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A Tight I/O Lower Bound for Matrix Multiplication
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A tight lower bound for required I/O when computing an ordinary matrix-matrix multiplication on a processor with two

layers of memory is established. Prior work obtained weaker lower bounds by reasoning about the number of segments

needed to performC := AB, for distinct matricesA, B, andC , where each segment is a series of operations involvingM reads

and writes to and from fast memory, andM is the size of fast memory. A lower bound on the number of segments was then

determined by obtaining an upper bound on the number of elementary multiplications performed per segment. �is paper

follows the same high level approach, but improves the lower bound by (1) transforming algorithms for MMM so that they

perform all computation via fused multiply-add instructions (FMAs) and using this to reason about only the cost associated

with reading the matrices, and (2) decoupling the per-segment I/O cost from the size of fast memory. For n × n matrices,

the lower bound’s leading-order term is 2n3/
√
M . A theoretical algorithm whose leading terms a�ains this is introduced. To

what extent the state-of-the-art Goto’s Algorithm a�ains the lower bound is discussed.
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1 INTRODUCTION

Matrix-matrix multiplication (MMM) is an important practical operation fromwhich many applications demand
high performance. A limiting factor on what fraction of theoretical peak this operation can a�ain is the input-
output (I/O) operations (data movements between memory layers) that are incurred. For this reason, lower
bounds on the I/O requirements are of great interest, especially as the ratio between the speed of I/O and floating
point computation continues to deteriorate.

To derive lower bounds, we start with the assumption that a processor has two layers of memory hierar-
chy, a small fast memory and large slow memory. �e fast and slow memory could represent the cache(s) and
main memory of a processor, respectively, or main memory and disk. Practical implementations minimize the
movement of data between these (and more) layers.

In this paper, we only consider conventional or ordinary matrix-matrix multiplication whereC := AB, requir-
ingmnk elementary multiplications andmn (k − 1) elementary additions. �e quantitiesm, n, and k are always
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used to refer to the sizes of C , A, and B, which arem × n,m × k , and k × n, respectively. �e quantity M always
refers to the capacity of fast memory, in elements. We assume that A, B, and C are distinct matrices.

�is paper advances upon the state-of-the-art to obtain the exact coefficient for the leading term of I/O lower
bound. �e improvement over prior lower bounds comes mainly from two contributions.

(1) It shows that any algorithm for MMM can be transformed into one that casts all computation in terms
of FMA instructions. �is gives the same benefit as in [12], but without requiring that absolutely all
computation be performed via FMA instructions.

(2) Prior works [12, 16, 17] have obtained lower bounds on MMM by breaking computation into segments
of I/O cost equal to the capacity of fast memory. �is present paper shows that I/O lower bounds can be
improved by turning this I/O cost per segment into a free variable.

�is paper proceeds to discuses algorithms that a�ain the lower bound when ignoring lower ordered terms,
showing that the leading term on the lower bound is sharp. It shows that the practical algorithm in Goto and
van de Geijn [14] gets close to the lower bound for some levels of cache but not others. Together, this advances
the understanding of the limits on performance for this operation.

2 PROBLEM DEFINITION AND MODEL OF COMPUTATION

In this section, we give a formal definition and model of computation for MMM for which we will derive I/O
lower bounds. We write ai j or bi j to denote the element in the ith row and jth column of the matrix A or B

respectively, and we write ci j to denote a nontrivial partial sum of the element in the ith row and jth column of
the matrix C .

2.1 Problem Definition

We first begin by defining the operations of interest and the elementary instructions that are used to create
algorithms to implement them. In order to balance the number of elementary multiplication and elementary
additions, work with the matrix-matrix multiplication and accumulation (MMMA) operation instead.

Definition 2.1 (MMMA). An MMMA operation with problem size m,n,k computes C += AB. with each ele-
mentary multiplication ci jp = aipbpj performed explicitly, and ci j is formed by summing over ci jp for all p, plus
the initial ci j . �ere are exactlymnk distinct elementary multiplications in an MMMA operation.

�is only defines what elementary computations must be performed during an MMMA operation, and does
not impose any requirement on how they are computed. Most notably, this definition allows the creation of
intermediate quantities that are later summed to form an element of C .

2.2 Model of Computation

We now introduce five types of instructions that operate on variables. A variable is an element of A, B or C , or
partial sum of an element of C , i.e. a summation over ci jp for some but not all p.

(1) Read. Move variable from slow memory into fast memory.
(2) Write. Move a variable from fast memory to slow memory.
(3) Multiply. If aip and bpj are in fast memory, multiply them. �is creates a new variable ci jp in fast

memory. �ere must be space in fast memory to accommodate ci jp .
(4) Add. If c1 and c2 are in fast memory, add them, storing the result in the variable c1.
(5) FMA. If variables aip , bpj and ci j are in fast memory, multiply aip and bpj and add them to ci j , without

requiring any additional space in fast memory.
(6) Delete. Delete a variable so that it is no longer in fast memory.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



A Tight I/O Lower Bound for Matrix Multiplication • 1:3

With this, an algorithm for MMMA is a sequence of the above types of instructions that performs an MMMA
operation. �e read cost of an algorithm is the total number of read instructions. �e write cost is the total
number of write instructions, and the I/O cost of an algorithm is the sum of its read and write costs.

In our model of computation, we allow caches to be warm, i.e. at the beginning and at the end of computation,
fast memory can contain whatever elements of A, B, and C .

We assume that any algorithm for MMMA does not perform any computation more than once, but without
any further restriction on generality. �e only computation modeled by our MMMA algorithms are addition
and multiplication, and the result of each multiplication and addition only contributes to a single element of the
output. If any value is ever computed twice, one of the results can be discarded.

3 FINDING THE I/O LOWER BOUND

We now use our definition and model of computation to obtain a lower bound on the number of reads that any
algorithm for MMMA must perform. �e fact that Definition 2.1 allows the creation of intermediate quantities
makes it difficult to reason about how many times elements ofC must be read from fast memory. To address this
difficulty we first transform algorithms for MMMA such that all computation is performed via FMAs, taking
an element each of A, B, and C as inputs. We then place a lower bound on the read cost on the transformed
algorithms.

Lemma 3.1. Given any algorithm for MMMA, there exists a valid algorithm for MMMA where all computation

is performed viamnk FMA instructions of the form ci j += aipbpj , no variables are created that store intermediate

quantities of elements of C , and the number of read instructions in the second algorithm is at most the number of

read instructions in the first.

Proof. Consider an algorithm for MMMA where there exists a multiplication instruction whose output is
not immediately added to ci j , where ci j is the variable that will ultimately accumulate the final result of an
element of C . If there are any temporary variables representing partial sums of that same element, one of them
is directly added to ci j . �en the algorithm contains a subsequence of instructions startingwith themultiplication
ci jp := aipbpj and ending with ci j += ci jp . �e following a transformation eliminates the temporary variable
ci jp .

(1) If in the original algorithm ci j is not in fast memory when the multiplication instruction occurs, insert
a read instruction to move ci j into fast memory immediately before the multiplication instruction. �is
increases the number of read instructions by one if and only if ci j was not already in fast memory. �is
read instruction requires space in fast memory for a single element, but there is such a space because
the multiplication instruction in the original algorithm requires it.

(2) Replace ci jp := aipbpj with ci j += aipbpj .
(3) When the addition occurs in the original algorithm, both ci jp and ci j must be in fast memory. Because

of this, if ci j was not in fast memory when the multiplication occurred, there exists at least one read
instruction that loads it into fast memory between the multiplication instruction and the addition in-
struction. One of these is redundant, so delete the latest instruction that read either ci jp or ci j into fast
memory between the multiplication instruction and the addition instruction.

(4) Remove the addition instruction ci j += aipbpj .
(5) Remove any delete instructions referencing ci jp as the variable never exists in the transformed algorithm.
(6) Replace any occurrences of ci jp in any computation instructions in the algorithm with ci j .
(7) Finally we modify any read and write instructions to ensure that ci j is in fast memory in the transformed

algorithm whenever ci jp is in fast memory in the original algorithm. We inspect the original algorithm
for contiguous subsequences during which both ci j and ci jp are both in fast memory (ignoring the subse-
quence beginning with the multiplication instruction that creates ci jp , which we have already handled).
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Each begins with a read instruction reading the second of the two variables and ends with a write in-
struction writing the first of the two. Delete those two instructions, and replace all other read and write
instructions that read and write ci jp with instructions that read and write ci j .

�e transformation may add a single read instruction, but if it does so, the transformation deletes one other
read instruction and so the total number read instructions is unchanged. �e transformation does not affect the
number of writes. At no point does the transformation increase the footprint of the algorithm on fast memory.
Finally, the algorithm still correctly performs an MMMA operation. Whenever ci jp is used as an accumulator,
ci j is used instead, and ci j is in fast memory in the transformed algorithm whenever ci jp is in fast memory in the
original algorithm, so it is always valid to reference it. A�er the transformation is applied, it can be successively
applied to every multiplication so that all computation is performed via FMA instructions. �

Wefirst break the computation into segments, where we know the number of read instructions in each segment.
�en a lower bound on the number of reads can be found via a lower bound on the number of segments.

Definition 3.2 (Segment). Divide an MMMA algorithm into contiguous subsequences such that the subse-
quences are adjoining, and each subsequence but perhaps the last one has exactly R read instructions. �en
the subsequences are called segments of read cost R.

Lemma 3.3. Let FM+R be an upper bound on the number of distinct FMA instructions executed during any segment

of read cost R in any MMMA algorithm. �en any MMMA algorithm must have a total read cost of at least

R

(
mnk

FM+R
− 1

)
.

Proof. By Lemma 3.1 any MMMA algorithm can be transformed into an algorithm with the same read cost
that casts all of its computation in terms of FMA instructions. �is is true even if the original is executed on
a machine without access to FMAs. �erefore a lower bound on the transformed algorithm is a lower bound

on the original one. �e transformed algorithm has exactly mnk FMA instructions so there are at least mnk
FM+R

segments. All but the last segment have a read cost of exactly R, so the transformed algorithm and hence the

original algorithm have a read cost of at least R
(
mnk
FM+R

− 1
)
. �

Together, Definition 3.2 and Lemma 3.3 represent a simplification of the S-partitioning problem, introduced
in [16] and subsequently used in other I/O complexity lower bounds for MMM [12, 17]. Segments are very
similar to the subcalculations from the S-Span theorem in [16] and phases from [17]. However, our segments
are defined solely by the number of reads, whereas the others are defined by the number of reads plus writes.
Additionally, while each segment (except the last) has the same number of read instructions, the fact that that
number is a free variable distinguishes our segments from prior work.

Anupper bound on the amount of computation per segment, FM+R , can be obtained by considering the number
of elements of A, B, and C that a segment has access to. �ere are a total of M elements in fast memory when
a segment begins and there are a total of R elements read into fast memory during a segment. �e following
geometric inequality by Loomis and Whitney [19] can be used to place an upper bound on the number of FMAs
that can be performed using M + R elements as inputs.

Theorem 3.4 (Discrete Loomis-Whitney Ineqality). Let V be a finite set with elements in Z3, and let Vx ,

Vy , and Vz be orthogonal projections of V onto the coordinate planes. �en the cardinality of V , |V |, satisfies

|V | ≤
√
|Vx |

��Vy �� |Vz |
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Lemma 3.5. Using NA distinct elements of A, NB distinct elements of B, and NC elements ofC as inputs, one can

perform at most
√
NANBNC distinct FMAs.

Proof. Suppose there is a set of FMAs that can be performed using NA, NB , and NC elements of A, B, andC ,
respectively. �en the set of FMAs can be identified with a set, V , in Z3, where each FMA cxy += axz · bzy has
the coordinate (x ,y, z). In order to execute an FMA corresponding to the coordinate (x ,y, z), we must use the
element cxy , identified with the coordinate (x ,y), the element axz with coordinate (x , z), and the element bzy
with coordinate (z,y).

By projectingV in the z dimension, we obtain a set of points (x ,y) in Z2, corresponding to the set of elements
of C that are used in order to execute the FMAs. Similarly, if we project V along the other coordinate axes, we
obtain sets of elements of A and B that are used in order to execute an FMA. �ese three orthogonal projections
have cardinalities of at most NA, NB , and NC . By Lemma 3.4 |V |, the number of FMAs one can perform, is at

most
√
NANBNC . �

�e use of the Loomis-Whitney inequality for MMM I/O lower bounds, Lemma 3.5 and its proof first appeared
in Irony et al. [17].

Lemma 3.6. FM+R , the maximum number of distinct FMA instructions executed during a segment of read cost R

in any MMMA algorithm, is at most
(
1
3 (M + R)

)3/2
.

Proof. In order to find an upper bound on the number of FMAs that can be executed during a segment, we
will use two constraints: One from the size of fast memory, and one from the number of loads.

(1) LetMA,MB , andMC be, respectively, the number of elements of A, B, and C in fast memory at the start
of a segment. �is gives us the constraint from the size of fast memoryMA +MB +MC ≤ M .

(2) Let RA, RB , and RC be, respectively, the number of elements of A, B, and C loaded from slow memory
during a segment. �is gives us the constraint from the number of loads RA + RB + RC ≤ R.

LetNA = MA+RA,NB = MB+RB , andNC = MC+RC . Adding constraints (1) and (2) gives usNA+NB+NC ≤ M+R.
We can find an a�ainable upper bound on FM+R by combining this constraints with Lemma 3.5, giving us the
following problem:

Maximize FM+R under the constraints




FM+R ≤
√
NANBNC

0 ≤ NA,NB ,NC

NA + NB + NC ≤ M + R.

Application of the Lagrange multiplier method, detailed in Appendix A, tells us that the global maximum occurs
when

NA = NB = NC =
1

3
(M + R) so that FM+R ≤

(
1

3
(M + R)

)3/2
.

�

From Lemma 3.3 and 3.6, we know that any algorithm forMMMAhas a read cost of at least

(
mnk

( 13 (M+R))3/2
− 1

)
R.

Lemma 3.6 for the case where R always equal toM can be found in [12], yielding an I/O lower bound of 3
√
3

2
√
2

mnk√
M

−
M .

Our lower bound is dependent on R, which is a free variable. In order to find the greatest lower bound for

large problem sizes, we want the positive R that maximizes

(
Rmnk

( 13 (M+R))3/2
)
. �is occurs when R = 2M , yielding

the following theorem.
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Theorem 3.7. Any algorithm for MMMA on a machine with fast memory of capacity M has a read cost of at

least

2mnk
√
M

− 2M .

If we define the MMM operation, C := AB the same way as MMMA, except that it does not need to add the
initial ci j , we obtain the following corollary.

Corollary 3.8. Any algorithm for MMM on a machine with fast memory of capacity M has a read cost of at

least

2mnk
√
M

−mn − 2M .

Proof. Given any algorithm for MMM, there exists an algorithm for MMMA that has exactlymn additional
read instructions. Consider the multiply instruction in the original MMM algorithm that creates the variable
that will ultimately contain the element in the ith row and jth column ofC . We can replace this instruction with
a load instruction that loads the initial element in the ith row and jth ofC , followed by an FMA instruction.

Doing this for each element of C yields an algorithm for MMMA. �is algorithm has a read cost of at least
2mnk√

M
− 2M , so the algorithm for MMM has a read cost of at least 2mnk√

M
−mn − 2M , �

Because we argued exclusively about the inputs to computation, we obtained a lower bound on the read cost
by itself. �erefore we can add a separate lower bound on the number of writes to obtain an I/O lower bound,
and any algorithm for MMMA has at leastmn−M compulsory writes (ormn if all elements ofC must be in slow
memory at the end of execution).

Corollary 3.9. Any algorithm for MMMA on a machine with fast memory of capacity M has an I/O cost of at

least

2mnk
√
M
+mn − 3M .

Any algorithm for MMM on a machine with fast memory of capacity M has an I/O cost of at least

2mnk
√
M

− 3M .

4 ATTAINING THE I/O LOWER BOUND

In this section, we first develop intuition for how to a�ain near-optimal I/O cost for MMM algorithms. �is
motivates an algorithm that a�ains the lower bound for a processor with two layers of memory, a fast and a
slow memory. Finally, we discuss the state-of-the-art algorithm by Goto [14] in the context of our lower bound.

4.1 Blocked algorithms

It has been well-known since the arrival of hierarchical memories in the 1980s that high-performance implemen-
tations of many dense linear algebra algorithms, including MMM, are facilitated by so-called blocked algorithms.
�e reason is simple: MultiplyingC := AB+C whenm = n = k = nb and all matrices fit into fast memory allows
O(n2

b
) reads and writes to be amortized over 2n3

b
scalar floating point operations (flops). Whenm, n, k are larger

than nb , the operands can be blocked into nb × nb submatrices and staged as a sequence of MMMA operations
with these submatrices. �e question is how to optimally break the operands into submatrices.
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4.2 Insights

From the I/O lower bound QAB+C ≥ 2mnk/
√
M +mn − 3M , and from the fact that an MMMA requires mnk

FMAs, we know that if an optimal algorithm exists, it must perform
√
M/2 FMAs per read and write for large

matrices. Rewriting the ratio asM FMAs per 2
√
M reads and writes, the following points towards an algorithm:

Assuming a
√
M ×

√
M block ofC is already in fast memory, perform a rank-1 update of that block ofC memory

using the appropriate part of a column of A with
√
M elements and the appropriate part of a row of B with

√
M

elements. �is requires 2
√
M reads and writes forM FMAs.

Fast memory cannot hold all of these elements at once. However it is possible to do sowith a (
√
M−1)×(

√
M−1)

block ofC instead, leaving enough room for
√
M−1 elements ofA and

√
M−1 elements of B, thus achieving close

to the desired I/O lower bound. By performing the update of the block of C as a sequence of rank-1 updates,
bringing that block of C into fast memory can be amortized over many flops, thus essentially achieving the
assumption that the block is already in fast memory.

4.3 An asymptotically optimal blocked algorithm

Algorithm C. We are now ready to give an optimal algorithm (in the sense of asymptotically a�aining the
lower bound). Consider C := AB +C . Partition:

C →
©
«

C0,0 · · · C0,N−1
.
.
.

.

.

.

CM−1,0 · · · CM−1,N−1

ª®®¬
, A→

©
«

A0

.

.

.

AM−1

ª®®¬
, B →

(
B0 · · · BN−1

)
,

where Ci, j is (
√
M − 1) × (

√
M − 1), Ai is (

√
M − 1) × k , and Bj is k × (

√
M − 1). �en a simple loop over all the

blocks ofC , computing Ci, j = AiBj +Ci, j via rank-1 updates, requires

m

(
√
M − 1)

n

(
√
M − 1)

(
2(
√
M − 1)k + (

√
M − 1)2

)
= 2

mnk
√
M − 1

+mn ≈ 2
mnk
√
M
+mn

reads andmn writes. Whenmnk is large, this algorithm (illustrated in Figure 1) approaches the lower bound.

4.4 Read-optimal and write-hidden algorithms

Algorithm B. An early occurrence of an algorithm that we can now realize is optimal in terms of the number
of reads was presented and analyzed in [18]. Partition:

C →
(
C0 · · · CN−1

)
, A →

(
A0 · · · AN−1

)
, B →

©
«

B0,0 · · · B0,N−1
.
.
.

.

.

.

BM−1,0 · · · BM−1,N−1

ª®®¬
,

where Cj and Ap arem × (
√
M − 1), and Bp, j is (

√
M − 1) × (

√
M − 1). �en a simple loop over all blocks of B,

keeping Bp, j in fast memory and streaming rows ofCj and Ap while computing Cj := ApBp, j +Cj , requires

k

(
√
M − 1)

n

(
√
M − 1)

(
2m(

√
M − 1) + (

√
M − 1)2

)
≈ 2

mnk
√
M
+ nk

reads and
k

(
√
M − 1)

n

(
√
M − 1)

m(
√
M − 1) ≈ mnk

√
M

writes.
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Algorithm C

Algorithm B

Algorithm A

+=

+=

+=

Data in cache.

Data in main memory.

Fig. 1. Three algorithms for matrix multiplication that a�ain the lower bound for a single level of cache.

�e read cost of this algorithm, illustrated in Figure 1, is essentially equal to the I/O lower bound, but it
requires many writes to slow memory and so cannot be considered I/O optimal. On the other hand, processors
o�en have full-duplex memory bandwidth (meaning that the bandwidth available for reads is separate from the
bandwidth available for writes), so the write cost may not be visible if it is less than or equal to than the read
cost and if the reads and writes can be overlapped. Since that is the case for this algorithm, it may execute just
as efficiently as the algorithm presented in Section 4.2. �us, we can say that this algorithm is read-optimal and
write-hidden. �is becomes important when we later discuss practical implementations.

Algorithm A. We now present an algorithm that is in some sense the mirror image to Algorithm B, keeping a
square block of A in fast memory instead instead of a square block of B. Partition:

C →
©
«

C0

.

.

.

CM−1

ª®®
¬
, A →

©
«

A0,0 · · · A0,K−1
.
.
.

.

.

.

AM−1,0 · · · AK−1,N−1

ª®®
¬
, B →

©
«

B0

.

.

.

BK−1

ª®®
¬
,
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where Ci and Bp are (
√
M − 1) × n, and Ai,p is (

√
M − 1) × (

√
M − 1). �en a simple loop over all blocks of A,

keeping Ai,p in fast memory and streaming columns of Ci and Bp while computing Ci := Ai,pBp +Ci yields an
algorithm with I/O cost of

k

(
√
M − 1)

n

(
√
M − 1)

(
2m(

√
M − 1) + (

√
M − 1)2

)
≈ 2

mnk
√
M
+mk

reads and

k

(
√
M − 1)

n

(
√
M − 1)

m(
√
M − 1) ≈ mnk

√
M

writes. �e algorithm is also illustrated in Figure 1.

4.5 Practical implications

We now discuss how current practical algorithms measure up against the theoretical lower bound.

4.5.1 Goto’s Algorithm. �e algorithm used in the state-of-the-art GotoBLAS [14] and implemented in the
BLAS-like Library Instantiation So�ware (BLIS) [25, 26] is illustrated in Figure 2. �ose who are interested in
the practical implementation of matrix multiplication should be familiar with these various papers, and hence
we do not go into detail here. Goto’s Algorithm is a practical algorithm that targets multiple layers of cache.
Details of how this algorithm is parameterized based on machine constants can be found in [20]. We will show
that the results for this theoretical paper targeting a single layer of cache can be used to analyze in what sense
Goto’s Algorithm does and in what sense it does not achieve optimality with respect to I/O 1.

Blocking for the L3 cache. First, the algorithm partitions the matrices in the n dimension with a blocksize of
nc . �en, it partitions the k dimension with a blocksize of kc , where kc is determined by further subsequent
blocking for the L2 cache. �is bounds the size of a short and very wide panel of B that fill “most of” the L3
cache. Subsequent loops encourage the cache replacement policy to retain that panel of B in the L3 cache. �e

number of reads into the L3 cache from main memory is given by mnk
nc
+

mnk
kc
+ nk . �is is far from optimal

because typically nc ≫ kc and hence kc ≪
√
M3, whereM3 is the size of the L3 cache.

Blocking for the L2 cache. �e algorithm next partitions them dimension with a blocksize ofmc . �is creates
a block of A that will reside in the L2 cache, similar to Algorithm A. If we assume that nc is very large, then

we can approximate the number of reads into the L2 cache from slower layer of memory by mnk
mc
+

mnk
kc
+mk .

�is is close to optimal because typically the block of A in the L2 cache is roughly square and it occupies nearly

the entire L2 cache: In this casemc ≈ kc ≈
√
M , so whenm, n, and k are large we can ignore themk term and,

mnk
mc
+

mnk
kc

≈ 2mnk√
M

.

Subsequent layers of cache. For the L1 cache, the algorithm partitions the n dimension with blocksize nr . �is
creates a block of B that will reside in the L1 cache, however it is far from square, and so the number of reads
into the L1 cache is suboptimal for similar reasons that the number of reads into the L3 cache is suboptimal.

�e final step that we will consider is that algorithm then partitions in the m dimension with blocksizemr .
�is creates a roughly square block of C that will reside in registers, and updated by a series of rank-1 updates,
similar to the optimal Algorithm C.

1 In our analysis we ignore an extra I/O cost of copying submatrices into contiguous buffers.
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Fig. 2. Diagram of Goto’s Algorithm implemented in BLIS.
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Summary. We conclude that Goto’s Algorithm is optimal in the sense that it optimizes for the number of L2
cache misses, but is suboptimal in terms of L3 cache misses. Goto’s Algorithm is a practical one, and matrix
multiplication on modern machines does not need to optimize for L3 cache misses because there is sufficient
bandwidth available from main memory. However in the future it is possible that even matrix multiplication
may become bandwidth limited, and Goto’s Algorithm may need to be tweaked so that it places a square matrix
block in the L3 cache.

4.5.2 A family of algorithms. Gunnels, et al. [15] presented a family of algorithms for implementing MMMA.
It discussed three shapes of MMMA that correspond to Algorithms A, B, and C and hence are read-optimal and
write-hidden. �ese algorithms result from asking the question of how to optimally block between two adjacent
layers of memory and applying this to multiple layers in the hierarchy. �e locally optimal solution is that when
one of the three algorithms is used for some layer of memory, one of the other two algorithms should be used at
the next faster layer. �is yields algorithms similar to AlgorithmsA, B, and C at each level of the cache hierarchy.

5 RELATED WORK

We now summarize related work on I/O lower bounds, organizing the works by strategies used in the proofs.

Previous lower bounds on MMM. Hong and Kung [16] introduced the red-blue pebble game model for a ma-
chine with two layers of memory. A limited number of blue pebbles represented fast memory while an un-
limited number of red pebbles represented slow memory. It is difficult to prove theorems using the red-blue
pebble game directly, so Hong and Kung introduced the S-partitioning problem to reason about I/O complex-
ity instead. Hong and Kung obtained I/O complexity bounds for several operations. Specifically for MMM, it

was of Ω(mnk/
√
M). Irony et al. [17] used a simplified version of the S-partitioning problem together with

the Loomis-Whitney inequality to obtain a lower bound on the amount of communication between nodes of
a distributed memory parallel computer for MMM, showing that at least one processor must send and receive

(1/2)3/2mnk/(P
√
M) elements. Dongarra et al. [12] obtained an I/O lower bound for MMM, improving the lower

bound to (3/2)3/2mnk/
√
M . Dongarra et al. used a simplified version of the S-partitioning problem and the

Loomis-Whitney inequality, and improved the bound by assuming that all computation is performed via FMA
operations.

Other lower bounds from studying S-partitions. Savage [21] extended the S-partitioning approach to memory
hierarchies with more than two levels. Ballard et al. [4] generalized [17], showing how the Loomis-Whitney
inequality can be used for essentially any linear algebra operation that can be implemented by a triply-nested
loop. �is includes the LU, QR, and Cholesky factorizations, and they obtain lower bounds for each. �e S-
partitioning problem and Loomis-Whitney inequality have been applied to find I/O lower bounds for several
tensor operations [5, 23, 24].

Christ, et al. [10] generalized [4] by using the Holder-Brascamp-Lieb (HBL) inequalities that generalize the
Loomis-Whitney inequality. �is provides a methodology for obtaining I/O lower bounds for a wider class of
operations than can be reasoned about using the Loomis-Whitney inequality. Demmel and Dinh [11] used the
Hong-Kung strategy with HBL inequalities to obtain I/O lower bounds for convolutional neural networks.

Lower bounds from other strategies. Aggarwal and Vi�er [2] used a combinatorial argument to find lower
bounds for permutation networks, sorting, matrix transposition, and the fast Fourier transform. Bilardi, et al. [9]
use a similar combinatorial argument to reason about switching DAGs, where the in-degree of a node equals its
out-degree. Bender, et al.[6] used combinatorial arguments to find I/O lower bounds for multiplying a sparse
matrix times a dense vector.
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Bilardi, et al. [8] (which does not allow for recomputation) and Bilardi, et al. [7] (which does) introduced
a strategy for a�aining I/O lower bounds by relating the memory requirements of computations to their I/O
requirements. Elango, et al. [13] introduced an automated approach to finding I/O lower bounds on a red-blue-
white pebble game, by reasoning about memory requirements of computations.

Aggarwal, et al. [1] introduced the LPRAM model for parallel random access machines with local memory.
�ey obtain communication lower bounds by reasoning about the critical path length. Scquizzato, et al. [22]
obtains communication lower bounds for distributed memory computations, where they do not model fast and
slow memory. Instead they obtain I/O lower bounds by assuming that computation is load-balanced.

6 CONCLUSION

In this paper, we improved the I/O lower bound forC := AB +C to 2mnk/
√
M +mn − 3M . We showed that these

lower bounds are sharp with respect to the highest ordered term’s coefficient by analyzing known algorithms.
We also analyzed the state-of-the-art Goto’s Algorithm and noted its strengths and weaknesses in light of the
MMMA lower bound. �ese lower bounds are not only of interest as a theoretical result but also to help gain
fundamental insight into how MMM must be implemented.

We believe that the proof techniques presented in this paper can apply to algorithms outside of matrix mul-
tiplication. In particular, in the domain of linear algebra, we believe they can be combined with the techniques
introduced by Ballard et al. [3] in order to find lower boundswith improved constants for othermatrix operations
such as the LU, QR, and Cholesky factorizations.
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A CONSTRAINED GLOBAL MAXIMUM OF
√
NANBNC

In this appendix, we give details on how the upper bound FM+R is determined. �e problem to be solved is

maximize FM+R under the constraints




FM+R ≤
√
NANBNC

0 ≤ NA,NB ,NC

NA + NB + NC ≤ M + R

.

If any of NA, NB , or NC is zero, then so is FM+R and hence will only consider the case where 0 < NA,NB ,NC .
If NA + NB + NC are strictly less than M + R, then one of NA, NB , or NC can be increased, thereby increasing
FM+R , and hence we only consider NA + NB + NC = M + R. Finally, given these constraints we can optimize

FM+R =
√
NANBNC , as long as we check that the result is a maximum. �e constrained problem thus becomes

maximize FM+R =
√
NANBNC under the constraints

{
0 < NA,NB ,NC

NA + NB + NC = M + R
.

We can use the Lagrange Multiplier method to solve ∇FM+R = λ∇(NA + NB + NC − (M + R)) for NA, NB , NC .

NBNC

2
√
NANBNC

= λ,
NANB

2
√
NANBNC

= λ,
NANC

2
√
NANBNC

= λ, andM + R = NA + NB + NC .

Since then NBNC = NANB = NANC and we know that NA, NB and NC are nonzero, we deduce that NA = NB =

NC and hence M + R = 3NA. As a result, the solution is NA = NB = NC = (M + R)/3. To show that this is a
global maximum, we can find the second derivative of FM+R at this point, or we can evaluate FM+R at this point
and any point on the boundary of our region to show that any value on the boundary is smaller.
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We conclude that the global maximum of FM+R is:

FM+R =
M + R

3

√
M + R

3
=

(M + R)
√
M + R

3
√
3

.
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