
RESEARCH CONTf?ll3UllONS

Algorithms and
Data Structures The Input/Output Complexity
David Shmoys
Editor of Sorting and Related

Problems

ALOK AGGARWAL and JEFFREY SCOTT VlllER

ABSTRACT: We provide tight upper and lower bounds,
up to a constant factor, for the number of inputs and
outputs (I/OS) between internal memo y and seconda y
storage required for five sorting-related problems: sorting,
the fast Fourier transform (FFT), permutation networks,
permuting, and matrix transposition. The bounds hold both
in the worst case and in the average case, and in several
situations the constant factors match. Secondary storage is
modeled as a magnetic disk capable of transferring P blocks
each containing B records in a single time unit; the records
in each block must be input from or output to B contiguous
locations on the disk. We give two optimal algorithms for
the problems, which are variants of merge sorting and
distribution sorting. In particular we show for P = 1 that
the standard merge sorting algorithm is an optimal external
sorting method, up to a constant factor in the number of
I/OS. Our sorting algorithms use the same number of I/OS
as does the permutation phase of key sorting, except when
the internal memo y size is extremely small, thus affirming
the popular adage that key sorting is not faster. We also give
a simpler and more direct derivation of Hong and Kung’s
lower bound for the FFT for the special case B = P = O(1).

1. INTRODUCTION
The problem of how to sort efficiently has strong practi-
cal and theoretical merit and has motivated many stud-
ies in the analysis of algorithms and computational
complexity. Recent studies [8] confirm that sorting con-
tinues to account for roughly one-fourth of all com-
puter cycles. Much of those resources are consumed by
external sorts, in which the file is too large to fit in
internal memory and must reside in secondary storage
(typically on magnetic disks). It is well documented
that the bottleneck in external sorting is the time for
input/output (I/O) between internal memory and
secondary storage.

01988 AC:M OOOl-0782/88/0900-1116 51.50

Sorts of extremely large size are becoming more and
more common. For example, banks each night typically
sort the checks of the current day into increasing order
by account number. Then the accounting files can be
updated in a single linear pass through the sorted file.
In many cases, banks are required to complete this
processing before opening for the next business day.
Lindstrom and Vitter [8] point out that a typical sort
from a few years ago might involve a file of two million
records, totaling 800 megabytes, and take l-i: hours;
but in the near future typical file sizes are expected to
contain ten million records, totaling 10,000 megabytes,
and current sorting methods would take most of one
day to do the sorting. (Banks would then have trouble
completing this processing before the next business
day!)

Two alternatives for coping with this problem pre-
sent themselves. One approach is to relax the problem
requirements and to investigate alternate computer
architectures such as parallel or distributed systems, as
done in [8], for example. The other approach. which we
take in this article, is to examine the fundamental lim-
its in terms of the number of I/OS for external sorting
and related problems in current computing environ-
ments. We assume that there is a single central process-
ing unit, and we model secondary storage as a general-
ized random-access magnetic disk. (For completeness,
we also consider the case in which the disk has some
parallel capabilities.)

Our parameters are

N = # records to sort;
M = # records that can fit into internal memory;
B = # records that can be transferred in a single block;
P = # blocks that can be transferred concurrently;

where 1 5 B 5 M < N and 1 5 P : LM/BJ. We denote
the N records by RI, Rz, . . . , RN. The parameters N, M,
and B are referred to as the file size, memory size, and

1116 Communications of the ACM September 1988 Volume 31 Number 9

Research Contributions

block size, respectively. Typical parameters for the two
sorting examples mentioned earlier are N = 2 X lo’,
M = 2000, B = 100, P = 1, and N= lo’, M = 3000,
B = 50, P = 1.

Each block transfer is allowed to access any contig-
uous group of B records on the disk. Parallelism is
inherent in the problem in two ways: Each block can
transfer B records at once, which models the well-
known fact that a conventional disk can transfer a
block of data via an I/O roughly as fast as it can trans-
fer a single bit. The second factor is that there can be P
block transfers at the same time, which partly models
special features that the disk might potentially have,
such as multiple I/O channels and read/write heads
and an ability to access records in noncontiguous loca-
tions on disk in a single I/O.

Pioneering work in this area was done by Floyd [3],
who demonstrated matching upper and lower bounds
of O((N log N)/B) I/OS for the problem of matrix trans-
position for the special case P = O(l), B = O(M) = @(NC),
where c is a constant 0 C c < 1. Floyd’s lower bound for
transposition also applied to the problems of permuting
and sorting (since they are more general problems), and
the bound matched the number of I/OS used by merge
sort. For these restricted values of M, B, and P, the
bound showed that essentially n(log N) passes are
needed to sort the file (since each pass takes O(N/B)
I/OS), and that merge sorting and the permutation
phase of key sorting both perform the optimum num-
ber of I/OS. However, for other values of B, M, and P,
Floyd’s upper and lower bounds did not match, thus
leaving open the general question of the I/O complex-
ity of sorting.

In this article we present optimal bounds, up to a
constant factor, for all values of M, B, and P for the
following five sorting-related problems: sorting, fast
Fourier transform (FFT), permutation networks, per-
muting, and matrix transposition. We show that under
mild restrictions the constant factors implicit in our
upper and lower bounds are often equal. The five prob-
lems are similar, but the lower bounds require different
bents, which illustrate precisely the relation of the five
problems to one another. The upper bounds can be
obtained by a variant of merge sort with P-block looka-
head forecasting and by a distribution-sorting algorithm
that uses a median finding subroutine. In particular, we
can conclude that the dominant part of sorting, in
terms of the number of I/OS, is the rearranging of the
records, not determining their order, except when M is
extremely small with respect to N. Thus, the permuta-
tion phase of key sorting typically requires as many
I/OS as does general sorting.

Our results answer the pebbling questions posed in
[Q] concerning the optimum I/O time needed to per-
form the computation implied by the FFT directed
graph (also called the butterfly or shuffle-exchange or
Omega network). For lagniappe, we also give a simple
direct proof of the lower bound for FFT when B = P =
O(l), which was previously proved in [a] using a com-
plicated pebbling argument.

2. PROBLEM DEFINITIONS
We can picture the internal memory and secondary
storage disk together as extended memory, consisting of
a large array containing at least M + N locations, each
location capable of storing a single record. We arbi-
trarily number the M locations in internal memory
by x[l], 421, . . . , x[M] and the locations on the disk by
x[M + 11, x[M + 21, The five problems can be
phrased as follows:

Sorting
Problem Instance: The internal memory is empty, and
the N records reside at the beginning of the disk; that
is, x[i] = nil, for 1 5 i 5 M, and x[M + i] = R,, for
lsi(N.
Goal: The internal memory is empty, and the N rec-
ords reside at the beginning of the disk in sorted non-
decreasing order; that is, x[i] = nil, for 1 5 i i M, and
the records in x[M + 11, x[M + 21, . . . , x[M + N] are
ordered in nondecreasing order by their key values.

Fast Fourier Transform (FFT)
Problem Instance: Let N be a power of 2. The internal
memory is empty, and the N records reside at the be-
ginning of the disk; that is, x[i] = nil, for 1 5 i 5 M, and
x[M + i] = Ri, for 1 5 i 5 N.
Goal: The N output nodes of the FFT directed graph
(digraph) are “pebbled” (to be explained below) and the
memory configuration is exactly as in the original prob-
lem instance.

The FFT digraph and its underlying recursive con-
struction are shown in Figure 1 for the case N = 16. It
consists of log N + 1 columns each containing N nodes;
column 0 contains the N input nodes, and column log N
contains the N output nodes. (Unless explicitly speci-

A,........................ *....*.. :,C

\.............,...*..*.*. ‘I

FIGURE 1. The FFT digraph for N = 16. Column 0 on the left
contains the N input nodes, and column log N on the right con-
tains the N output nodes. All edges are directed from left to right.
The N-input FFf digraph can be recursively decomposed into two
N/24nput FFf digraphs A and I3 followed by one extra column of
nodes to which the output nodes of A and B are connected in a
shuffle-like fashion.

September 1988 Volume 31 Number 9 Communications of the ACM 1117

Research Contributions

fied, the base of the logarithm is 2.) Each non-input
node has indegree 2, and each non-output node has
outdegree 2. The FFT digraph is also known as the
butterfly or shuffle-exchange or Omega network.

We shall denote the ith node (0 5 i 5 N - 1) in
column j (0 5 j 5 log N) in the FFT digraph by n,,j. The
two predecessors to node ni,j are nodes ni,j-1 and
niezf-l,j-1, where @ denotes the exclusive-or operation.
(Note that nodes n,,, and niez/m’,j each have the same
two predecessors). The ith node in each column corre-
sponds to record Ri. We can pebble node ni,j if its two
predecessors have already been pebbled and if the rec-
ords corresponding to those two predecessors both re-
side in internal memory. Intuitively, the FFT problem
can be phrased as the problem of pumping the records
into and out of internal memory in a way that permits
the computation implied by the FFT digraph.

Permutation Network
The Problem Instance and Goal are phrased the same as
for FFT, except that the permutation network digraph
is pebbled rather than the FFT digraph.

A complete description of permutation networks ap-
pears in [5]. A permutation network digraph consists of
J + 1 columns, for some J zz log N, each containing N
nodes. Column 0 contains the N input nodes, and col-
umn J contains the N output nodes. All edges are di-
rected between adjacent columns, in the direction of
increasing index. We denote the ith node in column j
as ni.j. For each 1 5 i 5 N, 1 5 j 5 1, there is an edge
from ni,j-1 to ni.j. In addition, 7zi.j can have one other
predecessor, call it ni,,j-1, but when that is the case
there is also an edge from ni.j-1 to ni*,J; that is, nodes ni,j
and ni,.j have the same two predecessors. In that case,
we can think of there being a “switch” between nodes
ni., and ni,.j that can be set either to allow the data from
the previous column to pass through unaltered (that is,
the data in node ni,,-, goes to ni,j and the data in ni,,,-,
goes to ni,,,) or else to swap the data (so the data in ni,j-l
goes to ni8.j and the data in nir.j-1 goes to ni,j).

A digraph like this is called a permutation network if
for each of the N! permutations p, , p2, . . . , pN we can
set the switches in such a way to realize the permuta-
tion; that is, data at each input node ni.0 is routed to
output node nr,,,. The ith node in each column corre-
sponds to the current contents of record Ri, and we can
pebble node ni,j if its predecessors have already been
pebbled and if the records corresponding to those pre-
decessors reside in internal memory.

Permuting
The Problem Instance and Goal are the same as for sort-
ing, except the key values of the N records are required
to forrn a permutation of {l, 2, . . . , N).

There is a big difference between permutation net-
works and general permuting. In the latter case, the
particular I/OS performed may depend upon the de-
sired permutation, whereas with permutation networks

1118 Communications of the ACM

all N! permutations can be generated by the same se-
quence of I/OS.

Permuting is the second (and typically dominant)
component of key sorting. The first component of key
sorting consists of stripping away the key values of the
records and sorting the keys. Ideally, the keys are small
enough so that this sort can be done in internal mem-
ory and thus very quickly. In the second component of
key sorting, the records are routed to their final posi-
tions based upon the ordering determined by the sort-
ing of the keys.

Matrix Transposition
Problem Instance: A p X 4 matrix A = (Ai.j) o-f N = pq
records stored in row-major order on disk. The internal
memory is empty, and the N records reside in row-
major order at the beginning of the disk; that is, x[i] =
nil, for 1 5 i I M, and x[M + 1 + i] = A1+Li/rJ,l+i-qli/qj,
forOSiSN-1.
Goal: The internal memory is empty, and the trans-
posed matrix AT resides on disk in row-major order.
(The 4 X p matrix AT is called the transpose of A if
ATj = Aj,i, for all 1 5 i 5 4 and 1 5 j 5 p.) An equivalent
formulation is for the original matrix A to reside in
column-major order on disk.

3. THE MAIN RESULTS
Our model requires that each block transfer in an input
can move at most B records from disk into internal
memory, and that the transferred records must come
from a contiguous segment x[M + i], x[M + i + 11, . . . ,
x[M + i + B - l] of B locations on the disk, for some
i > O; similarly, in each output the transferred records
must be deposited within a contiguous segment of B
locations. We assume that the records are indivisible;
that is, records are transferred in their entirety, and bit
manipulations like exclusive-oring are not allowed.

Our characterization of the I/O complexity for the
five problems is given in the following three main theo-
rems. The constant factors implicit in the bounds are
discussed at the end of the section.

THEOREM 3.1. The average-case and worst-case number of
I/OS required for sorting N records and for computing the
N-input FFT digraph is

o x Ml + N/B)
PB log(l + M/B) ’ (3.1)

For the sorting lower bound, the comparison model is used,
but only for the case when M and B are extremely small
with respect to N, namely, when B log(1 + M/l?) =
o(log(1 + N/B)). The average-case and worst-case number
of I/OS required for computing any N-input permutation
network is

n N b(l + N/B)

PB log(1 + M/B) > ;
(3.2)

furthermore, there are permutation networks such that the
number of I/OS needed to compute them is

September 1988 Volume 31 Number 9

Research Contributions

o E loid + N/B)

PB log(1 + M/B) (3.31

THEOREM 3.2. The average-case and worst-case number of
I/OS required to permute N records is

2 E 1wP + N/B)

P ’ PB log(1 + M/B) ’ (3.4)

It is interesting to note that the optimum bound for
sorting in Theorem 3.1 matches the second of the two
terms being minimized in Theorem 3.2. When the sec-
ond term in (3.4) achieves the minimum, which hap-
pens except when M and B are extremely small with
respect to N, the problem of permuting is as hard as the
more general problem of sorting; the dominant compo-
nent of sorting in this case, in terms of the number of
I/OS, is the routing of the records, not the determina-
tion of their order. When instead M and B are ex-
tremely small (namely, when B log(1 + M/B) =
o(log(1 + N/B))), the N/P term in (3.4) achieves the
minimum, and the optimum algorithm for permuting is
to move the records in the naive manner, one record
per block transfer. This is precisely the case where ad-
vance knowledge of the output permutation makes the
problem of permuting easier than sorting. The lower
bound for sorting in Theorem 3.1 for this case requires
the use of the comparison model.

An interesting corollary comes from applying the
bound for sorting in Theorem 3.1 to the case M = 2 and
B = P = 1, where the number of I/OS corresponds to
the number of comparisons needed to sort N records by
a comparison-based internal sorting algorithm. Substi-
tuting M = 2 and B = P = 1 into (3.1) gives the well-
known O(N log N) bound.

THEOREM 3.3. The number of I/OS required to transpose a
p x 9 matrix stored in row-major order, is

o N log min(M, 1 + min(p, 91, 1 + N/B1 .
PB log(1 + M/B) >

(3 5)

When B is large, matrix transposition is as hard as
general sorting, but for smaller B, the special structure
of the transposition permutation makes transposing
easier.

A good way to regard the expressions in the theorems
is in terms of the number of “passes” through the file
needed to solve the problem. One “pass” corresponds to
the number of I/OS needed to read and write the file
once, which is 2N/(PB). A “linear-time” algorithm (de-
fined to be one that requires a constant number of
passes through the file) would use O(N/PB) I/OS. The
logarithmic factors that multiply the N/PB term in the
above expressions indicate the degree of nonlinearity.

The algorithms we use in Section 5 to achieve the
upper bounds in the above theorems follow a more
restrictive model of I/O, in which all I/OS are “simple”
and respect track boundaries.

DEFINITION 3.1. We call an input simple if each record
transferred from disk is removed from the disk and

deposited into an empty location in internal memory;
similarly, an output is simple if the transferred records
are removed from internal memory and deposited into
empty locations on disk.

DEFINITION 3.2. We denote the kth set (k 2 1) of B
contiguous locations on the disk, namely, locations
x[M + (k - l)B + 11, x[M + (k - l)B + 21, . . . , x[M + kB],
as the kth track.

Each I/O performed by our algorithms transfers ex-
actly B records, corresponding to a complete track.
(Some records may be nil if the track is not full.) These
assumptions are typically met (or could easily be met)
in practical implementations.

If we enforce these assumptions and consider the
case P = 1, which corresponds to conventional disks,
the resulting lower bounds and upper bounds can be
made asymptotically tight; that is, the constant factors
implicit in the 0 and Q bounds in the above theorems
are the same: If M = NC, B = Md, P = 1, for some
constants 0 < c, d < 1, the average-case lower bound
for permuting and sorting and the number of I/OS used
by merge sort are both asymptotically 2(l - cd)/(c(l -
d))N’-Cd, which is a linear function of 2N/B, the num-
ber of I/OS per pass. For example, if M = fi, B = fi,
P = 1, the number of I/OS is asymptotically 4N314,
which corresponds to two passes over the file to do the
sort. If M = NC, B = M/log M, P = 1, the bounds are
each asymptotically 2c(l - c)N1-‘log’N/log log N, and
the number of passes is @(log N/log log N). When
M = a, B = GM, P = 1, the worst-case upper and
lower bounds are asymptotically 2 fi log N, which cor-
responds to % lo N passes. In the above three exam-
ples, if B = Q(N/logbN), for some b, the permutation $
corresponding to the transposition of a B X N/B matrix
is a worst-case permutation for the permuting and
sorting problems.

The restrictions adhered to by our algorithms allow
our upper bounds to apply to the pebbling-based model
of I/O defined by Savage and Vitter [9]. Our results
answer some of the open questions posed there for
sorting and FFT by providing tight upper and lower
bounds. The model in [g] corresponds to our model for
P = 1 with the restriction that only records that were
output together in a single block can be input together
in a single block.

4. PROOF OF THE LOWER BOUNDS
Without loss of generality, we assume that B, M, and N
are powers of 2 and that B < M < N. We shall consider
the case P = 1 when there is only one I/O at a time;
the general lower bound will follow by dividing the
bound we obtain by P. For the average-case analysis of
permuting and sorting, we assume that all N! inputs are
equally likely. The FFT, permutation network, and ma-
trix transposition problems have no input distribution,
so the average-case and worst-case models are the
same.

September 1988 Volume 31 Number 9 Communications of the ACM 1119

Research Contributions

Permuting
First we prove a useful lemma, which applies not only
to permuting but also to the other problems. It allows
us to assume, for purposes of obtaining the lower
bound, that I/OS are simple (see Definition 3.1) and
thus that exactly one copy of each record is present
throughout the execution of the algorithm.

LEMMA 4.1. For each computation that implements a per-
mutation of the N records RI, R;!, , RN (or that sorts or fhat
transposes or that computes the FFT digraph or a permuta-
tion network), there is a corresponding computation strategy
involving only simple I/OS such that the total number of
I/OS is no greater.

PROOF. It is easy to construct the simple computation
strategy by working backwards. We cancel the transfer
of a record if its transfer is not needed for the final
result. The resulting I/O strategy is simple.

Our approach is to bound the number of possible
permutations that can be generated by t I/OS. If we
take the value oft for which the bound reaches N!, we
get a lower bound on the worst-case number of I/OS.
We can get a lower bound on the average case in a
similar way.

DEFINITION 4.1. We say that a permutation p,, p2, . . . ,
PN of the N records can be generated at time t if there
is some sequence oft I/OS such that after the I/OS,
the records appear in the correct permuted order in
extended memory; that is, for all i, j, and k, we have

x[i] = Rpx and x[j] = RP,+, - i < j.

The records do not have to be in contiguous positions
in internal memory or on disk; there can be arbitrarily
many empty locations between R,, and RPk+, .

As mentioned above, we assume that I/OS are sim-
ple. We also make the following assumption, which
does not increase the number of I/OS by more than a
small constant factor. We require that each input and
output transfer exactly B records, some of the records
being possibly nil, and that the B records come from or
go to a single track. For example, an input of b < B
records, with b, records from one track and bz = b - bI
records from the next track, can be simulated using an
internal memory of size M + B by an input of the first
track, an output of the B - bI records that are not
needed (plus an additional b, nil records to take the
place of the bI desired records), and then a correspond-
ing input and output for the next track. As a conse-
quenc:e, since I/OS are simple, a track immediately
after an input or immediately before an output must be
empty. We do not count internal computation time in
our complexity model, so we can assume that the opti-
mum algorithm, between I/OS, rearranges the records
in internal memory however it sees appropriate.

Initially, the number of permutations generated is 1.
Let us consider the effect of an I/O. There can be at
most N/B + t - 1 full tracks before the tth output, and
the records in the tth output can go into one of at most

N/B + t places relative to the full tracks. Hence, the tth
output changes the number of permutations generated
by at most a multiplicative factor of N/B + t, which can
be bounded trivially by N(l + log N).

For the case of input, we first consider an input of B
records from a specific track on disk. If the B records
were output together during some previous output,
then by our assumptions this implies that at some ear-
lier time they were together in internal memory and
were arranged in an arbitrary order by the algorithm.
Thus, the B! possible orders of the B inputted records
could already have been generated before the input
took place. This implies in a subtle way that the
increase in the number of permutations generated due
to rearrangement in internal memory is at most a mul-
tiplicative factor of(y), which is the number of ways to
intersperse B indistinguishable items within a group of
size M. If the B records were not output together previ-
ously, then the number of permutations generated is
increased by an extra factor of B!, since the B records
have not yet been permuted arbitrarily. It is important
to note that this extra factor of B! can appear only N/B
times, namely once when the kth track is inputted for
the first time, for each 1 5 k 5 N/B.

The above analysis applies to input from a specific
track. If the input is the tth I/O, there are at most
N/B + t - 1 tracks to choose from for the I/O, plus
one more because input from an empty track is also
possible. Putting our results together, we find that the
number of permutations generated at time t can be a
multiplicative factor of at most

(; + +$) 5 N(1 + log N)B! (;) (4.1)

times greater than the number of permutations gener-
ated at time t - 1, if the tth I/O is the input of the kth
track for the first time, for some 1 5 k 5 N/B. Other-
wise, the multiplicative factor is bounded by

(; + f)($ 5 N(1 + log N) ($1. (4.4

For the worst case, we get our lower boun.d by using
(4.1) and (4.2) to determine the minimum vaJue T such
that the number of permutations generated is at least
N!:

(4.3)

The (B.) 1 N/B term appears because (4.1) contributes an
extra B! factor over (4.2), but this can happen at most
N/B times. Taking logarithms and applying Stirling’s
formula to (4.3, with some algebraic manipulation, we
get

T(logN+Blogf)=D(NLog;). (4.4)

If B log(M/B) 5 log N, then it follows that B 5 fi and
from (4.4) we get

1120 Communicntions of the ACM September 1988 Volume 31 Number 9

Research Contributions

T= Q(NZNN/B)) = Q(N).

On the other hand, if log N C B log(M/B), then (4.4)
gives us

Combining (4.5) and (4.6) we get

(4.51

(4.6)

We get the worst-case lower bound in Theorem 3.2 by
dividing (4.7) by P.

For the average case, in which the N! permutations
are equally likely, we can bound the average running
time by the minimum value T such that

(B!)N’B N(1 + log N) 2 N!/2 (4.8)

(cf. (4.3)). At least half of the permutations require
2T I/OS; hence the average time to permute is at least
Y, 2T = T. The lower bound for T follows by the same
steps we used to handle (4.3). Note that this lower
bound for T is roughly a factor of ‘/z times the bound on
Tin the worst case that follows from (4.3), but it is
straightforward to derive (using (4.3) and a more careful
estimate of the expected value) an average-case bound
that is asymptotically the same as the worst-case
bound.

Our proof technique also provides the constant fac-
tors implicit in the bounds in Theorem 3.2. If we
assume that I/OS are simple and respect track bound-
aries, then the upper and lower bounds are asymptoti-
cally exact in many cases, as mentioned at the end of
Section 3. If B = o(M) and P = 1 and if log M/B either
divides log N/B or else is o(log N/B), then the average
number of I/OS for permuting (and sorting) is asymptot-
ically at least 2N log(N/B)/(B log(M/B)), which is
matched by merge sort. The proof of the lower bound
follows from the observation that there must be as
many outputs as inputs, coupled with a more careful
analysis of (4.3). For the last case quoted in Section 3,
the matching lower bound follows by an analysis of
matrix transposition, which we do later in this section.

FFT and Permutation Networks
A key observation for obtaining the lower bound for the
FFT is that we can construct a permutation network by
stacking together three FFT digraphs, so that the output
nodes of one FFT are the input nodes for the next [lo].
Thus the FFT and permutation network problems are
essentially equivalent, since as we shall see the lower
bound for permutation networks matches the upper
bound for FFT.

Let us consider an optimal I/O strategy for a permu-
tation network. The second key observation is that the
I/O sequence is fixed. This allows us to apply the
lower-bound proof developed above for permuting,

with the helpful restriction that each I/O cannot
depend upon the desired permutation; that is, regard-
less of the permutation, the records that are transferred
during an I/O and the track accessed during the I/O
are fixed for each I/O. This eliminates the (N/B + t)
terms in (4.1) and (4.2). Each output can at most double
the number of permutations generated. The lower
bound on the number of I/OS follows for P = 1 by
finding the smallest T such that

0
T

(B!)“‘” y 2 N!. (4.9)

By using Stirling’s formula, we get the same bound as
in (4.6). Dividing by P gives the lower bound in Theo-
rem 3.1.

It is interesting to note that since the I/O sequence is
fixed and cannot depend upon the particular permuta-
tion, we are not permitted to use the naive method of
permuting, in which each block transfer moves one
record from its initial to its final destination. This is
reflected in the growth rate of the number of permuta-
tions generated due to a single I/O: the (N/B + f) term
in the growth rate in (4.1) and (4.2) for permuting,
which is dominant when the naive method is optimal,
does not appear in the corresponding growth rate for
permutation networks.

Sorting
Permuting is a special case of sorting, so the lower
bound for permuting in Theorem 3.2 also applies to
sorting. However, when B log(M/B) = o(log(N/B)), the
lower bound becomes Q(N/P), which is not good
enough. In this case, the specific knowledge of what
goes where makes generating a permutation easier than
sorting.

We can get a better lower bound for sorting for the
B log(M/B) = o(log(N/B)) case by using an adversary
argument, if we restrict ourselves to the comparison
model of computation. Without loss of generality, we
can make the following additional assumptions, similar
to the ones earlier: All I/OS are simple. Each I/O trans-
fers B records, some possibly nil, to or from a single
track on disk. We also assume that between I/OS the
optimal algorithm performs all possible comparisons
among the records in internal memory.

Let us consider an input of B records into internal
memory. If the B records were previously outputted
together during an earlier output, then by our assump-
tions all comparisons were performed among the B rec-
ords when they were together in internal memory, and
their relative ordering is known. The records in inter-
nal memory before the input, which number at most
M - B, have also had all possible comparisons per-
formed. Thus, after the input, there are at most (f) sets
of possible outcomes to the comparisons between the
records in memory. If the B records were not previously
outputted together (that is, if the input is the first input
of the kth track, for some 1 5 k 5 N/B), then there are
at most B!(f) sets of possible outcomes to the compari-

September 1988 Volume 31 Number 9 Communications of the ACM 1121

Research Contributions

sons. The adversary chooses the outcome that maxi-
mizes the number of total orders consistent with the
comparisons done so far. It follows that (4.9) holds at
time ‘r, which yields the desired lower bound. Dividing
by P gives the lower bound stated in Theorem 3.1.

The same result holds in the average-case model. We
consider the comparison tree .with N! leaves, represent-
ing the N! total orderings. Each node in the tree repre-
sents an input operation. The nodes are constrained to
have degree bounded by (f), except that each node
corresponding to the input of one of tracks 1, . . . , N/B
can have degree at most B!(f); there can be at most
N/B such high-degree nodes along any path from the
root to a leaf. The external path length divided by N!,
minimized over all possible computation trees, gives
the desired lower bound for P = 1. Dividing by P gives
the lower bound of Theorem 3.1.

Matrix Transposition
We prove the lower bound using a potential function
argument similar to the one used by Floyd [3]. It suf-
fices to consider the case P = ‘1; the general lower
bound will follow by dividing by P. Without loss of
generality, we assume that p and 4 are powers of 2, and
that all I/OS are simple and transfer exactly B records,
some possibly nil.

We define the ith target group, for 1 5 i 5 N/B, to
be the set of records that will ultimately be in the ith
track at the termination of the algorithm. We define
the continuous function

f(x)= 0
-L

x log x, if x > 0;
if x = 0.

(4.10)

We assign a “togetherness rating”

Ck(t) = C f (Z,k)
1 risN/B

(4.11)

to the kth track at time t if after t I/OS the kth track
contains Xi.k records belonging to the ith target group.
Similarly, we assign a togetherness rating of

C,(t) = 1 f(yi) (4.12;
7 siaN/B

to the internal memory at time t, where yi is the num-
ber of records belonging to the ith target group that are
in internal memory after the tth l/O. We define the
potential at time t to be the sum of the togetherness
ratings

POT(f) = C,(t) + c C&).
ktl

(4.13)

We denote by T the total number of I/OS performed by
the end of the algorithm. At time T each track has
togetherness rating G(T) = B log B, and the internal
memory is empty; hence we have

POT(T) = N log B. (4.14)

Now let us compute the initial potential POT(O). If
B < mini p, 4 1, no target group has two records that
are initially in the same track. If min(p, 9) 5 B 5
maxi p, 9 1, each target group is partitioned into

min(p, 4) equal-sized groups, such that the records in
the same group initially reside in the same track. If B >
maxi p, 41, there are N/B groups. This gives

POT(O)

0, ifB<min(p,q};

N log
B

ifmin(p,q)~B:;max(p,qj;
= minip, 41’

Nlog$. fmadp, ql <B; (4.15)

If a block is output from internal memory to disk at
time t, then the potential function does not increase at
that point; that is, POT(t) I POT(t - 1). Let us assume
that the tth l/O is an input from the kth track of the
disk to internal memory. After the input the together-
ness rating Ck(f) of the kth track is 0. The increase in
potential VPOT(t) is thus

VPOT(f) = CM(f) - CM(f - 1) - C& -- 1). (4.16)

The contribution of a target group to the togetherness
rating of internal memory increases when some of the
records were present in internal memory before the
input and some others were included in the input. We
use y: and y: to denote the number of records from the
ith target group that are, respectively, present in inter-
nal memory at time t - 1 and input into internal mem-
ory from the kth track at time t. We have

VPOT(t) = x (f (y: + yf) -f (y;) -f (y:)), (4.17)
1 rirN/B

where

,,&,, Y: 5 M - B and ,5g,B Y:’ 2; B. (4.181

A simple convexity argument shows that (4.17) is maxi-
mized when y: = (M - B)B/N and yy = B’/N, for each
1 5 i 5 N/B. For 0 5 y 5 x 5 1, we have

f(x+yl -f(x) -f(Y)

(4.19)

Substituting x = (M - B)B/N and y = B2/N into (4.19) it
follows from (4.17) that

VPOT(t) = 0 B log ; .
(>

At the end of the algorithm, there are at least T 2
N/B outputs, and thus by (4.20)

T _ E = n POW’) - POW’)
B B log(M/B) ’

(4.21)

1122 Communications of the ACM September 1988 Volume 31 Number 9

The lower bound

T = n

(

clog min(M, 1 + min(p, q), 1 + N/B)

B log(1 + M/B) >
(4.22)

follows by substituting (4.14) and the different cases of
(4.15) into (4.21). The general lower bound in Theorem
3.3 for P > 1 follows by dividing (4.22) by P.

The constant factor implicit in the above analysis
matches the constant factor 2 for merge sort in several
cases, if we require that all I/OS be simple and respect
track boundaries, as defined at the end of Section 3.
When P = 1 and B = Q(fi/logbNJ, for some b, and when
log M/B either divides log N/B or else is o(log N/B),
the lower bound for transposing a B x N/B matrix is
asymptotically at least 2N log(N/B)/(B log(M/B)),
which matches the performance of merge sort. The
proof follows from the above analysis (which gives a
lower bound on the number of inputs required) and the
observation that there must be as many outputs as in-
puts. If, in addition, we substitute the bound f (x + y) -
f(x) - f(y) 5 x + y, for positive integers x and y, in
place of (4.19), we get the same asymptotic lower bound
formula for the case M = fi, B = %M, P = 1, which
matches merge sort.

5. OPTIMAL ALGORITHMS
In this section, we describe variants of merge sort and
distribution sort that achieve the bounds in Theorems
3.1-3.3. As mentioned in Section 3, the algorithms fol-
low the added restriction that records input in the same
block must have been output previously in a single
block, except for the first input of each track. It suffices
to consider worst-case complexity, since the average-
case result follows immediately. We first discuss the
sorting problem and then apply our results to get opti-
mum algorithms for permuting, FFT, permutation net-
works, and matrix transposition. Without loss of gener-
ality, we can assume that B, M, and N are powers of 2
andthatB<M<N.

Merge Sort
The standard merge sort algorithm works as follows: In
the “run” formation phase, the N/B tracks are inputted
into memory, in groups of one memoryload at a time;
each memoryload is sorted into a “run,” which is then
output to consecutive positions on disk. At the end of
the run formation phase, there are N/M runs on disk.
(In actual implementations, the “replacement-selection”
technique [5] can be used to get runs of 2M records, on
the average, when M >> B.) In each pass of the merging
phase, M/B-’ runs are merged into one longer run.
During the processing, one block from each of the runs
being merged resides in internal memory. When the
records of a block expire, the next track for that run is
input. The resulting number of I/OS is

This does not yield an optimal algorithm, however,
when P is not bounded by a constant, since there is no
way of knowing which P tracks should be inputted
next. The solution is to modify the information that
goes into each track. Besides the records themselves,
we also place into each track P - 1 “endmarkers,”
which are the key values of the last record in the each
of the next P - 1 tracks of the run. Using a generaliza-
tion of the forecasting technique described in [5], we
can then determine the P tracks that will expire next.
Note, however, that several of these tracks might not
yet be present in internal memory. Merging proceeds
until a track not currently in memory is needed. An
input can then be performed to transfer the next P
tracks needed, using the forecasting information, and
the process continues.

First we consider the case P zz B/2. In each pass, the
endmarkers are not output at the same time that the
track is output, since they are not yet determined at
that time. Instead, when we output the records of the
Zth output track, we also output the endmarkers for
the (I - P)th output track. To do that, we have to store
in internal memory the addresses and the largest key
values of the last P - 1 tracks. This consumes O(B)
space, under our assumption that P 5 B/2, so the num-
ber of tracks and the number of I/OS needed to store a
run of a given length do not change by more than a
constant factor. The number of passes in the merging
phase also does not change by more than a constant
factor. The resulting speedup is O(P), as desired.

However, if P > B/2, then there may not be enough
room to store the endmarkers without increasing the
number of tracks per run by too large an amount. In
this case, we form “metatracks” of size B’ = r&l 2 B.
The number of metatracks that can be input concur-
rently is P’ = LPB/(IB’/BlB)I, which is bounded by
M/B’ I B’/2. This satisfies the requirement for the
construction in the previous paragraph, using P’ and B’
in place of P and B. The result is that the number of
I/OS is reduced by O(P’) from the number used by
standard merge sort. By (5.1), the number of I/OS per-
formed by the standard merge sort would be

(5.2)

Dividing (5.2) by P’ = PB/B’ and with some algebraic
manipulation, we get the desired upper bound stated in
Theorem 3.1.

Distribution Sort
For simplicity, we assume that M/B is a erfect square,
and we use S to denote the quantity se M/B. The main
idea in the algorithm is that with O(N/(PB)) I/OS we
can find S approximate partitioning elements b,, bz, . . . , bs
that break up the file into roughly equal-sized “buck-
ets.” (For completeness, we define the dummy parti-
tioning elements b. = --03 and bs+l = +m). More pre-
cisely, we shall prove later, for 1 5 i I S + 1, that the
number of records whose key value is sbi is between

September 1988 Volume 31 Number 9 Communications of the ACM 1123

Research Contributions

(i - X)N/S and (i + %)N/S. Hence, the number Ni of
records in the ith bucket (that is, the number Ni of
records whose key value K is in the range bi-I< K 5 bi)
satisfies

IN 3N --
2s

SN,S--.
2s

For the time being, we assume that we can compute
the approximate partitioning elements using O(N/(PB))
I/OS. Then with O(M/(PB)) additional I/OS we can in-
put M records from disk into internal memory and par-
tition them into the S bucket ranges. The records in
each ‘bucket range can be stored on disk in contiguous
groups of B records each (except possibly for the last
group) with a total of O(M/(PB) + S/P) = O(M/(PB))
I/OS. This procedure is repeated for another N/M - 1
stages, in order to partition all N records into buckets.
The ith bucket will thus consi.st of Gi 5 Ni/B + N/M =
O(Ni/‘B) groups of at most B contiguous records, by US-

ing inequality (5.3). The buckets are totally ordered
with respect to one another. The remainder of the algo-
rithm consists of recursively sorting the buckets one-
by-one and appending the results to disk. The number
of I/OS needed to input the contents of the ith bucket
into internal memory during the recursive sorting is
bounded by Gi/P = O(Ni/(PB)). Let US define T(n) to be
the number of I/OS used to sort n records. The above
construction gives us

T(N) = c T(N,) + 0 (5.4)
7 G&+1

Using the facts that Ni = O(N/S) = O(N/m) and
T(M) = O(M/(PB)), we get the desired upper bound
given in Theorem 3.1.

All that remains to show is how to get the S approxi-
mate partitioning elements via O(N/(PB)) I/OS. Our
procedure for computing the approximate partitioning
elements must work for the recursive step of the algo-
rithm, so we assume that the N records are stored in
O(N/B) groups of contiguous records, each of size at
most B. First we describe a subroutine that uses
O(n/(PB)) I/OS to find the record with the kth smallest
key (or simply the kth smallest record) in a set contain-
ing n records, in which the records are stored on disk in
at most O(n/B) groups, each group consisting of IB
contiguous records: We load the n records into memory,
one memoryload at a time, and sort each of the m/Ml
memoryloads internally. We pick the median record
from each of these sorted sets and find the median of
the medians using the linear-time sequential algorithm
developed in [2]. The number of I/OS required for
these operations is O(n/(PB) + (n/B)/P + n/M) =
O(n/(PB)). We use the key value of this median record
to partition the n records into two sets. It is easy to
verify that each set can be partitioned into groups of
size B (except possibly for the last group) in which each
group is stored contiguously on disk. It is also easy to
see that each of the two sets has size bounded by 3n/4.

The algorithm is recursively applied to the appropriate
half to find the kth largest record; the total number of
I/OS is 0 (n/PB)).

We now describe how to apply this subroutine to
find the S approximate partitioning element,5 in a set
containing N records. As above, we start out by sorting
N/M memoryloads of records, which can be done with
O(N/(PB) + (N/B)/P) = O(N/(PB)) I/OS. Let us denote
the jth sorted set by Ui. We construct a new set U’ of
size at most 4N/S consisting of the %kSth records (in
sorted order) of Uj, for 1 5 k I 4M/S - 1 and 1 zz j 5
N/M. Each memoryload of M records contributes 4M/S
> B records to U’, so these records can be output one
block at a time. The total number of contiguous groups
of records comprising U’ is 0(1 U’ 1 /B), so we can ap-
ply the subroutine above to find the record of rank
4iN/S* in U’ with only 0(1 U’ I/(PB)) = O(N/(SPB))
I/OS; we call its key value bi. The S hi’s can thus be
found with a total of O(N/(PB)) I/OS. It is easy to show
that the hi’s satisfy the conditions for being approximate
partitioning elements, thus completing the proof.

Permuting
The permuting problem is a special case of the sorting
problem, and thus can be solved by using a sorting
algorithm. To get the upper bound of Theorem 3.2, we
use either of the sorting algorithms described above,
unless B log(M/B) = o(log(N/B)), in which c(ase it is
faster to move the records one-by-one in the naive
manner to their final positions, using O(N/P) I/OS.

FFT and Permutation Networks
As mentioned in Section 4, three FFT digraphs conca-
tenated together form a permutation network. So it suf-
fices to consider optimum algorithms for FF’T.

For simplicity, we assume that log M divides log N.
The FFT digraph can be decomposed into (log N)/log M
stages, as pictured in Figure 2. Stage k, for 1 5 k -C
(log N)/log M, corresponds to the pebbling of columns
(k - l)log M + 1, (k - 1)log M + 2, . . . , k log M in the
FFT digraph. The M nodes in column (k - l:llog M that
share common ancestors in column k log M are pro-
cessed together in a phase. The corresponding M rec-
ords are brought into internal memory via a transposi-
tion permutation, and then the next log M columns can
be pebbled.

The I/O requirement for each stage is thus due to
the transpositions needed to rearrange the records into
the proper groups of size M. The transpositions can be
collectively done via a simple merging procedure
described in the next subsection, which requires a total
of O((N/(PB))logM,Bmin(M, N/M)) I/OS. There are
(log N)/log M stages, making the total number of I/OS

which can be shown by some algebraic manipulation to
equal the upper bound of Theorem 3.1.

1124 Communications of the ACM September 1988 Volume 31 Number 9

Research Contributions

LOG N thus

We get the upper bound in Theorem 3.3 by substituting
the values of x from (5.6) into (5.7) and by multiplying
by 2N/PB, the number of I/OS per pass.

6. ALTERNATE PROOF OF HONG AND KUNG’S
RESULT
In this section, we give a simple proof that the FFT
requires Q(N(log N)/log M) I/OS for the special case
B = P = O(l), which was proved in [4] using a compli-
cated pebbling argument.

. . .

.
\ ,

LOG M

Our model for this special case can be phrased in
terms of the red-blue pebble game, introduced in [4].
There are M red pebbles, representing internal memory
storage, and an unlimited supply of blue pebbles, repre-
senting information stored on disk. The FFT digraph
must be pebbled using the standard pebbling rules ap-
plied to the red pebbles, except that the following spe-
cial I/O operations are allowed: A blue pebble may be
placed on any node containing a red pebble, and a red
pebble may be placed on any node containing a blue
pebble, each at the cost of one I/O. The “cost” of the
red-blue pebbling game is the number of I/OS per-
formed; the red pebbling moves are free.

FIGURE 2. Decomposition of the FFT digraph into stages, for
N=8,M=2

Matrix Transposition
Without loss of generality, we assume that p and 9 are
powers of 2. Matrix transposition is a special case of
permuting. The intuition gained from the lower bound
proof in Section 4 can be used to develop a simple
algorithm for achieving the upper bound in Theorem
3.3. In each track, the B records are partitioned into
different target groups; each group in the decomposi-
tion is called a target subgroup. Before the start of the
algorithm, the size of each target subgroup is (cf. (4.15))

I 1, ifB<min(p,q);

B

x = min(p, 9],
if minlp, 9) 5 B 5 maxlp, 9);

BZ
N’

if maxlp, 9] <B. (5.6)

The algorithm uses a merging procedure. The records
in the same target subgroup remain together through-
out the course of the algorithm. In each pass, target
subgroups are merged and become bigger. The algo-
rithm terminates when each target subgroup is com-
plete, that is, when each target subgroup has size B. In
each pass, which takes 2N/PB I/OS, the size of each
target subgroup increases by a multiplicative factor of
M/B. The number of passes made by the algorithm is

1 1 lOgM/s $ * (5.7)

Our simplified proof of Hong and Kung’s result rests
on the following intuitive lemma:

LEMMA 6.1. Given any initial configuration of M red peb-
bles on the FFT digraph, at most 2M log M red pebbling
moves can be made without l/O.

PROOF. To bound the number of red pebbling moves,
we use a dynamic charging strategy to allocate the
moves to individual red pebbles. Let num(p) denote the
number of moves currently allocated to pebble p. A
generic red pebbling move in the FFT digraph has the
following form: Two pebbles pl and pz rest on nodes I1
and lz, and they share common parents u1 and u?. Both
pI and p2 are then moved to the upper level nodes u,
and uZ. (Keeping one of the pebbles behind might only
reduce the number of possible red pebbling moves,
which we are trying to maximize.) Our charging strat-
egy is to charge 1 to pl if num(pl) 5 num(pz), and 1 to
pz if num(pz) I num(p,). The total number of red peb-
bling moves is therefore bounded by

2 c num(p). (‘3.1)
pebblesp

The lemma below can be proved easily by induction;
the proof is therefore omitted.

LEMMA 6.2. For each pebble p on node n in the FFT di-
graph, the number of nodes that contained a red pebble
in the initial configuration and that are connected by a
directed path to n is at least 2num@‘1.

There are M red pebbles, so each pebble p can
“cover” at most M original placements. By Lemma 6.2,

September 1988 Volume 31 Number 9 Communications of the ACM 1125

Research Contributions

we have num(p) 5 log M. Plugging this into (6.1) com-
pletes the proof of Lemma 6.1.

Each node in the FFT digraph must be red pebbled al
least once. Since there are N log N nodes, Lemma 6.1
implies that the number of I/OS required for the P = M,
B = 1 case is at least

N log N --
2M log M ’

(6.2)

For the case P = B = 1, which is what we want to
consider, we appeal to the following lemma.

LEMMA 6.3. Any fixed l/O schedule can be simulated by
consecutive groups of I/O operations, in which each group
consists either of M inputs or M outputs, and the total
number of I/OS does not increase by more than a constant
factor.

PROOF. The lemma follows from the fact that the I/O
schedule for the FFT is fixed and does not depend on
the input; thus, caching can be done in order to group
the I/OS in the desired fashion.

If we treat each group of inputs and each group of
outputs as a single operation, we find ourselves in the
case P = M; a lower bound on the number of groups is
given by (6.2). In terms of the P = 1 model, each group
represents M I/OS, and our lower bound follows by
multiplying (6.2) by M.

7. CONCLUSIONS
We have derived matching upper and lower bounds,
up to a constant factor, for the average-case and worst-
case number of I/OS needed to perform sorting-related
tasks, which include sorting, FFT, permutation net-
works, permuting, and matrix transposition. Under
mild restrictions on the types of I/O possible, the con-
stant factors implicit in our upper and lower bounds
are often equal. Our bounds also apply if the disk has a
special capability to access up to S groups of contiguous
regions on disk in a single I/O. This situation corre-
sponds to a disk without the special capability that
has block size B’ = B/S and degree of parallelization
P’ = .PS.

The optimal upper bounds for B = 1 when M = N”(l),
can be obtained via a recursive application of Column-
sort [7]; however, for smaller M the upper bound is
greater than optimal by a factor of roughly log log N.

Recently, Beige1 and Gill [l:I have independently con-
sidered the problem of determining how many applica-
tions of a black box capable of sorting k records are
necessary to sort N records. Their problem corresponds
to the sorting problem for the special case P = M = k
and B = 1. They have shown that O((N log N)/(k log k))
I/OS are optimal in that case (cf. Theorem 3.1). In addi-
tion, they have derived bounds on the constant factors
involved in their version of the problem.

Kwan and Baer [6] study an alternative disk model,
in which P = 1 and the disk is decomposed into contig-
uous cylinders, each composed of several tracks. (The

track size is a hardware parameter, and can be different
from the logical block size used for data transfer, unlike
our use of the term in Definition 3.2.) The tracks all
revolve at a constant rate. There is one read/write
head per track, and the set of heads can move in unison
from cylinder to cylinder. Seek time in an I,‘0 is pro-
portional to the number of cylinders traversed by the
heads, and rotational latency time is proportional to the
radial distance between the head positions at the start
of an I/O request and the head positions at ,the begin-
ning of the actual data transfer. An algorithm for per-
muting records that takes advantage of locality of refer-
ence on the disk is given; it achieves better running
times than merge sort in this model when the file size
is large.

We believe, however, that the simpler model we use
in this paper gives more meaningful results. Kwan and
Baer’s model [6], in comparison with current technol-
ogy, is overly pessimistic in how it models a random
seek. For example, for the large-capacity magnetic disks
made by IBM, the time to do a seek between adjacent
cylinders is of the same order of magnitude as the time
for a random seek or for a complete revolution. In this
more realistic context, the permutation algorithm in [6]
is slower than merge sort. In addition, the I/O block
size in large external sorts is often on the order of the
disk track size. Thus, the time for the data transmission
during an I/O is as large in magnitude as the seek and
latency times, which justifies the simpler model we
study in this paper.

We conclude this paper with a challenging open
problem: Can we remove our assumption that the rec-
ords are indivisible and allow, for example, arbitrary
bit manipulations and dissections of the records? Intui-
tively, the lower bound should still hold in this more
general model, since it is unlikely that these operations
are of any great help, but no proof is known. Such a
proof would no doubt provide great insight into the
nature of information transfer and sorting-related
computations.

REFERENCES
1. Be&l, R., and Gill, J. Personal Communication. 1986.
2. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan, R.E. Time

bounds for selection. 1. Comaut. Svsf. Sci. 7 (19731. 448-461.
3. Floyd, R.W. Permuting info;mati& in ideaiized’two-:evel storage. In

Complexity of Computer Calculations, R. Miller and J. Thatcher, Eds.
Plenum, New York, 1972, pp. 105-109.

4. Hong, J.W., and Kung, H.T. I/O complexity: The red-blue pebble
game. In Proceedingsof the 13th Annual ACM Symposimn on Theory of
Computing (Milwaukee, Wisconsin, Oct.). pp. 326-333. 1981.

5. Knuth, D.E. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.

6. Kwan, S.C., and Baer, J.L. The I/O performance of multiway merge-
sort and tag sort. IEEE Trans. Compuf. C-34,4 (Apr. 1985), 383-387.

7. Leighton, F.T. Tight bounds on the complexity of parallel sorting.
IEEE Trans. Comput. C-34,4 (Apr. 1985).

8. Lindstrom. E.E., and Vitter, J.S. The design and analysis of Bucket-
Sort for bubble memory secondary storage. IEEE Trans. Comput.
C-34, 3 (Mar. 1985), 218-233.

9. Savage. J.E., and Vitter, J.S. Parallelism in space-time tradeoffs. In
Advances in Computing Research, Volume 4: Special issue on Parallel
and Disfributed Computing. JAI Press, Greenwich, Corm., 1987, pp.
117-146.

10. Wu, CL.. and Feng, T.Y. The universality of the shuffle-exchange
network. IEEE Trans. Comput. C-30, 5 (May 1981), 324-332.

1126 Communications of the ACM September 1988 Volume .31 Number 9

Research Contributions

An extended abstract of this work appeared in the l/O complexity of
sorting and related problems. In Proceedings of the 14th Annual Collo-
quium on Automata, Languages, and Programming. (Karlsruhe, West Ger-
many. July), 1987. Support for Jeff Vitter was provided in part by NSF
Presidential Young Investigator Award with matching funds from an
IBM Faculty Development Award and an AT&T research grant, and by a
Guggenheim Fellowship. Research was also done while the authors
were at the Mathematical Sciences Research Institute in Berkeley, CA
and while Jeff Vitter was on sabbatical at INRIA in Rocquencourt,
France, and Ecole Normale Sup&&ore in Paris, France.

CR Categories and Subject Descriptors: D.4.2 [Operating systems]:
Storage Management--main memory, secondary srorage devices; D.4.4 [Op-
erating Systems]: Communications Management-input/output;
E.5 [Data]: Files-sorting and searching; G.2.1 [Discrete Mathematics]:
Combinatorics-combinatorial algorithms, permutations and
combinations.

General Terms: Algorithms, Design, Performance, Theory
Additional Key Words and Phrases: Distribution sort, fast Fourier

transform, input, magnetic disk, merge sort, networks, output, pebbling,
secondary storage, sorting

Received 8/87: revised Z/88; accepted 3/88

ABOUT THE AUTHORS

ALOK AGGARWAL is a research staff member at the IBM
Watson Research Center. He received his Ph.D. in Electrical
Engineering/Computer Science from Johns Hopkins University
in 1984. His research interests include computational geom-
etry, parallel algorithms, and VLSI theory.

JEFFREY UTTER is a professor of computer science at Brown
University. He is a Guggenheim Fellow and a recipient of an
NSF Presidential Young Investigator Award. He is coauthor of
Design and Analysis of Coalesced Hashing (1987). His research
interests include analysis of algorithms, computational com-
plexity, parallel computing, and machine learning. Authors’
present addresses: Alok Aggarwal, IBM Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598: Jeffrey S.
Vitter, Department of Computer Science, Brown University,
Providence, RI 02912.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

COMPUTING TRENDS IN THE 1990’S

1989 ACM Computer Science
Conference@

February 21-23,1989
Commonwealth Convention Center

Louisville, Kentucky

acm,

Conference Highlights:

l Quality Program Focused on Emerging
Computing Trends

l Exhibitor Presentations
l CSC Employment Register
l National Scholastic Programming

Contest
l History of Computing Presentations/

Exhibits
l Theme Day Tutorials
l National Computer Science Department

Chair’s Program

Attendance Information Exhibits Information
ACM CSC’89 Barbara Corbett
11 West 42nd Street Robert T. Kenworthy Inc.
New York, NY 10036 866 United Nations Plaza
(212) 8697440 New York, NY 10017
Meetings@ACMVM.Bitnet (212) 752-0911

September 1988 Volume 31 Number 9 Communications of the ACM 1127

