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Abstract

We study trade-offs between the update time and the query time for comparison
based external memory dictionaries. The main contributions of this paper are two lower
bound trade-offs between the I/O complexity of member queries and insertions: If N >
M insertions perform at most δ · N/B I/Os, then (1) there exists a query requiring
N/(M · (M

B
)O(δ)) I/Os, and (2) there exists a query requiring Ω(logδ log2 N

N

M
) I/Os when

δ is O(B/ log3 N) and N is at least M2. For both lower bounds we describe data structures
which give matching upper bounds for a wide range of parameters, thereby showing the
lower bounds to be tight within these ranges.

1 Introduction

In this paper, we consider the complexity of maintaining dictionaries in external memory.
The computational model used is the I/O model of Aggarwal and Vitter [1], which assumes
a memory hierarchy containing two levels: an internal memory of size M , and an external
memory of unbounded size. The transfer between the two levels takes place in blocks of B
elements, where M ≥ 2B. The size of the problem is denoted N , and the measure of cost is
the number of blocks transferred. This model is adequate when the memory transfer between
two levels of the memory hierarchy dominates the running time, which is often the case when
the size of the data significantly exceeds the size of main memory, due to the very large access
time for disks compared to the remaining levels of the memory hierarchy. During the last
decade, a large number of results for the I/O model has been developed—see e.g. the surveys
by Arge [3] and Vitter [19].

As in the sorting lower bound of Aggarwal and Vitter [1], we consider a comparison based
version of the I/O model, where the operations allowed on elements are moving, copying,
deleting, and comparing, and where two elements only can be compared if they are both in
internal memory. An I/O touches B contiguous memory addresses in external memory.

The B-tree, introduced in 1972 by Bayer and McCreight, is a comparison based external
memory dictionary which works well in the I/O model, supporting member, predecessor, suc-
cessor, and range queries as well as insertions and deletions. They are widely used in practice,
in particular in databases, which typically store large indexes as B-trees (or variants hereof,
such as B+-trees and B∗-trees [14, 15]). B-trees support updates as well as member, prede-
cessor, and successor queries in O(1 + logB

N
M ) I/Os. It is well-known that in a comparison

based model, this number of I/Os is best possible for member queries.
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The question we raise in this paper is, whether the I/O cost for updates can be lowered.
More generally, we ask what trade-offs can be achieved between update costs and query costs
in comparison based external memory dictionaries. For simplicity, we restrict our attention
to insertions and member queries. The lower bounds hold for the other types of queries as
well, as member queries are a special case of these.

In internal memory, the corresponding question is well solved. First of all, a simple ad-
versary argument shows that a query can be forced to use log2 N comparisons, no matter
what the insertion cost is. More generally, lower bounds have been proven [10, 11], stat-
ing that if insertions perform at most O(k) comparisons, then queries can be forced to use
max{log2 N , N/2Θ(k)} comparisons. These bounds are asymptotically tight, as can be seen
by considering balanced binary search trees where the subtrees rooted at depth Θ(k) have
been substituted by unordered lists of size N/2Θ(k).

In external memory, it is well-known that an adversary argument (see Lemma 1) analogous
to the internal case gives a lower bound for queries of Ω(logB

N
M ) I/Os, no matter what the

insertion cost is. However, unlike the internal case, not much is known about the possible
combinations of query and insertion cost when the insertion cost is below that of external
memory search trees. This is the subject of the present paper. We summarize the situation
in Figure 1.

Internal External

Query Ω(log2 N) always Ω(logB
N
M ) always

Search Trees Insert, Query Θ(log2 N) Insert, Query Θ(logB
N
M )

Trade-Off Insert Θ(k) ⇒ Query N/2Θ(k) This paper

Figure 1: Insertions and queries in comparison based dictionaries

By the optimality of the query bound for B-trees, there is no need to consider insertion
costs larger than for B-trees. On the other hand, if N insertions perform less than (N−M)/B
writes to external memory, then some elements have been lost by the dictionary, and member
queries clearly cannot be answered correctly. In other words, we are interested in which query
costs are possible when the cost of N insertions is δ · N/B I/Os for 1 ≤ δ ≤ B logB N .

We note that the situation in external memory differs from that in internal memory in
a fundamental way: in the comparison based I/O model, the cost of sorting N elements is
Sort(N) = O(N

B logM/B
N
M ) I/Os [1], which is smaller than the cost O(N logB

N
M ) of per-

forming N operations on a B-tree. This is in contrast to the standard (internal) comparison
model, where the cost per element is the same for sorting and for searching, namely Θ(log N).
Intuitively, this means that while information theoretical arguments in the internal case are
adequate for all insertion costs below the searching lower bound, this is in the external case
only true for small costs, namely costs with 1 ≤ δ ≤ logM/B

N
M . For the remaining values of

δ (the major part of its range for most choices of parameters N , B, and M), the fact that
the dictionary algorithm does not know when the query will be asked must be used when
proving lower bounds—if the algorithm knew the query time in advance, it could simply sort
the elements and build a B-tree immediately before the query without violating the insertion
bound.

Of previous work, only little is directly related to our question. Aggarwal and Vitter [1]
proved comparison based lower bounds for external sorting. Arge [2] introduced the buffer
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tree as an external memory search tree to handle sequences of batched updates and queries.
A sequence of N updates and queries is handled in O(Sort(N)) I/Os, assuming that the answer
to queries are not required to be reported before the complete sequence has been processed,
i.e. queries are not online. If used as an online data structure, buffer-trees support a sequence
of N updates using O(Sort(N)) I/Os and answers an online query with O(M

B logM/B(N/M))
I/Os. In [4], Arge et al. introduce an I/O version of comparison trees, which gives a general
way to transfer standard (internal) comparison lower bounds for offline problems, such as
sorting and element distinctness, into I/O bounds for the same problems.

Of more remotely related work, Samoladas et al. have considered multi-dimensional range
query trade-offs between storage redundancy and access overhead in [7, 16, 17]. A systematic
approach for deriving lower bounds on the trade-off between access overhead and redundancy
can be found in [16]. These trade-offs are proved for static problems only. Trade-offs between
time and space for sorting and element distinctness are given by Arge and Pagter in [6]. Arge
and Miltersen [5] discusses other models than the comparison based I/O-model, and prove
lower bounds for various problems, none of which involves online queries.

The main contributions of this paper are (2) and (3) in the following theorem, which
summarizes Section 2.

Theorem 1 If N insertions perform at most δ · N/B I/Os, then

(1) There exists a query requiring at least logB+1
N
M −O(1) I/Os.

(2) There exists a query requiring N/(M · (M
B )O(δ)) I/Os for N > M .

(3) There exists a query requiring Ω(logδ log2 N
N
M ) I/Os, provided δ ≤ B/ log3 N and N ≥

M2.

The first lower bound is the folklore statement that B-trees support queries in the optimal
number of I/Os. The second is proved essentially by adapting the information theoretical
methods used in [10, 11] to the comparison based external memory. The third is proved by
constructing an adversary which chooses the ordering of newly inserted elements adaptively
to the actions of the algorithm, and is able to build a set of elements, for which the algorithm
does not know the order of any pair, and for which the elements all reside in different blocks
in external memory. A query among these gives the lower bound.

In Section 3, we show that the lower bounds (2) and (3) are optimal for a wide range
of parameters by describing data structures with upper bounds matching the lower bounds
within the ranges.

Graphically, our contributions can be depicted as in Figure 2. In the figure, the x-axis
depicts the number of I/Os per insertion, and the y-axis depicts the worst-case number of
I/Os for a query. The solid lines denote matching upper and lower bounds. The three upper
bounds are from left to right achieved by respectively truncated buffer trees, B-trees with
buffers, and B-trees, as described in Section 3. We note that the lower bound Ω(logδ log2 N

N
M )

is equal to Ω(logδ
N
M ) for the values of δ stated for the middle curve. We also note that if

B ≥ log3+ǫ N for some constant ǫ > 0, B-trees with buffers have asymptotically optimal
queries of O(logB+1

N
M ) when the cost of inserts is in the range 1/ log3 N to logB+1

N
M .
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Figure 2: Trade-off between insertions and queries.

2 Lower bounds

In this section, we prove lower bound trade-offs between the insertion cost and the query cost
for comparison based external memory dictionaries. We first recall the folklore lower bound
for a single query, and then give our two main lower bounds.

2.1 Any number of I/Os per update

We give a proof for a lower bound on the number of I/Os for a single query. The lower bound
even holds for the static case with no assumption on the redundancy in the stored dictionary,
i.e. the data structure is allowed to have arbitrary size.

Lemma 1 For any dictionary storing N elements, there exists a query requiring at least
logB+1

N
M −O(1) I/Os.

Proof. The proof is by an adversary argument. The elements that still can be equal to the
query element are denoted candidate elements. These always form a consecutive subsequence
in the ordering of the N elements. Initially, at most M elements can reside in internal
memory. The adversary can now select the answer to all comparisons between elements in
internal memory and the query element such that there are at least N−M

M+1 > N
M+1−1 candidate

elements left matching the query element. Each succeeding I/O reads B elements. If there are
k candidate elements remaining before the I/O, then the adversary can choose the answers
to the comparisons such that there are at least k−B

B+1 > k
B+1 − 1 candidate elements left, since

the B elements read partition the at least k − B remaining candidate elements into B + 1
consecutive subsequences, of which the largest has size at least k−B

B+1 . By induction it follows

that after i I/Os there are at least N
(M+1)(B+1)i − 2 candidate elements. Since the adversary

can consistently answer both member and not-member while there is at least one candidate
element left, the lemma follows. 2

2.2 Few I/Os per B updates

In this section we give a lower bound for the case when the number of I/Os done by a sequence
of insertions is not sufficient to sort the set of inserted elements. The proof of the lemma below
uses an adversary argument inspired by the adversary construction used in [11] for proving a
comparison based lower bound trade-off between updates and queries. The interesting values
of δ in the following lemma are δ < logM/B

N
M .
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Lemma 2 If N insertions into an initial empty dictionary perform at most δ · N/B I/Os,
then there exists a query requiring N/(M · (M

B )O(δ)) I/Os for N > M .

Proof. We will describe an adversary which during the inserting of N elements can provide
consistent answers such that there exists a query with the claimed complexity.

The adversary strategy is the following. The N input elements e1, . . . , eN are initially
placed at the root of an infinite binary tree. The placement of the elements on the infinite
tree is used to capture the partial ordering of the elements revealed by the adversary so far.
We let v(ei) denote the node where ei is stored, and d(v) the depth of a node, with the root
having depth zero. We say that two elements ei and ej are ordered if ei and ej are stored
at distinct nodes of the tree where no node is the ancestor of the other node. To answer
comparisons consistently, the adversary will move the elements down in the tree such that
when the adversary for two elements ei and ej answers ei < ej , then ei and ej are ordered and
ei is stored to the left of ej in the tree. The important property is that moving an element
from a node to a descendant cannot violate any of the order answers given so far.

The adversary maintains the following invariants with respect to the placement of the
elements on the infinite binary tree.

1. Elements in internal memory are pairwise ordered.
2. Inserted elements are stored at nodes with depth at least ⌈log M⌉.
3. The elements stored in a block in external memory are pairwise ordered.

To maintain these invariants we consider the following cases. The first case is when an
element ei is inserted. Then ei is moved from the root to a node with depth ⌈log M⌉ such that
ei is ordered with the at most M − 1 elements already in internal memory. This is possible
since there are at least M nodes with depth ⌈log M⌉, and by invariant 2 the at most M − 1
elements already in internal memory after the insertion are stored at nodes with depth at
least ⌈log M⌉.

Writing a block of B elements from internal memory to external memory does not require
any action by the adversary to satisfy invariant 3, since the B elements written are already
pairwise ordered by invariant 1.

Finally, we consider the case when a block of B elements is read from external memory into
internal memory. By invariant 1 the M −B elements already in internal memory are pairwise
ordered, and by invariant 3 the B elements read are pairwise ordered. If ei is an element read,
we have that v(ei) is an ancestor of zero or more nodes storing elements in internal memory.
Let ni be the number of elements from internal memory stored at v(ei) or at a descendant
of v(ei). Then there exists a descendant w of v(ei) such that d(w) = d(v(ei)) + ⌈log(ni + 1)⌉
and neither w or any descendant of w stores elements in internal memory. The adversary
moves ei to w. If an ancestor u of w stores an element ej from internal memory (by invariant 1
there is at most one such node and element), then ej is moved to the child of u not having
w as a descendant. This ensures that ei becomes pairwise ordered to all elements in internal
memory. We repeat this for each of the B elements read. This concludes the description of
the adversary strategy.

We now consider the sum of the depths of the elements, i.e.
∑N

i=1 d(v(ei)). The initial
sum equals zero. An insertion increases the sum by ⌈log M⌉. A block write does not change
the sum. For a block read, note that

∑

i∈I ni ≤ M − B, where i ∈ I if and only if ei

is among the B elements read. The sum increases by at most B +
∑

i∈I ⌈log(ni + 1)⌉ <
2B +

∑

i∈I log(ni + 1) ≤ 2B + B log M
B , where the last inequality follows from the convexity
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of the logarithm and the fact that
∑

i∈I(ni +1) ≤ M . It follows that N insertions performing
a total of x block reads implies

N
∑

i=1

d(v(ei)) ≤ N ⌈log M⌉ + x · B

(

2 + log
M

B

)

.

For trees storing at most q elements in each node, the minimal value of
∑N

i=1 d(v(ei)) is
attained by a binary tree of perfect balance, where all nodes except one contain q elements.
From this follows that if

∑N
i=1 d(v(ei)) ≤ αN , then there exists a node storing Ω(N/2α)

elements. Since these elements are pairwise unordered, we by invariant 1 have that at most
one of the elements is stored in internal memory and by invariant 3 each block in external
memory can at most contain one of the elements. The adversary can now force the query
algorithm to compare the query key with all these elements, i.e. the query takes at least
Ω(N/2α) − 1 I/Os, since all elements must be read using one I/O per element except for the
single element already in internal memory.

Setting x = δ · N/B we get α = ⌈log M⌉ + δ(2 + log M
B ) ≤ log M + O(δ log M

B ). The total

number of I/Os for the query becomes N/2log M+O(δ log M

B
) − 1 = N/(M · (M

B )O(δ)) − 1. The
lemma follows, since for N > M , the adversary can force the algorithm to perform at least
one I/O. 2

2.3 Many I/Os per B updates

In this section, we give a lower bound for the case where the number of I/Os performed during
insertions is above the sorting bound.

Our proof is an adversary argument. The adversary makes up to N insertions into an
initial empty structure, ending with one query operation. To provide consistent answers
to comparisons, the adversary maintains a total order on the inserted elements. For each
new element, the adversary chooses the position in the ordering among the already inserted
elements. The adversary also chooses when to make the single query, and for which element
to query.

The aim of our adversary is to end up in a situation where the conditions in the following
lemma hold:

Lemma 3 Let I be the set of elements inserted so far, with the ordering chosen by the
adversary, and let S ⊆ I be a set which forms a consecutive sequence in this ordering. Assume
the following holds:

1. The internal memory contains no copies of elements in S.

2. For all x, y ∈ S (x 6= y):

(a) No block in external memory contains a copy of both x and y.

(b) No copies of x and y have been compared by the algorithm.

Then the adversary can force a query to use at least |S| I/Os.

Proof. In the partial order induced by the comparisons performed by the algorithm so far, the
elements of S form an anti-chain. The adversary can therefore choose any reordering of the
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elements of S without being inconsistent. In particular, the adversary can force the algorithm
to compare a search key s with (a copy of) all elements x ∈ S by declaring x < s for the first
|S| − 1 such comparisons—it is still free to choose between x = s and x 6= s for the last. By
the conditions in the lemma, one I/O is needed for each such comparison. 2

In the proof below, we use a probabilistic argument to show that the adversary is able
to make choices fulfilling various conditions. We consider a random choice, and by Chernoff
bounds prove a non-zero probability of the desired conditions being true. Hence, at least one
of the possible choices fulfills these conditions.

Lemma 4 Let δ > 0 be arbitrary, and assume B ≥ δ log3 N and N ≥ M2. If N insertions
into an initial empty dictionary perform at most δ · N/B I/Os, then there exists a query
requiring Ω(logδ log2 N

N
M ) I/Os.

Proof. We first define the following values:

p = (δe log2 N)−1

wi = N(
p

4
)i for i ≥ 0

si = wi/ log N for i ≥ 0

Let x1, x2, . . . , xN be the sequence of N elements to be inserted. We partition the sequence
into segments by a inductive procedure. A step at level i in the induction consists of splitting
a segment into a first part of length si, and then splitting the rest into smaller segments, each
of length Θ(wi+1). We denote the first part the base segment and the segments in the second
part the sub segments of the step. At level zero of the induction, the partitioning step is
applied to the entire sequence, and in each higher level, the partitioning step is applied to all
sub segments from the previous level. The first two levels of the partitioning is illustrated in
Figure 3, where the horizontal line depicts the sequence of insertions. We stop the induction
at some level K ≤ log N − 1, where K is an integer to be chosen later.

s0 w1 w1 · · ·

Figure 3: Two levels of the partitioning process

The partitioning of the sequence may be viewed as a tree, where nodes correspond to
segments: the root is the entire sequence, and the children of a node v are the sub segments
of the segment of v. Note that if we by a visit of a node mean the traversal of its base segment,
then a traversal of the insertion sequence corresponds to a preorder traversal of the tree.

The strategy of the adversary is to use the partitioning above to find a point in the insertion
sequence where few I/Os have been done which touches previously inserted elements.

By assumption, over the entire sequence the algorithm makes an average number of I/Os
per insertion of at most δ/B I/Os. As the segments on level one (i.e. the sub segments of
level zero) covers a fraction (log N −1)/ log N of w0, the average number of I/Os per insertion
in the sub segments is at most δ/B · log N/(log N − 1). Hence, no matter what actions the

7



algorithm takes, there will exist at least one segment on level one inside which the average
number of I/Os is at most this value. In this segment, at most O(w1δ/B · log N/(log N − 1))
I/Os are made.

We denote the first of these the sparse segment σ1 on level one, and extend the definition
to higher levels by induction: the sparse segment σi+1 on level i + 1 is the first of the sub
segments within σi for which the average number of I/Os per insertion is at most δ/B ·
(log N/(log N − 1))i. The sparse segments σ1 ⊇ σ2 ⊇ · · · ⊇ σK correspond to a root-to-leaf
path in the tree view of the partition. At most wiδ/B · (log N/(log N − 1))i ≤ ewiδ/B I/Os
are made in σi, where the last inequality follows from K ≤ log N − 1 and (1 + 1/x)x < e.

By counting I/Os, the adversary can online keep track of when a sub segment on level i
is no longer a candidate for being the sparse segment on level i. By the existence of the
sparse segments, a point in the insertion sequence is eventually reached which is at the end
of a segment on level K, and for which the corresponding path in the tree consists of nodes
representing segments which are still candidates for being sparse segments. The adversary
will make a query at this point.

The point in time where the adversary makes the query corresponds to a root-to-leaf path
v1, v2, . . . , vK in the tree view of the partitioning. The nodes in the path represents the base
parts of some segments. Except for the one in vK , the segments may not have been passed
completely, but we know that at most ewiδ/B I/Os have been made up to the current point
in the insertion sequence. As the adversary terminates the insertion process here, we will still
call these segments the sparse segments σ1, σ2, . . . , σK .

We will now describe how the adversary in an online fashion chooses the position of the
inserted elements in the order. The elements S0 = {x1, x2, . . . , xs0

} inserted during the base
segment at level zero are assigned the ordering x1 < x2 < . . . < xs0

. These will serve as
fixed points in the order, next to which the rest of the inserted elements are placed. In base
segments at level one, the adversary will make a sample of S0 and in the ordering place the
new elements next to the elements of the sample. In base segments at level two, the adversary
will use a sample of this sample, and so forth for higher levels.

More precisely, let S0 be the sample of the root of the tree representing the partitioning.
When the preorder traversal of the tree reaches a child v of the root, the adversary makes
a sample S′

v of S0 by including each element in S0 independently with probability p. The
expected value of |S′

v| is p|S0| = ps0, so by Chernoff bounds, |S′
v| ≥ ps0/4 with very high

probability, i.e. the probability of failure is exponentially decreasing in the expected value. If
failure occurs, the adversary gives up (remember, we only have to prove a non-zero probability
of the adversary succeeding). Otherwise, the adversary sets Sv equal to the first ps0/4 = s1

elements of S′
v. The elements inserted during the base segment of v are associated arbitrarily

in a one-to-one fashion to the elements of Sv, and if y is associated to xi, then y is placed as
the current predecessor of xi in the order.

For a node v on level two, consider the point in time where the preorder traversal reaches
v, i.e. the point in the insertion sequence at the start of the base segment in v. Let xi be a
member of the sample Su at the parent u of v. We say that xi is alive if no copy of xi has
been touched by an I/O in the time interval from the start of the segment at u to the start
of the segment of v. Otherwise, we say it has been killed. Here, we for the moment assume
that all elements are in external memory, and later take the effect of internal memory into
account.

Consider a block in external memory, at the point in time where the insertion sequence
reaches the start of the segment at u. It holds at most copies of B different elements from
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the sample at the parent of u (the root). Each of these were sampled with probability p to
produce the sample at u. Hence, the expected number of elements killed by an I/O touching
this block is at most Bp. By the assumption B ≥ δ log3 N , we have Bp ≥ (log N)/e. By
Chernoff bounds, the probability that the number of elements killed is more than a constant
factor from Bp is exponentially decreasing in Bp. Hence, this probability is less than 1/Nα,
where the value of α may be varied by changing constants in our setup. The algorithm in total
makes at most δN/B I/Os, which by the assumption B ≥ δ log3 N is less than N . Hence,
the probability that no block can kill more than a constant factor times Bp is 1/Nα−1. If
the segment at u is still a candidate for being σ1, the number of I/Os made in it so far is
bounded by ew1δ/B, as seen above. In that case, the number of elements in Su which is not
alive at the start of the segment at v is at most a constant times ew1(δ/B)Bp = w1/ log2 N .
As w1/ log N = s1, the fraction of Su killed is vanishing. Hence, the adversary samples all
live elements of Su with probability p, and as before is with high probability able to produce
a reduced sample Sv of size s2. The elements inserted during the base segment of v are
associated in a one-to-one fashion to the elements of Sv, and if y is associated to xi, then y is
placed as the current predecessor of the element of the base segment of u which is associated
to xi. If the segment at u is no longer a candidate, the adversary has no use for the ordering
of the elements inserted during the the rest of the preorder traversal of the subtree rooted
at u, and simply sets their order to ∞, i.e. makes them all new largest elements during that
part of the traversal (no sampling occurs).

The above behavior of the adversary happens inductively: When the preorder traversal
reaches a node v, where all ancestors in the tree are still candidates for being the sparse
segments, it samples each live element xi of the sample Su at its parent u with probability p.
The term alive is extended to mean that for no ancestor z of u has any copy of the element
in the base segment of z which is associated with xi been touched by an I/O. Since xi was
alive when it was sampled at u, any touching has been done since the start of the segment at
u. Hence, an argument analogous to the level two case above applies.

There are at most N nodes in the tree. We proved that at each node, the probability that
the sample will make it possible for the algorithm to kill too many elements from the sample
is at most 1/Nα−1. The algorithm can in the worst case force the adversary to move through
all nodes of the tree by deciding which segments are the sparse segments. The probability
that the adversary will fail at all is at most 1/Nα−2.

Setting up constants such that α > 2 shows that with non-zero probability, the adversary
will succeed with its strategy until the point it makes the query.

In the above, we have assumed that all elements were in external memory. The effect of
internal memory is to kill M extra in each sampling step. This can only remove M from the
sample for each level of the path, of which there are at most log N . If we choose a K such
that σK still contains at least N3/4 when not considering the effect of internal memory, the
assumption of N ≥ M2 means that there are still elements alive in the sample of σK .

It follows by induction on the levels that if the insertion point is in a base segment in a
node for which all ancestors are still candidates for being the sparse sets, then if the inserted
element y is associated to xi, then the set of elements in the ancestors which also are associated
to xi is a set of consecutive elements in the current order.

In particular, for the at least one element y alive in σK when the adversary makes the
query, the set S of all elements in ancestors which are associated to the same xi as y is a set
of consecutive elements in the order. By the definition of being alive, for no pair of elements
in S does it hold that they have been compared or can reside in the same block (since they
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have not been touched by an I/O). Hence, S is a set of size K fulfilling the assumptions in
Lemma 3.

We must choose K such that sK > N3/4. As si = (p/4)iN/ log N , we can choose K =
Θ(log4/p N) = Θ(logδ log2 N N). As N ≥ M2, we can substitute N/M for N . 2

3 Upper bounds

Here we discuss various upper bounds for external memory dictionaries. The main purpose of
these constructions is to show that the lower bounds in Theorem 1 are asymptotically tight
for a wide range of parameters.

3.1 B-trees

A common solution for maintaining a dictionary in external memory is to use a B-tree [8].
A B-tree is a multi-way tree where each leaf stores O(B) elements, internal nodes (except
the root) have degree Θ(B), and all leaves have equal depth. Each internal node is stored in
O(1) blocks and consists of pointers to the children and appropriate search keys to guide the
queries. The degree bound of a B-tree implies that the height is O(logB N), and that queries
and updates can be done with O(logB N) I/Os [8].

By maintaining the topmost O(M) elements of a B-tree in internal memory, updates and

queries can be performed in O
(

logB
N
M

)

I/Os: The topmost O(M) elements will be stored

at levels 0, 1, . . . , ℓ, where all of levels 0, 1, . . . , ℓ − 1 can be placed in internal memory. Level
ℓ + 1 contains Ω(M) nodes, i.e. at least one subtree rooted at level ℓ + 1 has size O( N

M ) and
height O(logB

N
M ). It follows that the B-tree has height ℓ + O(logB

N
M ) and queries require

O(1 + logB
N
M ) I/Os. By Lemma 1, this query time is optimal.

3.2 Buffer trees

The buffer trees of Arge [2] are a variant of B-trees where each internal node has de-
gree Θ(M/B) and each leaf stores O(M) elements. Furthermore each internal node has
a buffer of size O(M) containing delayed operations to be propagated down in the subtree
rooted at the node. We refer the reader to [2] for a detailed treatment of buffer trees.

Buffer trees are designed to perform offline queries and updates efficiently. Used in an
online setting, buffer trees support N updates with O(Sort(N)) I/Os, as argued by Arge.
Online queries can be supported in O(M

B logM/B
N
M ) I/Os, since all buffers along one root-to-

leaf path must be examined when performing a query. While the I/O bound for updates is
significantly better than for B-trees, namely a factor B · logB

M
B , online queries are a factor

M
B / logB

M
B slower.

3.3 Truncated buffer trees

In the following, we outline a construction which achieves an upper bound corresponding to
Lemma 2. The construction is basically a truncated version of buffer trees. Assume that N
insertions perform O(δ ·N/B) I/Os. Instead of maintaining all O(logM/B

N
M ) levels of a buffer

tree, we only maintain the topmost δ levels, i.e. all nodes have degree O(M/B) and a buffer
of size O(M). Instead of maintaining levels δ + 1, δ + 2, . . . of a buffer tree, we associate a
bucket to each node at level δ. Whenever there is a buffer overflow at a node at level δ, the
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content of the buffer is sorted and moved to the bucket. Buckets store O(N/(M
B )δ) elements.

Whenever a bucket overflows, we split the bucket in a linear number of I/Os by applying
an optimal external memory selection algorithm [9, 18], and insert the new bucket in the
topmost levels of the tree similarly to a leaf split in a buffer tree. Performing N insertions
then requires O(δ · N/B) I/Os, and queries require O(δ · M/B) I/Os plus the I/Os required
to scan a bucket.

Since a bucket is formed by iteratively appending a sorted sequence of M elements (for
each buffer overflow), we can adopt the ideas of fractional cascading [12, 13] to avoid scanning
the complete bucket. Assume that a bucket consists of S1∪ · · · ∪Sk, where each Si is a sorted
sequence resulting of a buffer overflow, i.e. |Si| = M . Instead of only storing S1, . . . , Sk, we
store slightly larger sets S̄1, . . . , S̄k where S̄1 = S1 and S̄i consists of Si merged with every
second element of S̄i−1, for i ≥ 2. By induction S̄i ≤ 2M . With every element in S̄i we store
a pointer to its position in S̄i−1 or its predecessor or successor in S̄i−1.

To search for an element in the bucket we first search for its predecessor or succes-
sor in S̄k using O(M/B) I/Os. We can now use the stored pointers to find its posi-
tion in S̄k−1, S̄k−2, . . . , S̄k only spending O(1) I/Os for each set S̄i. The total time for a
query becomes O(δ · M/B + N/(M(M/B)Ω(δ))), which for some c and N ≥ M(M/B)cδ is
O(N/(M(M/B)Ω(δ))).

Creating a new set S̄k+1 from Sk+1 and S̄k can be done by a linear scan using O(M/B)
I/Os. Splitting a bucket requires the above described bucket structure to be recomputed.
This can be performed in a linear number of I/Os by a scan over the two lists created by the
selection, i.e. N insertions still perform O(δ · M/B) I/Os.

3.4 B-trees with buffers

By adding buffers to B-trees and varying the degree, the amortized I/O bound for updates
can be improved significantly, without sacrificing the asymptotic query time of B-trees.

We consider the case where N updates are allowed to perform O(δ · N
B ) I/Os, for a

parameter log N < δ ≤ B log N . The structure we use is a B-tree of degree Θ(δ/ log N), i.e.
at tree where leaves store Θ(B) elements and internal nodes (except the root) have degree

Θ(δ/ log N). The resulting tree has height O
(

logδ/ log N
N
B

)

. Each node has a buffer that

is stored in O(1) blocks containing O(B) delayed updates to the subtree below the node.
Like in buffer trees, delayed updates in buffers are only propagated down whenever a buffer
overflows. When the buffer of a node overflows, there exists a child such that Ω((B log N)/δ)
elements can be moved from the buffer of the node to the buffer of the child. The remaining
elements stay in the buffer. This can then imply that all buffers are overflowing along a single
root-to-leaf path in the tree. When updates reach a leaf the tree is rebalanced like a buffer
tree [2].

Since the topmost O(M) elements can be kept in internal memory, as described above

for the case of B-trees, the result is a tree supporting queries with O
(

logδ/ log N
N
M

)

I/Os

and N updates with O(δ · N
B ) I/Os. The update bound follows from that there are at most

O(N/((B log N)/δ)) buffer overflows at each of the at most O(log N) levels of the tree, imply-
ing that there are at most O(log N · δN/(B log N)) = O(δ · N

B ) I/Os needed to handle buffer
overflows (like for buffer trees, the I/Os required for rebalancing the tree will be dominated
by the cost for handling buffer overflows). For δ ≥ log1+ε N the query bound is O(logδ

N
M ),

for any constant ε > 0.
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For δ = Bε log N , the resulting tree has degree O(Bε) and height O(1
ε logB N). It then

follows that queries require O(1
ε logB

N
M ) I/Os and B updates require amortized O(Bε

ε logB
N
M )

I/Os, which matches the query time of standard B-trees within a constant factor, but with
improved update bounds.
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