About the SYK model I Motivation: non-Formi liquids 1) Some experimental signatures of a Formi liquid: • Specific heat $C_v = \frac{TT^2}{3} k_{e}^2 T g(0)$ (equal to that of the free Idectron gas) (at least to the order T4) · Conductivity: $d = \frac{\pi^2}{3} \frac{k_3^2}{e^2}$: charge and energy corries are the same. L' Wiedemann Frant law R Ly Bloch Grüneisen formula $\rho(T) = \rho(0) + A(\overline{-\rho_{R}})^{m} \int \frac{\pi}{e^{n} \cdot n(1-e^{n})} dx$ where m = 2,3,5 for FL interactions, s-d stattering and E-ph scattering, respectively Rk: that's "juit" Drude, $P = \frac{m}{me^2 \tau}$, with τ^{-1} given by the RPA oppnox $T' = Im \xrightarrow{-} where \xrightarrow{-} can be$ omother (M=S) or a delectron (M=3) or a phonon (M=2).-> These are predictions which can be tested. In some experiments, deviations from these behavior Ly theory of non-Formi liquids. 2) Some theoretical ideas · In a Fermi liquid, the propagator becomes _ 92 weight $G(p,i\omega) = \frac{1}{i\omega - \epsilon_p - \epsilon_q} = \frac{z_p}{i\omega - \epsilon_p} + G_{mach}(p,i\omega)$

I Technical balagrand disadered metal

$$\rightarrow$$
 the andorn matrices to model mesoscopic transport.
Starting point: $[H = \underbrace{A}_{N} \stackrel{v}{\subseteq} \underbrace{C}_{i} C_{i}^{\dagger} C_{j} - \mu \sum C_{i}^{\dagger} C_{i}^{\dagger}]$
means: disorder arrange for matrix Gaussian):
means: disorder arrange for the study of spin glasses etc.).
Degrammatic representation: $t_{ij} C_{j}^{\dagger} C_{i} = \underbrace{I}_{ij} \underbrace{C}_{ij} e_{ij} + \underbrace{G}_{ij} \underbrace{G}_{ij} e_{ij} \underbrace{G}_{ij} \underbrace{G}_{ij}$

NB: an important feature is the time-dependence of GCT) at long T tastest way answer G(t)~ 1/tx = Z(t)~ 1/tx $= \Sigma(i\omega) = \int d\tau e^{i\omega\tau} \Sigma(\tau) \sim \omega^{4/1} = \Im G(i\omega) \sim \omega^{4/4} = \Im G(\tau) \sim \tau^{4/2}$ $= \Im G(\tau) \sim \pi^{4/2}$ $= \Im G(\tau) \sim \pi^{4/2}$ $= \Im G(\tau) \sim \pi^{4/2}$ hence: [G(t)~ 1/t] - a signature of a FL from a random matrix model U=0; |Upos|=U III The SYK model It's a modul of pure intruction: $H = \frac{1}{N^{3/2}} \sum_{\alpha \beta \delta \delta} \left(\frac{1}{\alpha \beta \delta \delta} - \mu \sum_{\alpha c} \frac{1}{c_{\alpha}} C_{\alpha}^{\dagger} C_{\beta} C_{\delta} C_{\delta} \right)$ 1) Digerammatic solution. Same reasoning as previously. $\overline{\mathsf{G}}_{\alpha\beta} = \underbrace{\overset{\alpha}{\longrightarrow}}_{\alpha} + 0 + \underbrace{\overset{\alpha}{\longrightarrow}}_{\alpha} \underbrace{\overset{\alpha}{\longrightarrow}}_{\beta} + 0 + \cdots$ Similarly, all diagrams with "line crossings" vanish in the N-300 limit. We have $\Sigma(\tau) = -U^2 G^2(\tau) G G \tau$. 2) Some qualitative features of the solution. / P(w). Dos · It describes a gapless phase indeed, onne Im G(w)=0 vw ∈ [-4, 5]. Since $G(\omega) = \frac{1}{\omega \cdot \mu \cdot \Sigma(\omega)}$, this is equivalent to $Im \Sigma(\omega) = O$. But because of energy conservation at a vortex, this implies $Im G(\omega) = O \quad \forall \omega \in [-3\Delta, 3\Delta]$ etc: one ran have $G(w) \neq 0$ only if $\Delta = 0$: gaples phase. · Now to check it is not just a metal, find the long-I deray of G(I). Assume $G(\tau) \sim 1/\tau^{4} \implies \Sigma(\tau) \sim 1/\tau^{34} \implies \Sigma(\omega) \sim \omega^{3d-1}$ $\implies G(i\omega) \sim \omega^{4-34} \implies G(\tau) \sim \tau^{3d-1} \quad \text{hence} \quad \left[G(\tau) \sim 1/\tau^{2}\right]$ Sti $3d-1 < 1 \text{ et } \Sigma(0) = \mu$, slower decay of correlations @ long time than in a metal

3) Exact solution of the problem
• Retail
$$G(iw) = \frac{1}{iw + p - \sum(iw)}$$
 and we consider only the singular
 $G(iw) \sum_{sing} (iw) = -A$.
Rewrite the new problem we have to volve:
(a) $\int dt_2 \sum_{sing} (\tau_1, \tau_2) G(\tau_1, \tau_2) = -\delta(\tau_1, \tau_2) G(\tau_2, \tau_1)$
• It turns out that this problem has an exact production:
 $[G(z)] = \frac{A}{T_2}$, $A = e^{-iT/4} (\pi/u^2 \cos(2\theta))^{4/4} e^{-i\theta}$
where Θ is a parameter fixed by the filling. Lither's $P(z) = 0$
(NS thus is an approximate oblights of the 'nue' problem for relieved)
• Use want to have $Q = \frac{1}{N} \sum_{z} C_z^2 C_z = G(\tau = \sigma)$ — how due are defined.
Note that $e^{2\pi z} = \frac{sin(Y_4, \tau_2)}{\theta} = \frac{1}{2} - \frac{sin(2\theta)}{\theta}$.
• Use want to have $Q = \frac{1}{N} \sum_{z} C_z^2 C_z = G(\tau = \sigma)$ — how due are defined.
Note that a parameter fixed by the filling. Lither's problem for relieved.
• We want to have $Q = \frac{1}{N} \sum_{z} C_z^2 C_z = G(\tau = \sigma)$ — how due are defined.
Note that a parameter for $Q = \frac{1}{2} - \frac{2}{9} - \frac{500}{9}$.
• Also denote $e^{2\pi E} = \frac{500(Y_4, 10)}{500(T_{14}, 0)}$ ($\Theta \circ E$ parameterite points but
 $dz = \frac{1}{2} - \frac{1}$

(Jourse)
4) Reparameterization "Journet-nos
• The law energy problem (4) has a full Diff(R) some grap.
(T = fto)
(T = fto)
(G(T, T2) = (f(T) f(T2))^{1/4}
$$\overline{G}(T_1, T2)$$

(leaved the problem
(Noniant)
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_2, T2)$
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_2, T2)$
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_2, T2)$
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_2, T2)$
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_2, T2)$
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_2, T2)$
(There is also a U(d) gauge invariance $G(T_1, T2) \rightarrow \frac{g(Tu)}{g(T2)} \overline{G}(T_1, T2)$
(In particular, the conformal map $T = \frac{1}{TT}$ tan (TTO)
gives the finite-T betwitten from the T=0 ore !
Thus, the 'mirade' of AGSOP comes form this Diff(R) hidden
formetry.
• Now, recall the solution we fand: (Vaue, $\theta=0:E$ and $T=0$ for simplify)
 $G_{R}(T_1, T2) \neq 1 T_1 T_2 = 4 t_2 + 4 t_1 T_2 + 3t_2 = 4 t_1 T_2 + 4 t_2 + 3t_2 = 4 t_1 T_2 + 4 t_2 + 3t_2 = 4 t_1 T_2 + 4 t_2 + 3t_2 = 4 t_2 + 4 t_2 + 3t_2 = 4 t_2 + 4 t_2 + 3t_2 = 4 t_2 + 3t_2 = 4 t_2 + 4 t_2 + 3t_2 = 4 t_2 + 3t_2 = 2 t_1 + 4 t_2 + 3t_2 + 3t_2 = 4 t_2 + 3t_2 + 3t_2$