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In this paper, the red-blue pebble game is proposed to model the 

input-'output complexity of algorithms. Using the pebble game 

formulation, a number of  lower bound results for the I/O requirement 

are proven. For example, it is shown that to perform the n-point FF-F 

or the ordinary nxn matrix multiplication algorithm with O(S) memory, 

at least ~2(n log n/log S) or ~](n3/V'g'), respectively, time is needed for 

the 1/O. Similar results are obtained for algorithms for several other 

problems. All of the lower bounds presented are the best possible in 

the sense that they are achievable by certain decomposition schemes. 

Results of this paper may provide insight into the difficult task of  

balancing 1/O and computation in special-purpose system designs. For 

example, for the n-point FFI', the lower bound on I/O time hnplies 

that an S-point device achieving a speed-up ratio of  order log S over the 

conventional O(n log n) time implementation is all one can hope for. 

1. In t roduc t ion  
When a large computation is performed on a small device or 

memory, the computation must be decomposed into subcomputations. 

Executing subcomputations one at a time may reqnire a substantial 

;unount of I/O to store or retrieve intermediate results. Very often it is 

the I/O that dominates the speed of a computation. In fact, I/O is a 

typical bottleneck for performance at all levels of  a computer system. 

However, to the authors' knowledge the I/O problem was not 

previously modelled or studied in any systematic or abstract manner. 

Similar problems were studied only in a few isolated instances [2, 5]. 

This paper proposes a pebble game, called the red-blue pebble game, to 

model the problem, and presents a number of lower bound results for 

the 1/O requirement. All the lower bounds presented can be shown to 

be the best possible, in the sense that they are achieved by certain 
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decomposition schemes. The paper is organized according to the 

techniques used to derive these lower bounds. 

In Section 2 we formally define the pebble game and point out its 

relation to the I/O problem. In Section 3 we show that lower bounds 

tbr I/O in the pebble game can be established by studying the so-called 

S-partitioning problem. This is the key result of  the paper in the sense 

that it provides the basis for the derivation of all the lower bounds. In 

Section 4 we prove a lower bound for the FFT algorithm. Lower 

bounds in Section 5 arc based on the information speed function, which 

measures how fast the number of  vertices on which a given vertex 

"depends" can grow in a directed acyclic graph of  a certain type. We 

demonstrate the dramatic difference between the 1/O requirement for 

the odd-even transposition sorting network and that for the "snake- 

like" mesh graph. In contrast to the focus of  Section 5, Section 6 

studies independent computations for which there are very little 

information exchanges among vertices. ' lherc we obtain, for example, a 

lower bound for the ordinary matrix multiplication algorithm. In 

Section 7 we prove a general theorem on products of graphs. Using this 

theorem, one can determine the I/O required by a product of graphs, 

by examining only the individual graphs. A summary and concluding 

remarks are provided in Section 8. 

Results o f  this paper have the implication that they impose upper 

bounds on the maximum possible speed-up obtainable with a special- 

purpose hardware device. For example, our lower bound on the 1/O 

requirement for the n-point FF3' (Corollary 4.1) implies that an S-point 

device can achieve a speed-up ratio of at most O(log S) over the 
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conventional O(n log n) software implementation. Similarly, for matrix 

multiplication our result (Corollary 6.2) implies that a x/SxV'g" device 

can achieve a speed-up ratio of  at most O(V'S). 

2. The Red-Blue Pebble Game and Its Relation to 
the I / O  Problem 

As the usual pebble game (see, e.g. [4]), the red-blue pebble game is 

played on a directed acyclic graph. 1 At any point in the pebble game, 

some vertices of  the graph will have red pebbles, some will have blue 

pebbles, some will have both red and blue pebbles and the remainder 

will have no pebbles at all. Following the notation of  Pippenger [8], 

define a cop~guration as a pair of subsets of the vertices, one comprised 

of just the vertices having red pebbles, and the other just those having 

blue pebbles. Thus vertices belonging to the intersection of the two sets 

have both red and blue pebbles on them. The set of inputs (or outputs) 

of the graph is some designated set of vertices containing at least those 

vertices that have no predecessors (or successors, respectively). We 

assume that the set of inputs is disjoint from that of outputs. For all the 

examples discussed in the paper, only vertices that have no predecessors 

(or successors) are assumed to be inputs (or outputs, respectively), 

except in Section 7 where products of  graphs are considered. The 

initial (or terminal) configuration is one in which only inputs (or 

outputs, respectively) have pebbles, and they are all blue pebbles. The 

rules of the red-blue pebble game are as follows. 

R1. (Input) A red pebble may be placed on any vertex that has a 
blue pebble. 

R2. (Output) A blue pebble may be placed on any vertex that 
has a red pebble. 

R3. (Compute) If all the immediate predecessors of  a vertex 
have red pebbles, a red pebble may be placed on that 
vertex. 

R4. (Delete) A pebble (red or blue) may be removed from any 
vertex. 

A transition is an ordered pair of configurations, the second of which 

follows from the first according to one of the rules. A calculation is a 

sequence of configurations, each successive pair of which form a 

transition. A complete calculation is one that begins with the initial 

configuration and ends with the terminal configuration. 

A graph on which the red-blue pebble game is played can model a 

computation performed on a two-level memory structure, consisting of  

say, a fast memory and a slow memory. Vertices represent operations 

and their results. An edge from one vertex to another indicates that the 

result of  one operation is an operand of the other. An operation can be 

performed only if all the operands reside in the fast memory. Placing a 

red pebble using rule R3 corresponds to performing an operation and 

storing the result in the fast memory. Placing a blue pebble using rule 

1The red-blue pebble game discussed in this paper is not related in any way to the 
black-and-white pebble game introduced by Cook and Sethi [1]. 

R2 corresponds to storing a copy of a result (currently in the fast 

memory) into the slow memory, whereas placing a red pebble using R1 

corresponds to retrieving a copy of  a result (currently in the slow 

memory) into the fast memory, Removing a red or blue pebble using 

rule R4 means freeing a memory location in the fast or slow memory, 

respectively. The maximum allowable number of red or blue pebbles 

on the graph at any point in the game corresponds to the number of  

words available for use in the fast or slow memory, respectively. 

For the purpose of this paper, wc assume that the fast memory can 

hold only S words, where S is a constant, while the slow memory is 

arbitrarily large. Thus when the pebble game is played on a graph, at 

most S red pebbles, and any number of blue pebbles, can be on the 

graph at any time. For any given graph, we are interested in the 

minimum 1 /0  time Q, which is defined by 

Q = the minimum number of transitions according to role 
R1 or 1/2 required by any complete calculation. 

For the FFF graph, it is not difficult to prove the following upper 

bound result by the decomposition scheme illustrated in Figure 2-1. 

Theorem 2.1. For the n-point FVF graph, 

Q. log S = O(n log n). 

__N'x/". /i",, /: " 

. _ . - L - ~ Z  ~ \ \  \ \ Y O C / / / _  ; 
' ~ / \ \ \ \ × > C X Y J / _  ; 
- ~ / ~ /  \ - ~ X X ~ ~  

- - - \ . . .  ~ X C / ~ X X X Y ~ _ _ L  

~ / ' ~ \ X X / / / / X X \ \ ~  ; 
-~C,./_/- X ~ Y ~ / / / / \ \ \ ~ .  

>C,X'x,5/ / / \ \ ~ ; 
-. X > C / / \ ~ / /  \ ~ .  : 

(a) 

I I' 
S = 4  $ 

n = 1 6  

( log n = 4 ) 

log S = 2 

I .... 

1 
(b) 

Figure 2-1: (a) the 16-point FFT graph, and 
(b) decomposing the FFT graph, with n = 16 and S = 4. 
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However, for proving tight lower bounds on Q, we found that it was 

difficult to work with the red-blue pebble game directly• Instead we 

study the S-partitioning problem, which is a "static" problem in the 

sense that it does not apply rules on-the-fly as in a game. We show that 

lower bounds for the  S-partitioning problem can be translated into 

lower bounds on Q for the red-blue pebble game. 

3. The S-Partitioning Problem and the Key 
Lemma 

In this section we show that every complete calculation of  the red- 

blue pebble game on a directed acyclic graph defines a partition of  the 

graph• Let G = (V, E) be a directed acyclic graph where V and E are 

the vertex and edge sets of  G, respectively. A family of  subsets of  V, 

{Vt, V 2 . . . . .  Vh}, is called an S-partition of G for some positive integer 

S if the following four properties hold. 

P1. The Vi's arc disjoint and Oih=tVi = V. 

P2. For each V r 1 < i _< h, there exists a dominator set D i for V i 

that contains at most S vertices. (A dominator set for V. is 
1 

defined to be a set of  vertices in V such that every path from 
an input of  G to a vertex in V i contains some vertex in the 
set.) 

P3. For each V l < i < h the rail imum set M of V has at most 
S vert ces. (The minimum set of  V. ~s de~ned to be the set 
of  vertices in V i that do not have an~, sons belonging to V r) 

P4. There is no cyclic dependence among vertex sets in 
(A subset V is .said to depend on another {Vr V2' . . . .  Vh}" V 

subsct ¥ .  if there is an edge n E f r o m a v c r t c x i n  j t o a  
vertex inJVi.) 

Theorem 3.1. Let G = (V, E) be a directed acyclic graph. 
Any complete calculation of  the red-blue pebble game on 
G, using at most S red pebbles, is associated with a 2S- 
partition of  G such that 

S. h _> q >_. S- (h - 1), 

where q is the I /O time required by the complete 
calculation, and h is the number  of  vertex sets in the 2S- 
partition. 

Proof: Denote by C any complete calculation. We can 
divide C into a sequence of  h consecutive subcalculations, 
CI, C 2 . . . . .  C h, for some h such that in each C ,  l < i < h - l ,  
there are exactly S transitions using rule RI or ~,2,and~in C h 
there are no more than S such transitions. For i = 1 . . . . .  h, 
define V. to be the largest vertex set in which each vertex 
satisfies the following three properties. 

(i) During subcalculation C it has a red pebble placed 
on it using rule R1 or R3) 

(ii) At the end of  subcalculation C ,  it either has red 
pebbles, or blue pebbles that are'placed on it during 
Ci, or has a son in V i- 

(rio It does not bclong to any Vj with j < i. 

We claim that the family {V 1, V9. . . . . .  Vh} is a 2S-partition 
of G. First we show that property P1 holds. By (iii) it 
follows immediately that the Vi's are disjoint. In the 
following we show that every vertex in V belongs to some 
V i. Because calculation C is a complete calculation, every 

vertex must  have red pebbles placed on it at least once. 
Suppose that a vertex has a red or blue pebble on it at the 
end of  some subcalculation C. Then there must  exist a 
subcalculation Cj, j < i, during which the vertex has a red 
pebble placed on it t~ing rule i~.l or R3, and at the end of C, 
it either remains to have the red pebble or has a blue pebbld 
that is placed on it during Cj. ' lhis implies that the vertex 
belongs to V k for some k < j. All outputs have blue pebbles 
on them at the end of the last sobcalculation C~; thus they 
all belong to U,h.,V;. Consider now any"imtnediate 
predecessor u of  a~a=bu'tput v. Suppose that v belongs to V i. 
Then v cannot have any pebble on it at the beginning of C. 
and thus must have a red pebble placed on it using RJ 
during C i. This implies that we have one of  the following 
two cases: 

Case 1: i > 2 and u has a red or blue pebble on it 
at the end of  subcalculation Ci_ 1. qhen  by the 
reason stated above, u belongs to some Vj, 
j <i-1. 

Case 2: u has a red pebble placed on it using rule 
RI  or R3 during C.. If u does not belong to any 
V. with j < i, then [~ccause u has a son v in V i, u 
itJselfmust belong to V i. 

We have shown that all the immediate predecessors of  
outputs belong to u, h ,V.  Similarly, we can show that all 
the immediate prede'c--dssbrs of  the immediate predecessors 
of  outputs belong to U,h_,V,. Property P1 follows by 
induction. Nnte that botla-Ca~,e 1 and Case 2 above imply 

• that if V depends on V then j < i. Therefore there cannot 
be any cyclic dependence among V's.  and thus property 
P4 holds. For proving property P2 fo~ any V. 1 < i < h we 
cons=dcr two subsets of  V, V R and VBR, which are defined as 
follows. 

• V R consists of  those vertices that have red pebbles 
placed on them just before subcalculation C i begins. 

• VBR consists of  those vertices that have blue pebbles 
placed on them just before subcalculation C i begins 
and have red pebbles placed on them according to 
rule RI during C r 

It is easy to see that by property (i) in the definition of  V, 
V. O V~. forms a do,ninator set for V.. Since there can b~ 

K K . I 

at most ~ red pebbles on G at any ume, we have 

IVRI <_. S. 
The fact that at most S transitions can use rule R1 during C i 
implies that 

IV~RI _ S. 
Thus 

Iv R u VBRI < IVRI + IVBRI __. 2S. 
Wc have shown that {V , V 2 . . . . .  Vh} satisfies property P2. 
'l ')e proof of  property P3 is similar. By property (ii) in the 
definition of V i, we know that at the end of subcalculation 
C ,  every vertex in M,  the minimum set of  V., has red 
p~bblcs, or blue pebbles that arc placed on it c~uring C.. 
Since there can be at most S vertices having red pebble's 
placed on them at any time, and at most S vertices having 
blue pebbles placed on them during C t.be minimum set M. 

• 1 

can have at most 2S vertices. We have s aown that 
{V 1 V . . .  Vh} is a 2S-partition of  G. The theorem follows 

' . 2 '  " ' . . 

by noting that corresponding to each V, 1 <_ = _< h - l ,  exactly 
S transmons using R1 or R2 are performed and to V h, no 
more than S such transitions are performed. [] 
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Let 

P(S) = the minimum number of vertex sets that any S-partition 
of G must have. 

We have, by qlaeorem 3.1, the key lcmma of the paper: 

Lemma 3.1. For any directed acyclic graph G, the 
minimum I/O time satisfies 

Q .> s. (p(2s) - ~). 
Using this lemma, lower bounds for P can be translated immediately 

into lower bounds for Q. 

4 .  L o w e r  B o u n d s  f o r  t h e  F F T  C o m p u t a t i o n  

In this section we establish a lower bound on the I /O time Q for the 

n-point FF'F graph (see Figure 2-1(a)), by proving a lower bound on P. 

Define an S-dominatorpar/ition of  a graph G = (V, E) to be a family 

of subsets of  V, {V 1, V 2 . . . . .  Vh}. satisfying properties PI, P2 and P4 of 

an S-partition, but not necessarily property P3. Let 

PD(S)= the minimum number of vertex sets that any S- 
dominator partition of  G must have. 

Then clearly PD(S) < l)(S), since any S-partition is also an S-dominator 

partition. The following theorem establishes a lower bound on PD(S), 

and thus a lower bound on P(S). 

Theorem 4.1. Suppose that S _> 2. The minimum 
number of vertex sets in any S-dominator partition of  the n- 
point Fl-'r graph satisfies 

PD(S) = ~((n log n)/(S log S)). 

Pr : 
~lllCt: L h c r t :  ~trt.: ~1 total uf (}0, lug n) VCltlt:t:s in the n Jl(=illl I,'l,"r 

graph, it sttrlk:t:,~ t o  provt: theft any vertex set that ha~ a dumm~dor set 

or size i1() ln()lC than S ca=J hilvc ill lnost 2S lug S vcrticc~ (S _> 2). 
Wt: .q~ow this imhlctivcly. Wt: I)illtJt.)n the glltph into tlut:c paris, A, 
1}, a .d  (3. as shown in the Iigurc. The dominator is paltin(mcd into 

three parts, I) A, 1) H, and I) C, which have OA, dll, d C elements 
rcspcdv¢ly. W.I.u.g. wc can as.~tmlt: that d A < dll. The set U is 

pmt=tloncd into three parts, UA, l..lll, U C, which have u A, Ull, u C 
clt:mcnLs rcspccivcly. If u C > d c + 2 d  A, then t:Jtht:~ thole air: mole 
than d A clclncnts of UC\I)  C il~ tht: UllpCr half nr part C r)i there a~c 
mole dmn d A clcnlcnts uf U(,\I) C ill tilt: luwt:r half uf I)arl C. In 
either case, there arc inure titan d A mdcl)c~,lcnt paths ht)ln tile 

A 
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lUl E 2(s-tiC) I,,g (~.-ckj ~ ~1(. 
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[] 

l}y l.emma 3.1 we have the following lower bound result. 

Corollary 4.1. For the n-point F F r  graph, 

Q. log S = f~(n log n). 

Thus the I /O time for the F'FI" when executed on a special-purpose 

device with S words of mcmol3' is at least f~(n log n/log S), implying 

that the maximum-possible speed-up ratio over the usual O(n log n) 

implementation is at most O(log S). 'this upper bound on the speed-up 

ratio holds no matter how fast the the device may be, since it is a 

consequence of  the I /O consideration. In [7] a systolic device that 

distributes S words of memory in a linear processor array and achieves 

O(log S) speed-up for the FFF is described. 

5 .  L o w e r  B o u n d s  B a s e d  on  I n f o r m a t i o n  S p e e d  

F u n c t i o n s  

Many "regular" graphs G = (V, E) have the property that all inputs 

can reach all outputs through vertex-disjoint paths. In the proof of  

Theorem 4.1 we have already noted that the FFT graph has this 

property. In the current section, this type of graph will be considered. 

The vertex-disjoint paths from inputs to outputs will be called lines, for 

simplicity. We say that the information speed function is fl(F(d)) if for 

any two vertices u, v on the same line that are at least d apart, there are 

F(d) vertices in the graph satisfying the following two properties. 

F1. None of these vertices belongs to the same line. 

F2. Each of  these vertices belongs to a path connecting u and v. 

The following theorem shows that lower bounds on Q can be obtained 

from lower bounds on F or upper bounds on F "1. 

Theorem 5.1. For any graph where all inputs can reach 
all outputs through vertex-disjoint paths, if the information 
speed function is f~(F(d)) where F is monotonically 
increasing and F 1 exists, then 

Q- F I ( s )  = f~(L), 
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where L is the total number of  verticcs on the vertex-disjoint 
paths or the lines. 

Proof: As in the proofofq]aeorem 4.1, we will establish 

PD(S) = ~(L / S. FI(S)) 

by showing that any vertex set U in a S-dominator partition 
can have at most O(S.FI(S))  vertices on the lines. Note 
that vertices in U can be on at most S lines, since the lines 
are vertex-disjoint and U has a dominator set of  size at most 
S. The theorem follows from the claim that on any line there 
can be at most Fq(S) + 1 vertices in U. Suppose that the 
claim is false for some line. Then on this line there are two 
vertices u and v in U that are F t ( s )  + 1 apart. 
Coasequently, there are F(F-J(S) + 1) vertices satisfying 
properties F1 and 1-2. If any of these vertices belongs to 
another vertex set U' in the S-dominator partition, then by 
property F2 there will be a cyclic dependence among vertex 
sets in the S-dominator partition, violating property P4 in 
Section 3. Therefore all of  these F (FI ( s )  + 1) vertices, 
which form a set of more than S vertices, bchmg to U, and 
by property FI the~, belong to distinct lines. 'llfis is a 
contradiction, since vcrticcs in U can be on at most S lines. 
[] 

Corollary 5.1. For the odd-even transposition sorting 
network (see, e.g., [6]) for sorting n-element runs, 

Q • S = ~2(u2). 

Proof: Consider the sub-network that includes only half 
of  the inputs and outputs, as shown in Figure 5-1. It is easy 
to see that the sub-network has n/2  lines with L = O(n 2) and 
F(d)= d. [] 

_ x  x 

x x )< 
Figure 5-1: The odd-evcn transposition sorting work, 

whcre each "o" is a comparator. 

Corollary 5.2. For the mxn snake-like directed mesh as 
shown in Figure 5-2, 

Q = [2(ran), 

for any S < m. 

Proof: Consider as lines all the horizontal vertex-disjoint 
paths from inputs to outputs. It is easy to see that we can 
assume I:(d) = n for any d >_ 2. l_ct U bc any vertex set in an 
S-dominator partition of the graph. As in the proof of 
Theorem 5.1. we note that vertices in U can be on at most S 
line,,. ,~,,J that on any line there can be at most two vertices 
in t : ' , ,  refurc, U can have at most O(S) vcrticcs, and thus 
PI)(~ ,.,r P(S)) = ft(mn/S). lq]e corollary follows fl'om 
l.cmm:l 3.1. [] 

.J 

O 

Figure 5-2: The snake-like graph. 

6 .  I n d e p e n d e n t  E v a l u a t i o n  of  M u l t i v a r i a t e  

Exp  r e s s i o n s  

Given values for indeterminates x 1 . . . . .  Xn, the problem is to evaluate 

multivariate polynomial exprcssions Yi = Yi(Xl . . . . .  Xn), i = 1, 2 . . . . .  m. 

Assume that each Yi is a sum of at least two terms and in each Yi' all the 

terms are distinct and have degrees _< D. An example of such a problem 

is matrix multiplication, where 1) = 2. An independent evaluation of Yi'S 

is an algorithm or a directed acyclic graph with inputs xi's and outputs 

Yi'S satisfying the following properties. 

El. In the evaluation of each y, all (and only) those product 
terms which appear in the ft'~lly distributcd expression of Yi 
are computed first by multiplications, and then using these 
product terms Yi is formed through a summa/ion tree by 
additions or subtractions only. In particular, no 
multiplication can be performed after an addition or 
subtraction. 

E2. Internal vertex sets of  the summation trees for all the Yi'S are 
disjoint from each other, that is, none of the internal 
vertices in one tree appears as an internal vertex in another. 
(l'hus, evaluations of Yi'S arc independent flom each odaer.) 

Let X be any set of  xi's or products in xi's. For any output Yi' define 

h(y i, X) as the number of  terms in Yi that can be obtained from X 

directly or by multiplying elements in X. For any Y c:_ {Yl . . . . .  ym} we 

further define 

h(Y, X) = ~,,y~yh(y, X). 

= 4 y = {Yl' Y2 }' and For example, if yl = XlX 2 + x~xl, Y2 x~x~ + XlX3, 
2 2 

X = {xl, x2, x3}, then h(y l, X) = 1, h(y 2, X) = 2, and h(Y, X) = 3. Define 

the S-combination number to be 

H(S) = max{h(Y, X) [ IVl _< s, Ixl _< s}. 
We have the following result. 

Theorem 6.1. For any independent evaluation of  a 
multivariate expression of  degree _< D, 

Q-(D.  r l (S)/S+D) = ~(Ivl) ,  

where IV[ is the total number of  vertices in the graph 
corresponding to the independent evaluation. 

Proof: Let {V t, V 2, . . . .  Vh} be an S-partition of  the 
graph associated with the independent evaluation. We shall 
prove the following. 

(i) Each V. 1 < i < h, can have at most H(S) + 2S 
internal vertices. "(An internal vertex is defined to be 
a vertex bch)nging to the internal vertex set of  some 
summation tree.) 
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(ii) There are at least [V]/(2D) internal vertices in the 
graph. 

By property P3 in the definition of S-partition, the 
minimum set ofV i has at most S vertices. This implies that 
V can have nonempty intersections with internal vertex sets 
el ~ at most S summation trees, since by F2 each of  such 
intersections has at least one distinct vertex in the minimum 
set. "llms to bet nd the nt nbcr of  internal vertices that V. 

' , , 1 
can have, we need only consider SUmlnatlon trees for S Yi'S. 
By property P2 of S-partition. wc note that V. has a 
dominator set I). of size no more than S. By the d~finition 
of H(S). from l))one can form at most H(S) terms appearing 
m the S yi's. lhcse terms, together with possthle vemces in 
D that are already internal vertices, can generate at most 
It/S) + 2S internal vertices. Wc have shown (i). To prove 
(ii), let A denote the total number of  internal vertices in the 
graph corresponding to the independent evaluation. Then 
the total number of  external vertices, or terms, in all the 
summation trees, is no greater than 2A. l~ach product term 
requires at most 1) - 1 multiplications; thus the total 
number of vertices IVl in the graph satisfies: 

I v] < 2 A ( D -  1) + a < 2AD. 

This proves (ii). It follows from (i) and (ii) that 

h _> (IVI/2D) /(lJ(S) + 2s), 

and by 1.emma 3.1, 

Q = g(S.  Iv[ / (D.(H(2S)+2S))), 

or 

Q. (D.H(S)/S+D) = f~([Vl). [] 

Corollary 6.1. For the ordinary matrix-vector 
multiplication algorithm for multiplying an mxn matrix with 
an n-vector, 

Q. S = 9(mn), 

assuming that entries in the matrix can be generated on-the- 
fly and thus they are not required to be input. 

Proof: The corollary follows immediately by noting that 
H(S) = O(S 2) and D = 1. [] 

Lemma 6.1. For matrix-matrix multiplication, 

t l (S )  = O(S3n). 

Proof: Consider the matrix multiplication, AB = C, Let 
W be any set of entries in A and B, with IWI < S. Partition 
A into two classes as follows. Class A~ consists of  all rows in 
A, each of which has at least V'S entr~ies in W, and class A~t 
consists of  the rest of  rows in A. Accordingly, matrix C is 
partitioned into two blocks A~B and A'dB. Since A.a_can , ' 0 . 
have v ' g  at most rows, and since in any row of AAB an 
entry in B can appear at most once (and B has no more ~ than 
S entries in W), the maximum number of  terms in AdB that 
can be obtained by multiplying elements in W is at most 
S .V 'S  = S 3/2. For terms in A',B each of them can be 

• . , Q , . 

obta,ned by multlplymg at most V S  elements m W, since 
each row in A d has at most Vff  elements in W. Therefore, 
in any subset of  A'.B having no more than S elements the 

• I 1  J 

maximum number o f  terms that can be obtained by 
multiplying elements in W is at most S' V'-ff = S 3/2. [] 

By Theorem 6.1 and [.emma 6.1, we have the following result. 

Corollary 6.2. For the ordinary matrix-matrix 
multiplication algorithm for multiplying mxk and kxn 
matrices, 

Q" x/ff = ~2(mkn). 

7. Lower Bounds for Products of Graphs 
As demonstrated in Sections 4 and 5, one can establish lower bounds 

on Q by proving upper bounds on the size of  any vertex set that has a 

dominator set of  size at most S. This is equivalent to proving lower 

bounds on 

D(n) = the minimum size of a dominator set for any vertex set 
having no less than n vertices. 

In this section we show that lower bounds on D(n) for the product of  

two graphs can be obtained from lower bounds on D(n) for individual 

graphs. (See. for example, [3] for the definition of the product o f  two 

graphs.) Let GIxG 2 be the product o f G  1 and G 2. A vertex (v r v2) ¢ 

GlxG 2 is defined to be an input (or output) of  GlXG 2 if v I is an input 

o fG  t or v 2 is an input of  G 2, (or, respectively, v 1 is an output o fG  t and 

v 2 is an output of  G2.) Of  course D(n) depends on the graph on which 

it defines; we use Dl(n), D2(n) and D(n) to distinguish the case when 

the graph is G 1, G 2 and G respectively. 

Lemma 7.1. If f is a positive function such that f(x)/x is 

non-increasing, Y.a i _> T1T 2, and 0 < a i < T 2, then 

Ef~a i) _> "rlf(T2). 
Proof: 

~ f ( a  i) > ~aif(T2)/T 2 > Tlf(T2). [] 

Theorem 7.1. (The Production Theorem for Dominators) 
I f D ( n )  = f~(di(n)) where d i = 1 2 is a positive non- 

. 1' ', ' ' 
decreasing function such that di(x)/x as non-increasing, then 

D(nln2) = f~(min{n 1 • d2(n2), n2"dl(nl)})- 

Proof: Let W be a subset in VlXV 2 of size nln  2. Define 

U.  = the set of  vertices P2 in V 2 for which 
z iW n (Vlx{p2}) I > n r 

and 

U'  2 = V 2 - U 2. 

Clearly, we have IU21 < n 2 giving 

IW n ({pl}xU2)l < n 2, 
and for p E U' 2, 

I W o (V 1 x {p2})l < n 1. 

One of the following two cases must hold. 

Case 1. [W n (VlXU2) [ > nln2/2. 

Let Pl he any vertex in V r Any dominator set for 
W n ({p~}xV2) is of  size at least d2([W n ({pl}xV2)[). Thus 
the size o-f any-dominator set for W satisfies: 

D(nln2) >_ "5~.plCVld2(IW o ({pl}xV2)l). 

Since U.  is a subset of  V 2 and d 2 is a nondecreasing 
• Z 

funcUon, we have 

D(nln2) _> Zpl~vld2(IW n ({Pl}XU2)l). 

By the definition of  Case 1, 

~']~pIEV 1 I W  n ( { p l } x U 2 ) l  > n l n 2 / 2 .  

(4) 

( s )  

(6)  
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By I.emma 7.1, it follows from (4) and (6) that 

]~plcV t d2(lW n ({pl}xU2)[)_> nl" d2(n2)/2, 
implying 

D(nln 2) >_ nl 'd2(n2)/2. 

i 

Case 2. IW n (VtxU2) I > nln2/2. 

Let p,  be any vertex in V 2. Any dominator set for 
W o (V ~{p }) is of size at least d (IW o (Vlx{ p })1) Thus 

1 2 . 2 " 
the size of any dominator set for ~ satisfies: 

D(nln2) > ~.P2¢V 2 dt([W N (Vlx{P2}) [. 
Since U~ is a subset of V 2, we have 

D(nln2) > "Y~P2eU' 2 dl(lW f'l (Vtx{P2})[). 
By the definition of Case 2, 

Y.P2¢u2IW n (V1x{P2}) I _> nln2/2, 
By Lemma 7.1, it follows from (5) and (7) that 

Y.P2~u,2dl(lW n (V1x{P2}) l) >_ n 2. dl(nl)/2, 
implying 

I)(nln 2) > n2.dl(nl)/2.  

(7) 

[]  

Let L 1 = {V, E} be a directed line where V = {1, 2 . . . . .  m}, and 

E = {(i, i+l)  I i = 1, 2 ..... m- l} ,  with unique input "1" and output "m." 

We have D L (n) = 1 for any n < m. See Figure 7-1. 

Let 1.2 = LlX]T Then ' 

D 1 ( n  2) = ~2(min{1 .n, 1. n}), 

giving 

D L (n 2) = O(n). 
2 

Let I., 3 = 1,2xl T Then 

DL3(n3 ) = f l(min{n'n,  n 2-1}), 

giving 

1-) L (n 3) = O(n2). 

Let L d = 3L 1 x . . . x L 1, that is, L d is the product of d Ll's. Then 

similarly, 

DLd(nd ) = O(nd-l). (8) 

O =e ~ :  == =e L 1 

r 

L 1 L 2 = .L 1 x L  1 

Figure 7-1: The product of two directed lines, where 
each "o" represents an input. 

Corollary 7.1. For the product L d with d >_ 2, 
Q. sl/(d-l) = fl(md). 

P r o o f :  By (8), the maximum size of any vertex set that 
has a dominator set of size at most S is o(sd/(d-1)). Since 
there are a total o fm  d vertices in L d, we have 

P(S) = ~(md/Sd/(d-1)), 

by which the Corollary follows from Lemma 3.1. []  

We have a similar product theorem for separators of a graph. For the 

special case L d, bounds on the sizes of minimum separators have been 

established by A. L. Rosenberg [9]. 

8.  S u m m a r y  a n d  C o n c l u d i n g  R e m a r k s  

To compare 1/O requirements for different algorithms, we propose 

the use of the following measure. The decomposability factor X(S) of  an 

algorithm or graph G = (V, E) is defined to be the ratio between the 

sequential time of the algorithm, that is I% and the minimum I/O time 

Q when assuming S red pebbles are used. Thus, 

O. x(s) ° I% 
For a given algorithm, IV I is fixed. We see that the larger the X(S) is, 

the less the I /O is required. A summary of results of this paper on 

specific algorithms or graphs, expressed in terms of bounds on h(S), is 

as follows: 

Algorithms o r  G r a p h s  ~.(S) 

Matrix-vector multiplication O(S) 
(ordinary algorithm) 

Odd-even transposition sort O(S) 
Matrix-matrix multiplication O(V-g') 

(ordinary algorithm) 
L d, (d _> 2) O(S 1/(a-D) 
~ e  FFF O(log S) 
Snake-like mesh O(1) 

It is also possible to establish upper bounds on X(S) for a class of 

algorithms for solving a given problem. For example, it has been 

shown recently that for any sorting algorithm based on the decision tree 

model, X(S) = a").(log S) [10]. 

The problem of establishing bounds on ~.(S) is closely related to 

several other graph partitioning problems. We intend to work on some 

of these partitioning problems in the future, and show how they are 

related to the I /O complexity problem addressed in this paper. 
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