorize infinitely many α to output, which is
not possible. However, it can’t, since dropping the first will make him lose the possibility to
cover the words finishing by a, and conversely. Thus, this transducer isn’t uniformizable. A
sufficient condition here would be that one of the two cover all the continuations after the
state 2 (resp. 6).

The GTP is a generalization of this observation.

I Definition 3.12 (Generalized Twinning Property). Let T =
n⋃

i=1
Di be the union of n deter-

ministic transducers over A × B∗. Let I1 :
{
{q1, · · · , qk} → B∗

qi 7→ ∆({v1, · · · , vl})(i)

}
and

I2 :
{
{q1, · · · , qk} → B∗

qi 7→ ∆({v1w1, · · · , vlwl})(i)

}
. We say that T satisfies the Generalized

Twinning Property if:

∀u1, u2 ∈ A∗, if

Di1 p1
u1|v1,1−−−−−→ q1

u2|v2,1−−−−−→ q1
...

...
...

...
Dik

pk
u1|v1,k−−−−−→ qk

u2|v2,k−−−−−→ qk

∀j /∈ {i1, . . . , ik}, there is no run over u1u2 in Dj

where p1, . . . , pk

are initial, and if delays mismatch, ie I1 6= I2, then there exists P {i1, . . . , ik} such that:

1.
k⋃

j=1
dom(Tqj) =

⋃
j∈P

dom(Tqj)

2. I ′
1

⋃
j∈P

Dj is uniformizable, where I ′
1 :

{
{qj}j∈P → B∗

qi 7→ ∆({v1,j}j∈P)(i)

}

I Theorem 3.13 (Generalized Twinning Property). Let T =
d⋃

i=1
Di be the union of d determin-

istic transducers over A×B∗. T is uniformizable by a subsequential transducer iff it satisfies
the Generalized Twinning Property.

In the proof, we will need the following lemmas:

3.2.1 Preliminary lemmas
I Lemma 3.14 (A bit of combinatorics on words). Let u1, u2, u3, v1, v2, v3 ∈ Σ∗. If u1ul

2u3 =
v1vl

2v3 holds for infinitely many l, then it is true for all l.

Proof. This lemma is a consequence of the Fine and Wilf theorem, see e.g. [1], and of results
proven in [13].

To give a quick sketch of the proof: we first show that u2 and v2 are conjugate, and then
we just have to examine the different cases. J

I Lemma 3.15 (Prefixes). For any subsequential relation, we can either delete a com-
mon prefix or add any word. Formally, let T be a subsequential transducer over A × B∗,
and v ∈ B∗ +B−1∗. If (ε, v)RT ⊆ A∗×B∗, then it is recognized by a subsequential transducer.

We first give a quick but non constructive proof:

16 Church Synthesis and Uniformization

Proof. Here, we recall the distance over A∗ of definition 1.6: ∀u, v ∈ A∗, d(u, v) = |u|+ |v| −
2|u ∧ v|. Now, we state a characterization of subsequential relations:

I Definition 3.16 (Bounded variation). We say that f has bounded variation when:

∀k ≥ 0,∃K ≥ 0,∀(u, v) ∈ dom(f), d(u, v) ≤ k ⇒ d(f(u), f(v)) ≤ K

Thanks to Proposition 7 of [2], we know that f is subsequential iff it has bounded
variation. RT is subsequential, so it has bounded variation. For all (u, v) ∈ dom(T), we get

d((ε, δ)fT (u), (ε, δ)fT (v)) = |(ε, δ)fT (u)|+ |(ε, δ)fT (v)| − 2|(ε, δ)fT (u) ∧ (ε, δ)fT (v)|
= |fT (u)|+ |fT (v)| − 2|fT (u) ∧ fT (v)|+ 2|δ|

with the following convention: if δ ∈ B−1∗
, |δ| = −|δ|B−1∗ , since δ removes letters (here, the

fact that δ is prefix to fT (u) and fT (v) is crucial).
Now, let k ≥ 0, and K ≥ 0 the associated modulus of variation. We have: ∀(u, v) ∈

dom(T), d(u, v) ≤ k ⇒ d((ε, δ)fT (u), (ε, δ)fT (v)) ≤ K + 2|δ|, so (ε, δ)fT admits K + 2|δ| as
a modulus of variation for k: (ε, δ)fT has bounded variation.

In conclusion, (ε, δ)fT is subsequential. J

I Remark. A second proof, where we show how the corresponding transducer can be built,
is presented in the appendix at page 22.

We can now prove our statement.

Proof. 3.2.2 The condition is necessary
We assume that T is uniformizable by a subsequential transducer D = (Q, E, {i0}, F, ρ).

Now, let u1, u2 ∈ A∗ such that

Di1 p1
u1|v1,1−−−−−→ q1

u2|v2,1−−−−−→ q1
...

...
...

...
Dik

pk
u1|v1,k−−−−−→ qk

u2|v2,k−−−−−→ qk

∀j /∈ {i1, . . . , ik}, there is no run over u1u2 in Dj

and

I1 6= I2, ie ∆({v1,1, . . . , v1,k}) 6= ∆({v1,1v2,1, . . . , v1,kv2,k}).
Let P = {i1, . . . , ik}\{i|D(w1, v1,i) 6= D(w1w2, v1,iv2,i)}.

A particular case: the uniformizer also loops

We first assume that D and the Di loop simultaneously: i0
u1|w1−−−−→

D
q

u2|w2−−−−→
D

q for some q ∈ Q.
Let us show that P satisfies the needed properties:

Dropping runs We first show that P ({i1, . . . , ik}:
∆({v1,1, . . . , v1,k}) 6= ∆({v1,1v2,1, . . . , v1,kv2,k}), so, thanks to lemma 3.7, we can find

m, n such that D(v1,m, v1,n) 6= D(v1,mv2,m, v1,nv2,n). We show that either D(w1, v1,m) 6=
D(w1w2, v1,mv2,m), or D(w1, v1,n) 6= D(w1w2, v1,nv2,n): if D(w1, v1,m) = D(w1w2, v1,mv2,m)
ie v−1

1,mw1 = v−1
2,mv−1

1,mw1w2, then v−1
2,nv−1

1,nw1w2 = v−1
2,nv−1

1,nv1,mv2,mv−1
1,mw1 6= v−1

1,nv1,mv−1
1,mw1

= v−1
1,nw1. So D(w1, v1,n) 6= D(w1w2, v1,nv2,n). Consequently, either m /∈ P , or n /∈ P . It

implies that P ({i1, . . . , ik}.

L. Exibard 17

The continuations are the same Now, we prove that
k⋃

j=1
dom(Tqj

) =
⋃

j∈P

dom(Tqj
).

The following lemma is stronger than needed, but will be useful after. It implies that the
continuations are the same.

I Lemma 3.17 (Choice). ∀(u3, w3) ∈ RDq ,∃i ∈ P, ∃v3,i ∈ B∗, (u3, v3,i) ∈ RDiqi
∧ ∀k ∈

N, w1wk
2 w3 = v1,iv

k
2,iv3,i

In other words, for all continuations, the uniformizer choses one deterministic transducer
among the ones in P and sticks to it.

Proof. We define a sequence {ul}l∈N ∈ {1, . . . , k}N: ∀l ∈ N, ul = i ∈ {1, . . . , k}, w1wl
2w3 =

v1,iv
l
2,iv3,i. {ul} takes its values in a finite set {1, . . . , k}, so ∃i ∈ {1, . . . , k}, ul = i for

infinitely many l. Consequently, for infinitely many l, v1,iv
l
2,iv3,i = w1wl

2w3. Thanks to
lemma 3.14, we can deduce that this identity holds for all l ∈ N. For l = 0, 1, we get
v1,iv3,i = w1w3 and v1,iv2,iv3,i = w1w2w3.

We just have to show that i ∈ P : to this end, we show that if v1,iv3,i = w1w3 and
v1,iv2,iv3,i = w1w2w3, then i ∈ P . Indeed, w3 = w−1

1 v1,iv3,i = w−1
2 w−1

1 v1,iv2,iv3,i, and then
w−1

1 v1,i = w−1
2 w−1

1 v1,iv2,i, which means that D(w1, v1,i) = D(w1w2, v1,iv2,i). In conclusion,
i ∈ P . J

Consequently, ∀(u3, w3) ∈ RDq
,∃i ∈ P, (u3, v3,i) ∈ RDiqi

, otherwise D couldn’t find
an image to stick to. We get ∀u3 ∈ dom(Dq),∃i ∈ P, u3 ∈ dom(Diqi

), which means that⋃
j∈P

dom(Tqj
) ⊇ dom(Dq) ⊇

k⋃
i=1

dom(Tqj
) (because D uniformizes T).

The rest is uniformizable We finally show that R = I ′
1

⋃
i∈P

Di is uniformizable. We want

to uniformize the following relation, where δ =
(∧

j∈P v1,j

)
:

R =
{

(u, v)
∣∣ v = ∆({v1,i}i∈P)(i)w where qi

u|w−−−−→
Di∈P

f

}
=

{
(u, v)

∣∣ v = δ−1v1,iw where qi
u|w−−−−→

Di∈P

f

}
Let (u3, w3) ∈ RDq

. By virtue of lemma 3.17, ∃i ∈ P, ∀k ∈ N, w1wk
2 w3 = v1,iv

k
2,iv3,i. In

particular, w1w3 = v1,iv3,i. Consequently, δ−1w1w3 = δ−1v1,iv3,i, and, since δ is a prefix of
v1,i, we get δ−1w1w3 ∈ B∗: δ−1w1RDq

⊆ A∗ ×B∗, so, thanks to lemma 3.15, δ−1w1RDq
is

recognized by D′ a subsequential transducer. Let us show that D′ realizes R:
First, dom(D′) = dom(D) = dom(Dq) =

⋃k
i=1 dom(Tqi

) = dom(R)
Now, if (u3, v) ∈ δ−1w1RDq

, then let w3 ∈ Iq,D such that v = δ−1w1w3. Since (u3, w3) ∈
RDq

, lemma 3.17 yields ∃i ∈ P, ∀k ∈ N, w1wk
2 w3 = v1,iv

k
2,iv3,i. Then, ∃i ∈ P, w1w3 = v1,iv3,i

ie ∃i ∈ P, v = δ−1v1,iv3,i, with qi
u3|v3,i−−−−→
Di∈P

. This precisely means (u3, δ−1v1,iv3,i) ∈ R, so we

can deduce that (u3, v) ∈ R.
In conclusion, D′ realizes R.

18 Church Synthesis and Uniformization

The general case

Now, we have to treat the general case: D and the Di doesn’t necessarily loop simultaneously,
and we have i0

u1|w1−−−−→
D

r
u2|w2−−−−→

D
s. However, by pumping, ∃l, m ∈ N such that

Di1 p1
u1ul

2|v1,1vl
2,1−−−−−−−−−→ q1

um
2 |vm

2,1−−−−−→ q1
...

...
...

...

Dik
pk

u1ul
2|v1,kvl

2,k−−−−−−−−−→ qk

um
2 |vm

2,k−−−−−→ qk

D p
u1ul

2|w′
1−−−−−→ q

um
2 |w′

2−−−−→ q

∀j /∈ {i1, . . . , ik}, there is no run over u1u2 in Dj

Here, D and the Di loops simultaneously over um
2 . Thus, ∃P ({i1, · · · , ik} such that:

1.
k⋃

j=1
dom(Tqj) =

⋃
j∈P

dom(Tqj)

2. I ′′
1

⋃
j∈P

Dj is uniformizable, where I ′′
1 :

{
{q1, · · · , qk} → B∗

qi 7→ ∆({v1,jvl
2,j}j∈P)(i)

}
We just have to show that the P we defined suits us. We already showed that P (
{i1, · · · , ik} and the continuations are the same. We just have to realize R = I ′

1
⋃

j∈P

Dj ={
(u, v)

∣∣ v = δ−1v1,iw where qi
u|w−−−−→

Di∈P

f

}
With what preceeds, we know thatR′ = I ′′

1
⋃

j∈P

Dj

=
{

(u, v)
∣∣ v = δ′−1v1,iv

l
2,iw where qi

u|w−−−−→
Di∈P

f

}
(where δ′ =

∧
j∈P v1,jvl

2,j) is uniformizable.

Since ∆({v1,jvl
2,j}j∈P) = ∆({v1,jvl

2,jvm
2,j}j∈P), we get, thanks to lemma 3.7, ∆({v1,j}j∈P) =

∆({v1,jvl
2,j}j∈P), ie I ′′

1 = I ′
1. Consequently, R = R′: R is uniformizable.

The GTP is thus necessary.

3.2.3 The condition is sufficient
We now prove that it is sufficient: we extend the subset construction with delays and, when
they explode, we branch to a uniformizer of a subset which preserves the delays.

Bounding the delays

I Lemma 3.18 (Catching up the delays). If the GTP holds, then, for all u ∈ A∗, if we have

Di1 p1
u|w1−−−→ q1

...
...

...
Dik

pk
u|wk−−−→ qk

∀j /∈ {i1, . . . , ik}, there is no run over u in Dj

and if ∃i ∈ {1, . . . , k}, |∆({wj}1≤j≤k)(i)| >

Mnd (where d is the number of deterministic transducers in T), then ∃P ({i1, · · · , ik} s.t.

1.
k⋃

j=1
dom(Tqj

) =
⋃

j∈P

dom(Tqj
)

2. I
⋃

j∈P Dj is uniformizable, where I :
{
{q1, · · · , qk} → B∗

qi 7→ ∆({wj}j∈P)(i)

}

L. Exibard 19

Proof. Let i ∈ {1, . . . , k} such that |∆({w1, · · · , wk})(i)| > Mnd. Then |wi| > Mnd, so
|u| > nd. Consequently, all the Di loops simultaneously, ie
1. ∃u1, u2, u3 ∈ A∗ such that |u1u3| ≤ nd, u = u1u2u3
2. ∃v1,1, · · · , v1,k, v2,1, · · · v2,k, v3,1, · · · v3,k ∈ B∗ such that ∀i ∈ {1, . . . , k}, wi = v1,iv2,iv3,i

and

Di1 p1
u1|v1,1−−−−−→ q1

u2|v2,1−−−−−→ q1
u3|v3,1−−−−−→ r1

...
...

...
...

...
Dik

pk
u1|v1,k−−−−−→ qk

u2|v2,k−−−−−→ qk
u3|v3,k−−−−−→ rk

∀j /∈ {i1, . . . , ik}, there is no run over u1u2u3 in Dj

Now, we have ∆({v1,1, · · · , v1,k}) 6= ∆({v1,1v2,1, · · · , v1,kv2,k}), otherwise ∆({w1, · · · , wk}) =
∆({v1,1v2,1v3,1, · · · , v1,kv2,kv3,k}) = ∆({v1,1v3,1, · · · , v1,kv3,k}), and then, since |u1u3| ≤ nd,
we get ∀i ∈ {1, . . . , k}, |∆({w1, · · · , wk})| ≤Mnd. Consequently, we can apply the general-
ized twinning property: let P ({i1, · · · , ik} such that:

1.
k⋃

j=1
dom(Tqj) =

⋃
j∈P

dom(Tqj)

2.

∆({v1,j}j∈P)
⋃

j∈P

Dj

 is uniformizable

Thanks to lemma 3.10, ∆({wj}j∈P)
⋃

j∈P Dj is uniformizable. J

Building a uniformizer

The construction We now build a uniformizer U = (Q, E, {i}, F) for T =
n⋃

i=1
Di by extend-

ing the subset constructions with delays:
The states are tuples (p1 : δ1, · · · , pk : δk), where the pi ∈ Q◦

i = Qi∪{{∅}} and δi ∈ BMnk .

We represent it by Q = (Q◦
1 × · · · ×Q◦

k)×
(

BMnk
)k

i = (i1 : ε, · · · , ik : ε)
F is the set of the tuples that contain at least one final state: F = {t ∈ Q

∣∣ ∃i ∈
{1, . . . , k}, πi(t) ∈ Fi}, where πi is the i-th projection.

For readability concerns, for building the transitions, we will consider the D′
i, which are the

completed Di, where the sink state is denoted by {∅}.
The transitions are:
Let δ = δ1 ∧ · · · ∧ δk ∧ v1 ∧ · · · ∧ vk, where for all i ∈ {1, . . . , k}, pi

a|vi−−−→
D′

i

qi (we can notice

that if there is no run labeled by a in Di or if pi = {∅}, then we have pi
a|ε−−→
D′

i

{∅}).

If ∀i ∈ {1, . . . , k}, |δ−1δivi| ≤ Mnk, then we add (p1 : δ1, · · · , pk : δk) a|δ−−→
U

(q1 :
δ−1δ1v1, · · · , qk : δ−1δkvk)
Else, it means that the delays exceeded Mnk. So, thanks to lemma 3.18, ∃P ({i1, · · · , ik}
such that:

1.
k⋃

j=1
dom(Tqj) =

⋃
j∈P

dom(Tqj)

2. ∆({δivi}j∈P)
⋃

j∈P Dj is uniformizable
Then, let V be a uniformizer for ∆({δjvj}j∈P)

⋃
j∈P Dj . We add the transition (p1 :

δ1, · · · , pk : δk) a|ε−−→
U

iV where iV is the initial state of V.

20 Church Synthesis and Uniformization

Finally, for all final states f = (p1 : δ1, · · · , fi : δi, · · · , pk : δk), we define ρ(f) = δi. If the
tuple contains multiple final states, we just pick one.

Validity of our construction We now show that U is a proper uniformizer:
Clearly by construction, U is deterministic.
Now, we show that dom(T) = dom(U), and that RU ⊆ RT . Let u = u0 · · ·ul ∈
dom(T). If delays don’t explode, then we have, for the same reasons as in theorem
2.5, (i1 : ε, · · · , ik : ε) u0|w0−−−−→

U
(q0,1 : δ0,1, · · · , q0,k : δ0,k) u1|w1−−−−→

U
· · · ul|wl−−−→

U
(ql,1 :

δl,1, · · · , fi : δl,i, · · · , ql,k : δl,k) δl,i−−→
U

, where ii
u0|v0−−−−→

Di

q1,i
u1|v1−−−−→

Di

· · · ul|wl−−−→
Di

fi
wl+1−−−→
Di

,

and w0 · · ·wlδl,i = v0 · · · vlvl+1. Otherwise, (i1 : ε, · · · , ik : ε) u0|w0−−−−→
U

(q0,1 : δ0,1, · · · , q0,k :

δ0,k) u1|w1−−−−→
U

· · · um|wm−−−−−→
U

(qm,1 : δm,1, · · · , qm,k : δm,k) um+1|vm+1−−−−−−−−→
U

V, where V uni-
formizes RV = ∆({δjvj}j∈P)

⋃
j∈P Dj . Now, since P covers all the continuations,

∃i ∈ P, (um+1 · · ·ul, vm,ivm+1,i · · · vl,ivl+1,i) ∈ RDiqi
, which means that (um+1 · · ·ul,

δ−1δm,ivm,ivm+1,i · · · vl,ivl+1,i) ∈ RV . Consequently, if we add the beginning, we get
(u0 · · ·umum+1 · · ·ul, w0 · · ·wmεδ−1δm,ivm,ivm+1,i · · · vl,ivl+1,i) ∈ RU , and we know that
w0 · · ·wmδ−1δm,i = v0,i · · · vm,i.
We finally have (u0 · · ·umum+1 · · ·ul, w0 · · ·wmεδ−1δm,ivm,ivm+1,i · · · vl,ivl+1,i) ∈ RU .
Conversely, for similar reasons, if (u, v) ∈ RU , then (u, v) ∈ RT .

Thus, T is realized by U . J

3.3 Decidability of the GTP
I Theorem 3.19. The GTP is decidable.

Proof. Since we can bound the delays by Mnd in our proof, the GTP holds iff it holds for
ui ∈ AMnd . Consequently, we just have to check it for every word of length less than Mnd,
and recursively. We conjecture that this verification can be done in PSpace. J

From this, we can deduce the main result of this work:

3.4 Main result
I Theorem 3.20 (Church(∪DFT, DFT)). Church(∪DFT, DFT) is decidable.

4 Conclusion

4.1 Our contribution
In this work, we solved two subcases of Church(NFT, DFT): with Churchk(NFT, DFT), we
forced the uniformizer to output his answer within a certain delay. In Church(∪DFT, DFT),
we focused on the union of deterministic transducers.

4.2 Future work
The study of the GTP gave us an intuition of a generalization to the case of the union

of functional transducers Church(∪FFT, DFT). Thanks to [25], we know that
k⋃

i=1
FFT =

k-valued, where the k-valued transducers are the transducers that represent the relations

L. Exibard 21

with at most k images for a given word. Consequently, this would allow us to decide
Church(k-valued, DFT)

Next, we will study the general case: is it undecidable, as we conjectured, or will we be
able to find a suitable algorithm?

We also need lower bounds. A priori, our upper bounds are tight: Churchk(NFT, DFT)
is ExpTime-complete, and Church(∪DFT, DFT) is PSpace-complete.

Finally, we will explore a more qualitative area, which is the measurement of the quality
of uniformizers, by adding some constrains over the number of states, or by favoring some
paths over others by adding a weight to the transitions.

References
1 J. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata.

In , Handbook of formal languages, vol. 1, pages 111–174. Springer-Verlag, 1997.
2 M.-P. Béal and O. Carton. Determinization of transducers over finite and infinite words.

Theoretical Computer Science, 289(1):225–251, 2002.
3 J. Berstel. Transductions and context-free languages http://www-igm.univ-mlv.fr/

~berstel/, Dec. 2009.
4 M. Bojanczyk. Transducers with origin information. ICALP, abs/1309.6124, 2013.
5 J. R. Buchi and L. H. Landweber. Solving Sequential Conditions by Finite-State Strategies.

Transactions of the American Mathematical Society, 138:295–311, 1969.
6 A. Church. Logic, arithmetic and automata. In Int. Congr. Math., pages 23–35, Stockholm,

1962.
7 E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In , Logics of Programs — Proceedings 1981 (LNCS Volume
131), pages 52–71. Springer-Verlag: Heidelberg, Germany, 1981.

8 E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

9 R. de Souza. Uniformisation of two-way transducers. In LATA, pages 547–558, 2013.
10 R. Ehlers. Symbolic bounded synthesis. In Computer Aided Verification, 22nd Interna-

tional Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174
of LNCS, pages 365–379. Springer, 2010.

11 E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Height-bounded memory visibly
pushdown transductions. In Submitted, 2011.

12 E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for LTL
synthesis. Formal Methods in System Design, 39(3):261–296, 2011.

13 E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. On functionality of
visibly pushdown transducers. CoRR, abs/1002.1443, 2010.

14 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games,
volume 2500 of LNCS. Springer, 2002.

15 M. Holtmann, L. Kaiser, and W. Thomas. Degrees of lookahead in regular infinite games.
Logical Methods in Computer Science, 8(3), 2012.

16 B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD, pages 117–124.
IEEE Computer Society, 2006.

17 B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property synthesis.
In Computer Aided Verification (CAV), pages 258–262, 2007.

18 A. Pnueli. The temporal logic of programs. In focs77, pages 46–57, 1977.
19 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM Symposium on

Principles of Programming Languages (POPL). ACM, 1989.

http://www-igm.univ-mlv.fr/~berstel/
http://www-igm.univ-mlv.fr/~berstel/

22 Church Synthesis and Uniformization

20 Queille and Sifakis. A temporal logic to deal with fairness in transition systems. In FOCS:
IEEE Symposium on Foundations of Computer Science (FOCS), 1982.

21 S. Schewe and B. Finkbeiner. Bounded synthesis. In Automated Technology for Verification
and Analysis, volume 4762 of LNCS, pages 474–488. Springer Berlin / Heidelberg, 2007.

22 W. Thomas. Facets of synthesis: Revisiting church’s problem. In , FOSSACS, volume 5504
of LNCS, pages 1–14. Springer, 2009.

23 W. Thomas. Synthesis and some of its challenges. In CAV, page 1, 2012.
24 M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi-

cation. In lics86, pages 332–344, 1986.
25 A. Weber. Decomposing finite-valued transducers and deciding their equivalence.

SIAM Journal on Computing, 22(1):175–202, 1993.

Appendix

A Proofs

A.1 Proof of lemma 2.12
I Lemma 1.1. ∀i ∈ {0, . . . , n + 1}, qi ∈ Pi and (v′

0 . . . v′
i−1)−1v

(k−(i−1))
0 v

(k−(i−2))
1 . . . v

(k)
i−1 ∈

∆qi

Proof. We show the property by induction on n:

If i = 0, then q0 ∈ P0 = I, and we have nothing to check for the output.
If 0 ≤ i ≤ n, then we are in (Pi, Qi, di, I), Player I inputs ui, and O answers v′

i,
which leads to (Pi+1, Qi+1, di+1, I). Since qi

ui|vi−−−→
T

qi+1 is a valid transition, Dqi+1 =

lshift
(

v′
i
−1∆qi

v
(k+1)
i

)
is a candidate for being in ∆qi+1 . By the induction hypothesis,

(v′
0 . . . v′

i−1)−1v
(k−(i−1))
0 . . . v

(k)
i−1 ∈ ∆qi , so v′

i
−1(v′

0 . . . v′
i−1)−1v

(k−(i−1))
0 . . . v

(k)
i−1v

(k+1)
i ∈

v′
i
−1∆qiv

(k+1)
i , from which we get (v′

0 . . . v′
i)−1v

(k−(i−1))
0 . . . v

(k+1)
i ∈ v′

i
−1∆qiv

(k+1)
i , so

(v′
0 . . . v′

i)−1v
(k−i)
0 . . . v

(k)
i ∈ lshift

(
v′

i
−1∆qi

v
(k+1)
i

)
= Dqi+1 . Moreover, since we have

∀j ∈ {0, . . . , |v|}, |o(j)− o′(j)| ≤ k, the last letter of v′
i has at most k delay towards v, so

(v′
0 . . . v′

i)−1v
(k−(i+1−1))
0 . . . v

(k)
i ∈ V: qi+1 ∈ Pi+1 and (v′

0 . . . v′
i)−1v

(k−(i+1−1))
0 . . . v

(k)
i ∈

∆qi+1

J

A.2 A constructive proof for lemma 3.15
I Lemma 1.2 (Prefixes). For any subsequential relation, we can either delete a com-
mon prefix or add any word. Formally, let T be a subsequential transducer over A × B∗,
and v ∈ B∗ +B−1∗. If (ε, v)RT ⊆ A∗×B∗, then it is recognized by a subsequential transducer.

Proof. We first show how we can delete a common prefix.

I Lemma 1.3 (Deleting prefixes). Let T be a subsequential transducer over A×B∗. If δ is
a common prefix to the words in IT , then (ε, δ−1)RT is recognized by a subsequential trans-
ducer.

Proof. We will build a subsequential transducer T ′ that recognizes this relation.
Let us show that for all δ ∈ B∗, a call to SpreadDifference(p, δ) leads to RT ′

(p,δ)
←

(ε, δ−1)RTp
.

L. Exibard 23

Require: δ is a common prefix to the words in IT
Ensure: T ′ recognizes (ε, δ−1)RT

procedure Remove((δ, T))
T ′ ← (Q×Bnl, E′ = ∅, {(i, δ)}, F ×Bnl, ρ′)
procedure SpreadDifference((p, δ))

if (p, δ) hasn’t already been visited then
if p is accepting in T then

ρ′((p, δ))← δ−1ρ(p)
for all p

a|x−−→
T

q do

E′ ← E′ ∪
{

(p, δ) a|(δ∧x)−1x−−−−−−−→
T ′

(q, (δ ∧ x)−1
δ)

}
SpreadDifference((q, (δ ∧ x)−1

δ))
SpreadDifference((i, δ))
return T ′

We prove it by induction on the distance needed to compensate δ, ie the least n such
that for all path p

u0|v0−−−−→
T

p1
u1|v1−−−−→

T
· · · un−1|vn−1−−−−−−−→

T
pn and p

u0|v0−−−−→
T

p1
u1|v1−−−−→

T
· · · un−2|vn−2−−−−−−−→

T

pn−1
vn−1−−−→

T
, δ 4 v0 · · · vn−1

If n = 0, then δ = ε, and SpreadDifference just copies recursively T . It terminates,
because every state is visited at most once. We then have RT ′

(p,ε)
← RTp

.

Let n ≥ 0. Let p
u0|v0−−−−→

T
q be a transition. E′ ← E′∪

{
(p, δ) u0|(δ∧v0)−1v0−−−−−−−−−→

T ′
(q, (δ ∧ v0)−1

δ)
}

.

The distance needed to compensate (δ ∧ v0)−1δ is at most n − 1, so, by the induction
hypothesis, RT ′

(q,(δ∧v0)−1δ)
←

(
ε, ((δ ∧ v0)−1δ)−1)

RTq .

Now, let (u0 · · ·ul, v0 · · · vl+1) = (u, v) ∈ RTp such that p
u0|v0−−−−→

T
q

u1|v1−−−−→
T

· · · ul|vl−−−→
T

fl+1
vl+1−−−→

T
is a run from p in T . We show that (u, δ−1v) ∈ RT ′

(p,δ)
. (u1 · · ·ul, v1 · · · vl+1) ∈

RTq , so (u1 · · ·ul, ((δ∧v0)−1δ)−1v1 · · · vl+1) ∈ RT ′
(q,(δ∧v0)−1δ)

. Consequently, (u0 · · ·ul, (δ∧
v0)−1v0((δ ∧ v0)−1δ)−1v1 · · · vl+1) ∈ RT ′

(p,δ)
.

We have to examine (δ ∧ v0)−1v0((δ ∧ v0)−1δ)−1v1 · · · vl+1. Here, the notation −1 is not
enough, and we have to examine two cases:

v0 4 δ : δ∧v0 = v0. Thus, (δ∧v0)−1v0((δ∧v0)−1δ)−1v1 · · · vl+1 = v−1
0 v0δ−1v0v1 · · · vl+1

= δ−1v: (u, δ−1v) ∈ RT ′
(p,δ)

δ 4 v0 : δ∧v0 = δ. We get (δ∧v0)−1v0((δ∧v0)−1δ)−1v1 · · · vl+1 = δ−1v0δ−1δv1 · · · vl+1
= δ−1v: (u, δ−1v) ∈ RT ′

(p,δ)

This property holds ∀(u, v) ∈ RTp and ∀q such that p
u0|v0−−−−→

T
q. Moreover, if p is accepting,

then we also have p
ρ(p)−−−→

T
, ie (ε, ρ(p)) ∈ RTp

. Since (p, δ) δ−1ρ(p)−−−−−→
T ′

, (ε, δ−1ρ(p)) ∈ RT ′
(p,δ)

.
In conclusion, (ε, δ−1)RTp

⊆ RT ′
(p,δ)

.

Conversely, if (u, v) ∈ RT ′
(p,δ)

, u|v labels a path (p, δ) u0|(δ∧v0)−1v0−−−−−−−−−→
T ′

(p1, (δ∧v0)−1δ) u1|v1−−−−→
T ′

· · · ul|vl−−−→
T ′

(fl+1, δl+1)
δ−1

l+1ρ(fl+1)
−−−−−−−→, and so (u, v) ∈ (ε, δ−1)RTp

Thus, RT ′
(p,δ)
← (ε, δ−1)RTp

24 Church Synthesis and Uniformization

Now, since δ is a common prefix to the images of the words in dom(Tp), the distance needed
to compensate it is at most n. Otherwise, we would have a run p

u1|v1−−−−→
T

q
u2|v2−−−−→

T
q

u3|v3−−−−→
T

f
v4−−→
T

such that δ 4 v1v2v3v4 but δ 64 v1v3v4, however both v1v3v4 and v1v2v3v4 are in Ip,T . J

We now prove the counterpart, ie that we can add prefixes:

I Lemma 1.4 (Adding prefixes). Let T be a subsequential transducer over A×B∗. For all v ∈
B∗, (ε, v)RT is recognized by a subsequential transducer.

Proof. We will just have to output v before entering T . Thus, we create a new subsequential
transducer T ′ by adding a state i′

0 to T . This state is now the initial state, and for all
transitions i0

a|x−−→
T

p, we add i′
0

a|vx−−−→
T ′

p. If i0 is final, then i0
x−→
T

, and we add i′
0

vx−−→
T ′

. Now,

we have i′
0

a|vx−−−→
T ′

p
u|y−−→
T ′

f
z−−→

T ′
iff i0

a|x−−→
T

p
u|y−−→
T

f
z−→
T

, because a path from p cannot contain
transitions from i′

0 since i′
0 only has outgoing transitions. Consequently, (au, vxyz) ∈ RT ′ iff

(au, xyz) ∈ RT , and (ε, vx) ∈ RT ′ iff (ε, x) ∈ RT : RT ′ = (ε, v)RT . J

We just have to combine the two statements:

If v ∈ B−1∗, then (ε, v)RT ⊆ A∗ ×B∗ iff v is a common prefix to the words in IT , so we
get the result with lemma 1.3.
If v ∈ B∗, then (ε, v)RT ⊆ A∗ ×B∗, and we get the result with lemma 1.4.

J

B Context of the internship

Lab and team My work was conducted in the Computer Science Departement of the ULB,
in Brussels. I worked under the supervision of Emmanuel Filiot, in the Formal Methods and
Verification Group.

Interactions I mainly interacted with Mr. Filiot, since he was often there to help me. I
also discussed with J.F. Raskin, the team leader, and, at one point, this prevented me from
going into a wrong direction. The post-doctoral students here allowed me to widen my
point of view about what I was working on, telling me about the infinite case and about
related notions (infinite trees, tree automata,. . .), but also about their work, which was
more focused on game theory. In addition, I went to Mons and witnessed a PhD. defence
about the implementation of Acacia+, a software designed to synthesize a system from LTL
specifications.

Research All these interactions and my work gave me a greater insight about what a
researcher was supposed to do, from the proof finding to the proof redaction, but also about
all the non-reseach tasks: administration, exam-marking. . .

	Introduction
	Context and motivations
	Preliminaries

	Uniformization with regards to k-inclusion
	Semantics with origin
	The k-uniformization problem
	The proof

	Uniformization of unions of deterministic transducers
	Delays
	Generalized Twinning Property
	Decidability of the GTP
	Main result

	Conclusion
	Our contribution
	Future work

	Proofs
	Proof of lemma 2.12
	A constructive proof for lemma 3.15

	Context of the internship

