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ABSTRACT

Red-blue pebble games model the computation cost of a two-level
memory hierarchy. We present various hardness results in differ-
ent red-blue pebbling variants, with a focus on the oneshotmodel.
We first study the relationship between previously introduced red-
blue pebble models (base, oneshot, nodel). We also analyze a
new variant (compcost) to obtain a more realistic model of com-
putation. We then prove that red-blue pebbling is NP-hard in all of
these model variants. Furthermore, we show that in the oneshot
model, a δ -approximation algorithm for δ < 2 is only possible if
the unique games conjecture is false. Finally, we show that greedy
algorithms are not good candidates for approximation, since they
can return significantly worse solutions than the optimum.

CCS CONCEPTS

• Theory of computation → Problems, reductions and complete-
ness; Models of computation; • Computer systems organization

→ Processors and memory architectures.
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1 INTRODUCTION

Pebble games allow us to model different aspects of a computation
process. In particular, red-blue pebble games model the I/O cost of
a computation on a two-level memory hierarchy. While machines
usually have sufficient slow memory (e.g. RAM) to store all inter-
mediate values of a computation, fast-access memory (e.g. cache)
in machines is often heavily limited. However, the red-blue pebble
game can also model other fast/slow memory combinations, e.g.
main memory vs. disk, or different levels of cache.

Since fast memory is limited, a machine could be forced to save
some intermediate values of a complex calculation in slowmemory,
and later retrieve these values when needed. However, moving val-
ues between fast and slow memory is costly; in fact, this is often
the bottleneck of a computation. Hence minimizing the required
number of transfers between fast and slow memory is a crucial
problem in many application areas, with High-Performance Com-
puting being a prominent example [20]. As such, red-blue pebble
games are a perfect example for a playful theoretical question that
is also highly relevant in practice.

Any computation can be modeled as a directed acyclic graph
(DAG), with source nodes corresponding to the inputs of the com-
putation, and sinks corresponding to the outputs. Intermediate val-
ues are the nodes of the graph, with the input edges of a node v
specifying the set of values that are required for the computation
of v . Nodes that we have already computed and saved in memory
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are marked with a pebble. In the red-blue pebbling game, we have
two kinds of available pebbles: red pebbles correspond to values
saved in fast memory, while blue pebbles denote values saved in
slow memory. To compute a specific node v of the DAG, we need
to have all of its inputs available in fast memory, i.e. have a red
pebble on all the nodes that have an edge to v .

When pebbling a DAG, we initially assume that none of the
nodes contain a pebble. Then computation happens through re-
peatedly applying the following steps:

(1) Move to fast memory: replace a blue pebble by a red
pebble at any node.

(2) Move to slow memory: replace a red pebble by a blue
pebble at any node.

(3) Compute: if all input nodes of a node v already have a red
pebble, then place a red pebble on node v .

(4) Delete: remove a (blue or red) pebble from any node.

A pebbling is a sequence of these steps where in the final state,
each sink node of the DAG is computed, i.e. it has a (blue or red)
pebble on it. We interpret Step 3 to always allow placing a red peb-
ble on a source node, since it has no inputs at all; thus a pebbling
can always begin by applying Step 3 on the source nodes of the
DAG.

The cost of a pebbling is defined as the total number of transfer
operations (Steps 1 and 2) executed throughout the process. Steps
3 and 4 are considered free in this basic setting, but they do incur
some cost in more refined model variants.

The aim of the pebbling problem is to model the time-memory
tradeoff, i.e. to help us understand the cost of a computation when
fast memory is a limited resource. To achieve this, we consider a
parameterR, andwe limit the legal pebblings such that at any point
in the process, there are at most R red pebbles placed on the nodes
of the DAG. The pebbling of a DAG may be cheap for a larger R
value, but it can become significantly more costly if the number of
available red pebbles is reduced, so this indeed allows us to study
a time-memory tradeoff.

Given a specific number of red pebbles R, the goal of pebbling
is to pebble the graph at the lowest possible cost C . Formally, the
decision version of the Pebbling problem is as follows: given an
input DAG and integers R andC , does there exist a pebbling of the
DAG with R red pebbles and cost at most C?

We refer to the above defined setting as the base version of the
problem. In the related literature, other versions of the problem
have also been introduced, in order to make the problem computa-
tionally more feasible and/or theoretically more interesting; how-
ever, the connection between these variants remained unclear. We
begin with an overview of the different model variants in Section
4, and an analysis of their relation to each other. Furthermore, we
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also study compcost, a novel red-blue pebbling variant, and we ar-
gue that compcost is a more realistic model. We also discuss how
the time-memory tradeoff can behave in general in these models.

We then present a proof of NP-hardness for all of these pebbling
variants, through a reduction from the Hamiltonian Path problem.
Note that NP-hardness in some of the models was already known
before [6]; however, our new reduction provides a notably simpler
proof of this result.

As pebbling is an NP-hard problem with relevant applications,
it is a crucial question if the problem can be tackled with approxi-
mation algorithms or heuristic methods in practice. Our main con-
tributions are novel insights into the limits of these approaches. In
Section 7, through a reduction from Vertex Cover, we show that
oneshot red-blue pebbling cannot be approximated to any factor
less than 2 if the unique games conjecture holds. Finally, in Sec-
tion 8, we analyze the natural greedy strategies for the problem,
and show that the solutions they return can be significantly worse
than the optimum cost; as such, we cannot expect these algorithms
to guarantee a good approximation ratio.

2 RELATED WORK

The introduction of graph pebbling problems dates back to the
1970s, with the most studied variants being the standard pebble
game (modeling computational time-memory tradeoffs in general),
and black-white pebbling (which also introduces non-determinism
into this model). Among the earliest results on the topic is the
PSPACE-completeness of standard pebbling [10], a wide range of
results on the time-memory tradeoff in these pebbling games [11,
15, 17], and a characterization of the difference between the two
settings [1, 13]. Some further complexity and inapproximability re-
sults on these games are available in [5], [19] or [2].

In contrast to standard pebbling, red-blue pebbling allows us
to save previously computed values (by using blue pebbles), and
hence it allows to model the I/O complexity of a computation. Red-
blue pebble games were also introduced in the 1980s by Hong et.
al. [12], who mostly discussed the resulting time-memory tradeoff
for some specific computational tasks. A thorough investigation
of the red-blue pebble game has recently been conducted by De-
maine and Liu in [6]. Their study shows that the base version of
red-blue pebble games is PSPACE-complete, through a reduction
to the standard (black) pebbling game. They also show that with-
out deletions, the problem is NP-complete and W[1]-hard in the
maximal cost allowed.

Besides this, the result of Carpenter et. al. studies red-blue peb-
bling in the oneshot model, presenting an approximation algo-

rithm with a cost of at most O(opt(R) · log3/2 n) and the use of at

mostO(R · log3/2 n) red pebbles [4], where opt(R) denotes the opti-
mal pebbling cost of the DAG with R red pebbles. The same paper
also discusses a natural generalization of pebbling to multi-level
memory hierarchies, i.e. hierarchies with more than 2 levels.

The work of [3] reduces the study of bandwidth-hard functions
to red-blue pebbling problems, and introduces a model that is sim-
ilar to our compcost variant. However, in this new model, the au-
thors only show that the problem still remains NP-hard.

Close-to-optimal pebbling strategies on special classes of graphs,
motivated by financial applications, are described in [16, 18]. In

[7], the authors analyze a decomposition technique on DAGs that
allows to derive lower bounds on the pebbling cost of specific com-
putational tasks in the oneshot model. Finally, the work of [8]
discusses a generalized version of red-blue pebbling (with multi-
ple ‘shades’ of red pebbles) in order to model a parallel execution
on multiple processors. Furthermore, [8] also presents some lower
bounds for the pebbling cost of well-known numerical algorithms.

3 BASIC PROPERTIES AND OBSERVATIONS

Straightforward bounds. We first discuss some basic properties
of pebbling. We use n to denote the number of nodes in the DAG,
and ∆ to denote the largest indegree.

First, note that a computation of a node v with indegree din re-
quires din + 1 red pebbles: 1 pebble at v , and din more at vâĂŹs
input nodes. Therefore if R < ∆ + 1, a pebbling is not possible at
all. Conversely, if R ≥ ∆+ 1, a valid pebbling always exists: we can
simply take a topological ordering of the DAG, and always com-
pute the next vertex v of the ordering (through Step 3) by moving
the red pebbles to the inputs of v , and changing all red pebbles to
blue in every other node of the DAG. Hence in the following, we
always assume R ≥ ∆ + 1.

Furthermore, the optimal pebbling cost of any DAG is at most
(2∆ + 1) · n [6]. Following the greedy strategy outlined above, the
computation of each new node requires at most ∆ + 1 instances of
Step 2 (making ∆+1 red pebbles available), and then ∆ instances of
Step 1 (making the inputs of the next computable node red). This
sums up to a cost of (2∆ + 1) · n over the whole process.

Constant indegree. The main idea behind most of our DAG con-
structions is to have specific node groups (so-called input groups)
of size R−1, which are all inputs of a specific target node t . This sim-
plifies the analysis of pebbling significantly, since each such target
t can only be computed by using all the available red pebbles; thus
we do not have to discuss which red pebbles to move to the inputs
of t , or where the leftover red pebbles are in the DAG. An optimal
pebbling strategy in such DAGs comes down to the order in which
we visit these input groups, i.e. the order of computing the target
nodes.

However, this approach often requires large input groups, and
hence a large ∆. This is in heavy contrast with most application
areas, where it is reasonable to assume that ∆ = 2 or 3. Previous
results on red-blue pebbling often also assume that ∆ = O(1) [6].
Hence, we also describe a transformation technique which shows
that each of our results also hold for DAGs with constant indegree.

The main idea of this technique is to use the gadget shown in
Figure 1, and increase the number of available red pebbles to R′ =
R+1. In order to compute all nodes in this gadget, all theR−1 nodes
on the left side are repeatedly needed. Besides this, we always need
2 red pebbles in the layers of the gadget to compute the next node.
Hence, if we were to use less than R + 1 red pebbles to pebble the
gadget, then red pebbles would have to be moved around among
the R− 1 left-side nodes repeatedly, summing up to a cost which is
proportional to the length h. If h is high enough, then this results
in an unreasonably high cost for pebbling the gadget.

Thus the gadget has indegree 2, but it achieves the same goal as
our original input group: it practically forces us to place R − 1 red
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Figure 2: The hard-to-compute (H2C) gadget

pebbles in the left side of the gadget at some point, in any reason-
able pebbling. In Appendix B, we describe this transformation in
more detail, and discuss how to adapt each of our constructions to
the ∆ = O(1) case.

Previous works have often used a pyramid gadget pyramid gad-
get [6, 10, 16] to reduce the indegree; this also requires a high num-
ber of red pebbles to pebble with minimal cost, while still having
∆ = O(1). However, if the number of red pebbles is reduced by 1
for a pyramid, the increase in cost is only 2, whereas in our gadget,
taking a single red pebble away already increases the cost dramat-
ically. This is a key property for a simple analysis in our proofs.

Computing the source nodes. We also have to discuss the source
nodes of the DAG separately, since the reasonable way to model
these nodes might vary by application area. In some practical com-
putations, there are numerous input values, which thus naturally
have to be stored in slow memory initially, and loading them into
fast memory adds an inherent cost to the computation. In other
cases, the computation inputs (i.e. source nodes) might be trivial
values that can be calculated at practically no cost.

Our definition of the base model describes the second setting:
we assume that a red pebble can be placed on the source nodes
freely at any point. However, with a minor modification, we can
also model the first setting in our base model. We achieve this by
adding a so-called hard-to-compute (H2C) gadget in front of each
source node v of the DAG. The gadget is shown in Figure 2.

The main idea of the H2C gadget is that all R red pebbles are
required to compute any of the starter nodes u1, u2 or u3. Hence
when computing the last of these 3 nodes, the previous 2 must al-
ready be computed and turned to blue. These 2 nodes then have
to be loaded back from slow memory in order to compute v . This
implies that computing v indirectly requires at least 4 transfer op-
erations, and thus it now has a constant cost of 4 (the fact that this
cost is 4 instead of only 1 does not matter asymptotically).

In order to ensure this inherent cost for every source node, we
do not need an entirely separate copy of the H2C gadget for each
source node. Instead, the node s and the group B of R − 1 nodes
can be common in all the distinct H2C gadgets added for the dis-
tinct source nodes, andwe only need to instantiate the three starter
nodes u1, u2, u3 separately for each source v . This way, we add 3
extra nodes for every source of the DAG, and a further R extra
nodes to the DAG altogether. This does not change the magnitude

of the number of nodes, and thus it also does not affect any of our
constructions in the paper.

Disabling the recomputation of nodes. Besides modeling an in-
herent cost for source nodes, there is another important applica-
tion of the H2C gadget. In particular, we widely use the gadget in
our constructions to ensure that specific nodes are costly to recom-
pute if they are ever deleted during a pebbling.

Consider the H2C gadget after the node v has been computed.
Once the red pebbles are moved away from the starter nodes of
v , turning the starters red again costs 3, while recomputing them
from scratch costs at least 4. In contrast to this, if we simply turnv
blue after it has been computed, and then red again when needed,
this only has a cost of 2. Thus having computed v once, a reason-
able pebbling will never delete the pebble fromv (until its very last
use), but always save v to slow memory and transfer it back later
instead. Therefore, the H2C gadget can also be used to indirectly
ensure that some nodes are never deleted and then recomputed
later, but always saved with a blue pebble instead.

Small number of source nodes. In some applications, we might
alsowant to restrict ourselves toDAGswith constantlymany source
nodes; we point out that our results also hold under this restriction.
Given any DAG construction, we can easily adapt it to this setting
by adding a single new source s0, drawing an edge from s0 to ev-
ery other node of the DAG, and increasing the number of available
red pebbles to R′ = R + 1. Since s0 is now required for every com-
putation, a reasonable pebbling never removes a red pebble from
s0, which leaves R red pebbles to pebble the rest of the DAG as
in the original case. Thus the addition of s0 results in a DAG with
essentially the same behavior as before, but only a single source
node.

Initial and final state of a pebbling. Different papers on the topic
have slightly different definitions for the starting or finishing state
of pebblings. For example, some papers assume that source nodes
of the DAG have to be computed explicitly (as in our case), while
others assume an initial blue pebble on sources. Similarly, some
require a pebble of any color on the sink nodes in the finishing
state (as in our definition), while others explicitly require a blue
pebble on sinks. With a few simple observations, one can show that
these different variants of the problem definition are essentially
equivalent for our purposes, and thus our results also hold in these
slightly different settings. We briefly discuss this in Appendix C.
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Model
Blue
to red

Red to
blue

Compute Delete Description

base 1 1 0 0 Baseline model (see Section 1)
oneshot 1 1 0,∞,∞, ... 0 Each node only computable once
nodel 1 1 0 ∞ Pebbles cannot be deleted

compcost 1 1 ϵ 0 Computation also has a cost of ϵ

Table 1: Summary of the cost of operations in different models.

Model
Cost of

optimal pebbling

Length of
optimal pebbling

Complexity
Ratio of greedy
to optimum

base ∈ [0, (2∆+1)·n] Up to ω(poly(n)) PSPACE-complete [6] Ω(n1/6)
oneshot ∈ [0, (2∆+1)·n] O(∆ ·n) NP-complete Ω̃(√n)
nodel ∈ [n, (2∆+1)·n] [6] O(∆ ·n) NP-complete [6] Large Θ(1)

compcost ∈ [ϵ ·n, (2∆+1+ϵ)·n] O(∆ ·n) NP-complete Large Θ(1)

Table 2: Summary of the basic properties of different models, and our results. The inapproximability result is not shown in the

table, because it only applies to the oneshotmodel. Recall that the lower bound on the optimum cost in nodel and compcost

are both only asymptotic, assuming that R (in nodel) or the number of source nodes (in compcost) is in o(n).

4 MODELS OF RED-BLUE PEBBLE GAMES

While the base variant of the red-blue pebble game was the first to
be defined, most of the related work studies different versions of
the game. The base version allows us to use Steps 3 and 4 any num-
ber of times at no cost, and hence it might compute nodes through
a very long sequence of deletion and recomputation steps in the
optimal strategy. Because of this, it is possible in the base version
that any optimal pebbling of a DAG consists of superpolynomially
many steps, but still has low (possibly zero) cost.

Regarding practice, this is unrealistic, since computation clearly
has nonzero cost. Regarding theory, it places the problem outside
of NP (unless NP=PSPACE) [6], since any optimal sequence of steps
might be too long to verify; this makes the problem undesirably
hard. Thus, related work has often diverted from the base version,
introducingminor changes to ensure that (i) themodelmakesmore
sense practically, and/or (ii) the problem is actually in NP.

One such variant is the oneshot red-blue pebble game (also
known as red-blue-white pebbling), where Step 3 can be executed
on each node at most once throughout the pebbling. This rule di-
rectly forbids recomputation. As we will see in Lemma 1, this al-
ready ensures that any optimal pebbling consists ofO(∆ · n) steps,
so the problem is in NP.

Another variant considered in [6] is the red-blue pebble game
with no deletions (nodel), where Step 4 is not available. Step 3
still allows us to replace a blue pebble by a red one if all inputs
contain a red pebble, so this variant of the game does allow recom-
putation. However, we cannot simply delete a red pebble when it
is not needed, and recompute it later at no cost, as in base; instead,
we have to replace it by a blue pebble temporarily (using Step 2),
which incurs a cost of 1. Hence, the model ensures that the recom-
putation of a node has an indirect cost, disallowing the exponen-
tially long but cost-free deletion-recomputation sequences in the

optimal pebbling. It was already shown in [6] that nodel pebbling
is NP-complete, through a reduction from Positive 3-in-1 SAT.

In nodel, the fact that pebbles cannot be deleted from nodes
means that at least n − R nodes have to become blue by the end of
the process, and thus the cost of any pebbling is at least n − R. As
R is usually significantly smaller than n (we can assume R = o(n)),
this shows that the minimal cost of a pebbling is in the magnitude
ofn. Since the maximal cost of any pebbling is (2∆+1)·n (as shown
in Section 3), this means that the cost difference between any two
pebbling strategies differs by at most a small (2∆ + 1) factor in
nodel. One the other hand, the oneshot model might allow the
cost of a pebbling to go down to as low as 0, so strategies can gener-
ally differ by a much larger factor. This makes the oneshotmodel
the most interesting model variant from a theoretical perspective.

However, a red-blue pebbling variant should not only be theoret-
ically interesting, but also practically useful. The basemodel does
not model practice well, as it allows exponentially long chains of
free recomputations. Both the oneshot and the nodel model aim
to provide a more realistic model of pebbling. Step 3 being free is
somewhat motivated, as computing a value (from inputs in cache)
is usually much faster than moving a value between fast and slow
memory (Steps 1 or 2). Thus in some cases, using recomputation
stepsmay indeed be themost efficient way to execute a sequence of
computations. Since recomputation is not allowed in the oneshot
model, the oneshotmodel does not allow as much freedom as one
would hope. Similarly, the nodelmodel forces us to save every in-
termediate value into slow memory instead of simply allowing to
delete it, so it also restricts our action space unnecessarily.

Consequently, we also discuss a new red-blue pebbling variant,
which we believe to bemore realistic than the previous ones. In the
compcostmodel, the setting is the same as in the basemodel, with
the difference that Step 3 is not free, but has a cost of ϵ for some
small constant 0 < ϵ < 1. Note that this is in line with the actual
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behavior we want to model: while computational steps (Step 3) are
not nearly as costly as transfer operations (Steps 1 and 2), they do
incur some minimal cost. In reality, the cache is roughly 100 times
faster than a bus access, so ϵ ≈ 1/100.

We note that a very similar setting has already been introduced
in the work of [3], with the additional restriction that ϵ ≥ 1

3n
(which is asymptotically equivalent to our case of accepting any
ϵ). The work of [3] shows that pebbling still remains NP-hard in
this modified model. However, we find that a much more interest-
ing property of this setting is that it actually makes the problem
easier: assigning cost ϵ to Step 3 is in fact already enough to insert
the problem into NP. Intuitively, since computations now also have
a cost, the sequence of deletion-recomputations cannot be too long
in an optimal pebbling, and thus the length of any optimal pebbling
becomes polynomial in n. Hence, compcost is not only a more re-
alistic model of computations, but it is also a more natural way to
place the problem into NP than either oneshot or nodel.

It remains to formally show that the length of the optimal peb-
bling is at most O(∆ · n) in all the modified model variants, and
thus the problem falls into NP in these models.

Lemma 1. Given a Pebbling problem in the oneshot, nodel or
compcost model, any optimal pebbling strategy consists of at most
O(∆ · n) steps.

Proof. Recall from Section 3 that there always exists a pebbling
with cost atmost (2∆+1)·n for any DAG. This upper bound changes
to (2∆ + 1 + ϵ) · n in the compcost model due to the extra cost of
computations. Since transfer steps (Steps 1 and 2) have a cost of 1,
this implies that an optimal pebbling can contain at most O(∆ · n)
transfer steps. It only remains to also bound the number of Steps
3 and 4 in these models.

The oneshot version naturally implies that there are at most n
executions of Step 3 in a pebbling. Once a pebble has been deleted
from a node, there is no way to place a pebble on this node again, so
Step 4 can also be called at mostn times. Thus any optimal pebbling
indeed consists of O(∆ · n) steps.

In nodel, Step 4 is not available. Each computation in a pebbling
is either a first one at a node (there are at most n of these), or it is a
recomputation step that replaces a specific blue pebble. Since blue
pebbles are only created in Step 2, which is invoked at mostO(∆ ·n)
times, the number of recomputations is also within O(∆ · n).

In the compcostmodel, assume that the number of Steps 3 and 4
is altogether p. Since each deletion step removes a pebble that was
previously placed on the DAG, the number of deletions is at most
the number of computations. Thus at least half of the non-transfer
steps are computations, which means that Steps 3 and 4 altogether
have a cost of at least ϵ · p2 . This shows that if p >

2
ϵ · (2∆+1+ ϵ)·n

in a pebbling, then the cost of non-transfer steps is already larger
than (2∆+1+ ϵ) ·n, so the pebbling is not optimal. Thus we have
p ≤ 2

ϵ · (2∆+1+ ϵ)·n = O(∆ · n) in any optimal pebbling. �

Note that in the compcostmodel, theminimal cost of a pebbling
is in the magnitude of ϵ · n (unless most nodes of the DAG are
source nodes), since each non-source node has to be computed at
least once. Therefore the minimal and maximal cost are within a
constant factor 2∆+1+ϵ

ϵ , similarly to the case of nodel. Because
of this, the oneshot model still remains the most interesting one

theoretically. Hence, when discussing the results of the paper, we
primarily focus on the oneshot model, and then go on to discuss
the applicability of the specific result to other models.

We illustrate the cost of operations in Table 1, and summarize
the main properties of the models and our results in Table 2.

5 TIME-MEMORY TRADEOFF

We now present a DAG that allows us to analyze the worst-case
tradeoff between the parameter R and the optimal pebbling cost
with R red pebbles, denoted by opt(R).

Let us focus on the oneshot model. Recall that the minimal
cost of pebbling in this model is 0, and the maximal cost is (2∆ +
1) · n. Furthermore, we always have opt(R − 1) ≤ opt(R) + 2n
(assuming, of course, that R− 1 ≥ ∆+ 1). This is because with R− 1
red pebbles, we can basically follow the same strategy as with R

red pebbles, maintaining the invariant that our R − 1 red pebbles
always occupy the same nodes as in the original strategy, with one
of the red pebbles missing. For each computation step when the
missing red pebble is among the input nodes, we can select another
red pebble that is not used in this computation, and move this red
pebble here for the computation at a cost of 2. Since there are at
mostn computations, the technique adds an extra cost of at most 2n
to opt(R). In other words, each time we allow a further red pebble,
the optimum cost can decrease by at most 2n.

Consider the DAG construction shown in Figure 3, which con-
sists of two control groups of size d , and a chain of nodes that are
each enabled by the previous node in the chain, and one of the two
control groups in an alternating fashion. In case of a long chain, the
control groups amount to a negligibly small part of this DAG, so
for simplicity, we will now use n to denote the length of the chain.
An optimal pebbling strategy of the DAG keeps most of the red
pebbles in the control groups, and only has 2 red pebbles in the
chain at any time: after computing the next chain node, the pre-
vious chain node is immediately deleted, as it is not needed ever
again.

In this graph, opt(2d+2) = 0: if we can always keep both control
groups in cache, then the chain can sequentially be computed at
no cost. On the other hand, opt(d + 2) = 2d · n: with only d + 2
red pebbles, we have to transfer all d red pebbles from one control
group to the other (at a cost of 2d) for the computation of every
single chain node. With ∆ = d + 1, this translates to opt(2∆) = 0
and opt(∆ + 1) = (2∆ − 2) · n, showing that the cost ranges from 0
to almost our upper bound of (2∆ + 1) · n.

What makes the example more interesting, however, is the fact
that the optimum gradually decreases between these points. Start-
ing from R = 2d +2, whenever we take away a red pebble, it means
that for each node of the chain, 2 extra transfer operations are re-
quired to move another red pebble to the other control group. I.e.,
withd+2+i red pebbles available, we have tomoved−i red pebbles
for computing each chain node, and thus opt(d +2+i) = 2(d −i) ·n
for every i ∈ [0,d]. This means that it is indeed possible to exhibit
the maximal drop 2n in every step of the function opt(R)while go-
ing from almost the upper bound (2∆+1)·n down to 0, as illustrated
by the tradeoff diagram in Figure 4.
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...

...group of
d nodes

...group of
d nodes

Figure 3: Example DAG for time-memory tradeoff. Edges

from the control groups are shown together for simplicity.

0

2d ·n

opt(R)

d+2 2d+2
R

2n

1

Figure 4: Tradeoff diagram for the DAG shown in Figure 3.

Wealso obtain a similar tradeoffdiagram for the remaining three
models, after adding a H2C gadget to ensure that nodes in the con-
trol groups are never recomputed. In the basemodel, the diagram
is essentially the same as in oneshot. In nodel, each chain node
has to be turned blue instead of being deleted, hence every opt(R)
value is increased by n. In compcost, each computation costs ϵ , so
opt(R) values are increased by ϵ · n. These tradeoff diagrams are
discussed in Appendix A.1.

6 NP-HARDNESS

We now present a simple proof of NP-hardness for the pebbling
problem through a reduction from the Hamiltonian Path problem,
which is long known to be NP-complete [9]. Unlike our other re-
sults, we first prove this result in the nodel model. The proof for
the remaining models is discussed in Appendix A.2.

Theorem2. The Pebbling problem is NP-complete in theoneshot,
nodel and compcost models, and NP-hard in the base model.

Proof for the nodel model. Lemma 1 already points out that
except for the base model, the problem is within NP, since the op-
timal pebbling consists ofO(∆ · n) steps.

Assume we have a graph G on N nodes and M edges, in which
we want to solve the Hamiltonian Path problem; we show how to
convert this into a pebbling problem in a DAG. To avoid confusion,
we use a and b to denote the nodes of the original graph G, while
we use t , u and v to denote the nodes in the DAG.

For our reduction, we create N distinct target nodes that are
sinks of the DAG, each representing a distinct node of G. For a
node a of G, we denote the corresponding target node by ta . To
each target node ta , we specify a set of exactly N −1 distinct nodes
that are the inputs of (i.e. have an outgoing edge to) ta ; we refer to
this set as the input group of node a.

These input groups are formed as follows: for every node a, let
us consider all the other N − 1 nodes of G (excluding a), and for
each such other node b , we create a specific nodeva,b in the DAG.
We refer to this node va,b as the contact node in group a for node
b . We then select the N − 1 contact nodes in group a as the input
group for the target node ta . This provides a DAG with N · (N − 1)
source and N sink nodes.

Finally, for each edge (a,b) ofG, we merge the two correspond-
ing contact nodes (i.e. the contact node in group a for node b , and
the contact node in group b for node a) into a single node, as illus-
trated in Figure 5. That is, if a and b are neighbors in G, then the

new merged node va,b = vb,a will be an input of both ta and tb
in the DAG, but if a and b are not neighbors, then the inputs of ta
and tb will remain disjoint. This gives us a DAG with altogether
N · (N − 1) −M source nodes and N sink nodes. We consider the
pebbling problem on this graph with R = N ; note that this is the
minimal possible R since ∆ = N − 1.

Each pebbling of the graph has to visit the input groups in some
order to compute all the sink (target) nodes. We need all the N

available red pebbles for every such computation, i.e. we need to
place N − 1 red pebbles on the nodes of the input group, and the
final red pebble on the newly computed sink. Hence the compu-
tations of the target nodes are distinct steps during the pebbling
process when we know the position of all the red pebbles; this es-
sentially allows us to characterize the entire pebbling by the order
in which the target nodes are computed.

Between the computation of two distinct targets ta and tb , we
always have to (i) turn the previously computed sink blue to free
the red pebble from the sink, and (ii) move the red pebbles from
one input group to the other to enable the computation. The first
step always has a cost of 1. In the second step, moving a red pebble
also has a cost of 1: the previous position of the red pebble has
to be turned to blue (at a cost of 1), and then we can place a red
pebble at the new position (since source nodes of the DAG can be
recomputed at no cost).

However, the exact number of red pebbles that we have to move
in this second step depends on whether a and b are neighbors in
G. If a and b are adjacent, then the two input groups intersect in
a node va,b = vb,a , so we only have to move N − 1 red pebbles;
otherwise the two input groups are disjoint, and thus we have to
move N red pebbles. Thus altogether, the required cost of the oper-
ations between two consecutive group-visits is either N + 1 or N ,
depending on whether the two nodes are adjacent in G. Note that
a suboptimal pebbling might also execute further operations, but
these steps are always necessary, so this provides a lower bound
on the cost between two target computations.

Hence, the pebbling of theDAGcorresponds to visiting the nodes
ofG in some permutation π , with the cost of the pebbling directly
dependent on the number of consecutive node pairs in π that are
connected in G. There exists a pebbling strategy of cost at most
(N − 1) · N only if there is a permutation π such that each pair of
consecutive nodes is connected, i.e. if there exists a Hamiltonian
Path inG. However, if a Hamiltonian Path exists, then visiting the
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a

b
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of N −1
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Figure 5: Input groups created for two nodes ofG in Theorem 2 if they are not connected (left) and if they are connected (right).

In the second case, the corresponding contact nodes are merged into one.

input groups in this order indeed gives a pebbling of cost (N −1)·N ,
which completes our reduction. �

Slightly modified versions of this construction provide the same
complexity result in the remaining models. The oneshot model
behaves the same way, except that we are allowed to delete the
red pebbles on the source nodes after their last use, and thus we
have to reduce the allowed cost accordingly. In the base model,
we further insert a H2C gadget, and account for the extra cost it
introduces; this makes it equivalent to the oneshotmodel. Finally,
the DAG of the base model also suffices for the compcost model,
provided that we further increase the allowed cost by ϵ for each
compute operation.

We again point out that the problem in the nodel models was
already proven to be NP-complete before [6].

7 δ -INAPPROXIMABILITY FOR δ < 2

We now show that in the oneshotmodel, approximating the opti-
mal pebbling to a constant factor smaller than 2 also implies that
the Vertex Cover problem is also approximable to a constant fac-
tor smaller than 2. However, if the unique games conjecture holds,
then such an approximation is not possible for Vertex Cover [14].

Theorem 3. For any δ < 2, there is no δ -approximation algo-
rithm for the Pebbling problem in the oneshot model, unless the
unique games conjecture is falsified.

Proof (with details in Appendix A.3). Assume we are given a
graphG onN nodes. We again take every node a ofG, and we now
create two distinct input groups for a; we refer to these as the first-
level group of a (denoted by Va,1) and the second-level group of a
(denoted by Va,2). Both of these groups have the same size k for
every a; we choose the parameter k such that k = ω(N 2).

As before, the input groups on the second level will only have
one target node ta,2. However, each input group on the first level
will have not only one, but N − 1 distinct target nodes. Each of
these target nodes will correspond to some other node b of G (i.e.
b , a); we denote the target node of group Va,1 corresponding to
b by ta,1,b .

For each edge (a,b) ofG, the second-level group of a in the con-
struction includes the corresponding target node of the first-level
group of b , i.e. ta,1,b ∈ Vb,2. This ensures that any pebbling algo-
rithm has to visit Va,1 before visiting Vb,2 to compute this target
node. On the other hand, if a and b are not neighbors in G, then
ta,1,b is just a sink node that is not included in any input group.

Furthermore, for each node a, we ensure that most nodes of the
first and second-level input groups of a coincide. That is, we cre-
ate k −N so-called common nodes for each a, and we include these
nodes in both Va,1 and Va,2. Recall that k = ω(N 2), so these com-
mon nodes dominate the input groups asymptotically. Besides the
common nodes, we have already inserted up to N − 1 target nodes
in the second-level input groups (depending on the degree of a),
so at this point, all input groups have a cardinality between k −N

and k − 1. We simply fill up each input group (on both levels) with
distinct extra nodes to reach a cardinality of k .

The construction is illustrated on Figures 6 and 7. Since each
input group of the construction is of size k , we study this DAG
with a choice of R = k + 1.

The base idea of the construction is as follows. In this DAG, ev-
ery (first- or second-level) input group has to be visited at least
once. However, the second-level group ofa can only be visited after
the first-level groups of all neighbors b of a have been visited, since
a target of Vb,1 is included in the second-level group Va,2. With k

much larger than N , the groupsVa,1 and Va,2 are almost identical
(consisting mostly of the common nodes), and thus a pebbling algo-
rithm can spare a lot of cost by visitingVa,1 andVa,2 consecutively.
In fact, the remaining nodes are asymptotically irrelevant, so the
total cost will be determined by the number of nodes a for which
we can visit Va,1 and Va,2 consecutively.

Whenever we visit Va,1 and Va,2 consecutively, we can simply
compute the common nodes of a first (they are source nodes, so
this happens for free), visit both groups, and then delete the red
pebbles from these common nodes, which is also free.

On the other hand, if the visits ofVa,1 andVa,2 are not consecu-
tive, thenwe first have to compute their common nodes when visit-
ingVa,1, and then move the red pebbles away from these nodes. As
we still need to visit these common nodes forVa,2, and recomputa-
tion is not possible in the oneshotmodel, we have to turn all these
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ta,1,b

Vb,1 Vb,2
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further target
nodes of Vb,1
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N target and
extra nodes in
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N extra nodes
in each group

k − N common
nodes in each

group

Figure 6: Illustration of the input groups created for two adjacent nodes a and b of G in Theorem 3. For a simplified notation,

we draw an arrow from an input group to a target node to show that all nodes in this input groups have an outgoing edge to

the target node in our DAG.

transformed
to

first-level
groups

second-level
groups

Figure 7: DAG construction corresponding to an example graph G in Theorem 3. For a simplified notation, we only illustrate

the input groups of the DAG, denoted by squares in the figure. We use arrows to show dependencies (i.e. a group Va,1 has to

be visited before group Vb,2 because Vb,2 contains a target node of Va,1) between input groups, and we use double gray lines

to show that two groups are almost identical (i.e. they have a large intersection of common nodes). Since the only relevance

of target nodes is that they force the algorithm to visit an input group, they are not shown explicitly in this simplified figure.

The dotted rectangle corresponds to the DAG shown in Figure 6.

common nodes blue, and then turn them back to red later when vis-
itingVa,2 (after which the red pebbles can again be deleted for free).
Thus if the groupsVa,1 andVa,2 are visited non-consecutively, then
each of the k − N common nodes in the groups incurs a cost of at
least 2.

Hence pebbling the DAG comes down to the task of finding the
largest set of nodes in G for which the two groups can be visited
consecutively. Recall that for a consecutive visit of Va,1 and Va,2,

the first-level group of each neighbor of a has to have been visited
earlier. The optimal strategy thus is to visit the first-level groups of
a small vertex cover VC in G, then visit both groups of each node
in the remaining large independent set IS consecutively, and in
the end visit the second-level groups of nodes inVC . The common
nodes in IS will then incur no cost, and thus the cost will be in
the magnitude of 2k · |VC |, due to the transfer operations on the
common nodes of the input groups that are in VC . This cost is

8



On the Hardness of Red-Blue Pebble Games

proportional to |VC | (apart from a negligible O(N 2) factor), so the
cost of a pebbling directly corresponds to the size of the vertex
cover defined by the non-consecutively visited groups. This shows
that approximating the optimal pebbling cost to a δ factor in this
construction also provides a δ -approximation to the Vertex Cover
problem inG. �

There is no straightforwardway to apply this proof to the rest of
our models. In nodel, red pebbles from common nodes cannot be
deleted, so common nodes incur a cost ofk even in the consecutive
case; thus cost is proportional to k · (2|VC |+N ). In the basemodel,
common nodes are either recomputable for free again (thus there is
essentially no cost at all), or they are costly to compute in the first
place, which also adds a term of k · N to the cost. The compcost
model has the same problem as base, with a further cost of ϵ · N 2

added due to the computations.

8 INEFFICIENCY OF GREEDY ALGORITHMS

In the oneshot model, each node of the DAG can be computed
only once. Hence, any pebbling strategy is essentially described by
the (topological) order in which we decide to compute the nodes of
the DAG (and besides this, our method to decide which red pebbles
to take away from other nodes for this computation).

There are some straightforward greedy heuristics to define this
ordering, i.e. to select the next node to compute in each step; it
is natural to ask if such algorithms provide close-to-optimal solu-
tions. Such greedy approaches could, for example, always select
the node:

• with the largest number of red pebbles among its inputs,

• with the smallest number of blue pebbles among its inputs,

• with the largest red pebbles to inputs ratio.

In all these approaches, the greedy choice always happens from
the set of (yet uncomputed) nodes whose inputs have already all
been computed, since these are the only candidates for the next
node to compute. Note that these greedy methods only choose the
next node to compute, but do not specify which red pebbles to
move to its inputs; our examples will show that these algorithms
are inefficient regardless of how the red pebbles are chosen.

This section shows that such greedy approaches can yield much
higher cost than opt(R). As previously, our constructions will con-
sist of input groups of the same sizek , and hence, each (non-source)
node has the same indegree. For such graphs, the previous greedy
approaches are all identical, so one example is enough to disprove
the efficiency of all.

Theorem 4. In the oneshot model, there is a class of graphs and
a choice of R such that costgreedy(R) ≥ Θ̃(

√
n) · opt(R).

Proof. Our construction is in many ways similar to the one in
the previous section: we create many pairs (in fact, even chains) of
input groups with a large number of common nodes, which should
therefore be visited consecutively in any optimal solution. How-
ever, we also create dependencies between these groups (i.e., in-
clude the target nodes of a group in another group) so that some
have to be visited earlier than others. If a greedy approach follows
another ordering and does not compute these target nodes in time,

then it is unable to follow these consecutive chains and thus re-
turns a solution with much higher cost.

Let us introduce a parameter ℓ, the value of which will be cho-

sen later. Our construction consists of
(ℓ+1
2

)
input groups, aligned

along a grid in the positions (i, j) satisfying 1 ≤ i, j ≤ ℓ and
i + j ≤ ℓ + 1, as shown in Figure 8. As in our previous examples,
each of these input groups have the same size, denoted by k . Along
each diagonal (i.e. the groups with i + j = x for some specific x),
the input groups are essentially the same, i.e. they all consist of the
same k ′ common nodes, with k ′≈k . We create exactly one target
node for each of these input groups, denoted by ti, j for the group
at position (i, j).

To generate dependencies between the groups, we also include
the target node ti, j of each group (i, j) in the group (i, j+1), i.e. the
group immediately above if such a group exists. This ensures that
any algorithm has to visit group (i, j) before visiting group (i, j+1),
since the target node of group (i, j) is required in order to compute
the target node of group (i, j + 1).

Furthermore, we add a few more extra nodes in order to mis-
guide the greedy heuristic. For each j, we create a small intersec-
tion between the uppermost group of column j and the lowermost
group of column j − 1 (i.e. groups (j, ℓ + 1 − j) and (j − 1, 1) for
j ∈ {2, ..., ℓ}).

Note that both for dependencies and misguidance, we only add
a small constant number of nodes to each input group. Our choice
of k ′ will ensure that k ′ is in a much larger magnitude, so each in-
put group is still asymptotically dominated by the common nodes
in the group. Also, the addition of these extra nodes leads to input
groups of slightly different size; to fix this, we simply add an ap-
propriate number of distinct extra nodes to each group in order to
ensure that they all have the same cardinality k = k ′ +O(1).

Finally, we need a technical step to ensure that the greedy ap-
proach enters this grid by visiting group (ℓ, 1) first. We add an ex-
tra input group S0 below the whole grid, and create multiple target
nodes for this group.We place a distinct target node of S0 into each
of the bottom groups (i, 1) of the grid. This way, any valid pebbling
can only begin by visiting S0, since the bottom groups have a de-
pendence on S0, and all other groups in the grid have a (direct or
indirect) dependence on a bottom node. We then create a small in-
tersection (of constantly many nodes) between S0 and group (ℓ, 1)
of the grid. This ensures that after visiting S0, the greedy approach
continues at group (ℓ, 1), since some of the inputs of group (ℓ, 1)
already have a red pebble due to this intersection. Hence after com-
puting all the target nodes of S0, the greedy approach continues by
visiting group (ℓ, 1) of the grid.

Let us now analyze the progress of the greedy method in the
grid. After (ℓ, 1), a greedy algorithm can only visit another bottom
node next, since all other groups have an (indirect) dependency on
the bottom group in the respective column. That is, even though
group (ℓ, 1) has a large intersection with group (ℓ−1, 2), this group
(ℓ − 1, 2) also contains a target node of group (ℓ − 1, 1), which is
not computed yet. Thus the greedy algorithm has to choose among
the bottomgroups (i, 1); due to the small intersectionwe added, the
algorithm chooses (ℓ − 1, 1) next. At this point, the only available
groups for visitation are the further bottom groups (i, 1) and the
group (ℓ − 1, 2) above the current position. Since no bottom group
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Greedy visiting: Optimal visiting:

Figure 8: Construction for Theorem 4: grid of input groups for ℓ = 4, and their greedy and optimum visitation order. We apply

the same notation as in Figure 7.

has a red pebble on any of its nodes, but group (ℓ−1, 2) contains the
target node tℓ−1,1 which currently has a red pebble, the algorithm
goes above to (ℓ − 1, 2) next. Then the red pebbles are once again
in an input group at the top of a column, so as before, the most
attractive next move is to go to the next bottom node (ℓ − 2, 1).

Following the small intersections sets in our design, the greedy
method will continue in a similar fashion, visiting the columns
from right to left, and processing each column in bottom-to-top
direction. Whenever the algorithm is at the top of a column, the
misguidance nodes ensure that it selects the bottom group of the
next column in the following step, and whenever it is within a col-
umn, the only already enabled input group that has a red pebble on
one of its nodes is the group immediately above. At every group
(i, j) in the process, moving up along the diagonal to (i − 1, j + 1)
would be a much more attractive move, but the algorithm cannot
execute this because group (i − 1, j) is still unvisited at this point,
so one of the nodes in group (i −1, j+1) is not yet computed. Thus,
without a deeper understanding of the dependencies between the
groups, the greedy method follows a suboptimal ordering.

In contrast to this, after visiting S0, an optimum pebbling could
instead begin with group (1, 1) first, then (2, 1) and (1, 2), followed
by (3, 1), (2, 2) and (1, 3), and so on, always selecting the next bot-
tom node (i, 1)with i increasing, and then processing the diagonal
from this node up to (1, i). This visitation order ensures that all
groups of the diagonal in question are enabled by the time the al-
gorithm reaches group (i, 1).

If k is large and k ′ is only slightly smaller, then the cost of the
pebbling is determined by the cost of revisiting the k ′ common
nodes in the groups. We have ℓ large sets of common nodes, cor-
responding to the ℓ diagonals. The greedy algorithm visits these
common nodes again and again: the nodes in diagonal i + j = ℓ+ 1
are visited ℓ times (once for each group in the diagonal), the nodes
in diagonal i + j = ℓ are visited ℓ − 1 times, and so on. Since all
red pebbles are needed for every visitation, the greedy algorithm
must turn these common nodes red and then blue each time when
visiting the diagonal. As a technical detail, note that the first and
last visitations are somewhat of an exception to this: the first time
when the common nodes are visited, they obtain a red pebble free
of charge since they are computed, and at the last visitation, the red
pebbles from the nodes can be deleted free of charge. Due to this,
the ℓ visitations of the common nodes in diagonal i + j = ℓ + 1 for
example only require these transfer operations ℓ − 1 times instead
of ℓ; however, this is asymptotically irrelevant. Altogether, these

transfer operations mean that the greedy algorithm will incur a
cost of 2k ′ · (ℓ−1 + ℓ−2 + ...) = 2k ′ · Θ(ℓ2).

On the other hand, an optimal solution simply computes the
common nodes when visiting group (i, 1), and deletes them after
leaving the diagonal, doing both for free. Hence, the commonnodes
incur no cost in this optimal pebbling, and the cost of the pebbling
is only determined by the operations on the remaining few nodes
in each input group. Since there are only k −k ′ such nodes in each

of the
(ℓ+1
2

)
input groups, and we only execute constantlymany op-

erations on each of them, the cost of the optimal pebbling is only
in the magnitude of (k − k ′) · Θ(ℓ2).

Let us now choose our parameters: we choose ℓ = ω(1) as a
slowly growing function (e.g. ℓ = logn), let k = Θ̃(n), and let
k ′ = k − O(1) for a sufficiently large constant to allow the previ-
ously discussed extra nodes in each group. Since we have O(k ′ · ℓ)
common nodes andO((k −k ′) · ℓ2) extra nodes in the construction,
the overall number of nodes is indeed less than n if we choose
k = Θ

(
n
ℓ

)
with the appropriate constant.

This means that the optimum algorithm has a cost of O(log2 n)
in our construction, while the greedy algorithm incurs a cost of
Θ̃(n). Altogether, this provides a factor of Θ̃(n) difference between
the greedy solution and the optimum.

However, we note that our transformation to reduce ∆ to a con-
stant requires a slightly different choice of parameters in our con-
struction; this reduces the difference to a factor of Θ̃(√n) in the
constant-degree case. �

Since the remaining models allow recomputation, defining the
same greedy algorithm is already not a straightforward task in
these models: an algorithm might decide to compute a node mul-
tiple times during a pebbling. We discuss the interpretation of the
greedy rule in these remaining models in more detail in Appendix
A.4. With a slightly refined definition of the greedy algorithm, we
can also adapt our construction to the remaining models.

In the base model, we need to add a H2C gadget to the con-
struction to ensure that common nodes cannot be recomputed for
free. However, this means that the first computation of the com-
mon nodes will also incur a considerable cost in the optimum case,
which reduces the difference between the greedy and the optimum
pebbling to a Θ(n1/3) factor, or a Θ(n1/6) factor when restricted to
∆ = O(1). In nodel and compcost, recall that the cost of two peb-
blings can only differ by a constant factor; in these cases, we show
that this difference can become an arbitrarily high constant. The
details of these modifications are discussed in Appendix A.4.
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A MORE DETAILS ON THE CONSTRUCTIONS

A.1 The tradeoff diagram in other models

It is rather straightforward to see that in the construction of Figure
3, the tradeoff function is also essentially the same for othermodels.
In the nodelmodel, the only difference is the fact that chain nodes
are never deleted, but turned to blue, which simply adds an offset
of n to the function. Similarly, the computation of the chain nodes
adds an offset of ϵ · n in the compcost case.

The only slightly more involved step is the addition of the H2C
gadget, which is required in the base and compcostmodels. Note
that the H2C gadget in general was designed to work for a specific
R value; however, as opposed to the other constructions in the pa-
per, the tradeoff graph is a construction that we want to study for
multiple R values. Nonetheless, an easy modification allows us to
adapt the H2C gadget for this case. Let the gadget consist of d + 1
nodes in group B as before, but let us now add d + 3 starter nodes
for each source of the DAG (instead of adding only 3, as we do in
every other application of the gadget). This ensures that the H2C
gadget can still be pebbled even with the minimal R = d + 2, but
since it has many target nodes, we still have to save at least 2 of
these into slow memory, even if R = 2d + 2 (i.e. the maximal R we
consider). For any R < 2d + 2, this will only mean that computing
the control group nodes is slightly more costly, but this still only
adds an overhead of 2d ·O(1) to the total cost.

Note that in models allowing recomputation, it is not a straight-
forward fact anymore that the cost can only decrease by 2n with
the addition of each new red pebble. Hence in other models, it
might also be possible to generate tradeoff functions that decrease
more quickly than the maximal rate in the oneshotmodel.

A.2 NP-hardness (Hamiltonian Path reduction)
in other models

The reduction in the nodel model has already been described in
Section 6. We now describe the modifications required for the re-
maining models.

Compared to nodel, the oneshot model only requires us to
modify the maximal allowed cost. This consists of two different
steps. Firstly, note that in the oneshot model, moving from one
input group to another does not have a cost ofN orN −1 anymore,
but a cost of 2N or 2(N − 1): since overriding the source nodes
through recomputation is not possible, we also have to apply a
transfer operation to make each node in the next input group red,
so moving each red pebble has a cost of 2 instead of 1. Thus, the
allowed cost of the pebbling should bemodified to (N −1) · (2N−1).

Besides this, note that in nodel, we had to turn almost all the
N · (N − 1) − M source nodes blue by the time of computing the
final target node (except for the input group visited last, where
we can leave N − 1 red pebbles when finishing the pebbling). In
the oneshot model, the red pebble can be removed from each of
these source nodes after they have been used for the last time. This
reduces the cost byN ·(N−1)−M−(N−1) = (N−1)2−M . The target
nodes, on the other hand, still have to receive a blue pebble while
the remaining targets are being computed, so managing them has
the same cost as in the nodel model. Altogether, this results in an
allowed cost of (N − 1) · (2N − 1) − (N − 1)2 +M = (N − 1) ·N +M .
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In the base and compcostmodels, we have to add a H2C gadget
to disable the recomputation of source nodes. For simpler analy-
sis, we now use the H2C gadget slightly differently than in other
cases: besides the starter nodes, we also instantiate the group B

separately for each source node of the construction. With this, the
computation of each source node becomes a separate process, each
requiring all red pebbles and having a cost of exactly 4 in the base
model (and a cost of exactly 4 + (R + 4) · ϵ in compcost), indepen-
dently of other source nodes. Hence, we can compute each source
node exactly once, and regardless of when it is done, the allowed
cost in the reduction has to be increased by 4 · (N · (N − 1) −M) in
the basemodel, and (4+ (R+ 4) ·ϵ) · (N · (N − 1)−M) in compcost.

After the H2C gadgets are added, the reductions work the same
way in these models as in the oneshot model, since we have the
sameDAGwith the free recomputation of source nodes disabled. In
compcost, the computation of each target nodes requires an extra
cost of ϵ to further add to the cost parameters. Hence, with the
appropriately defined cost limit, the reduction from Hamiltonian
Path works in each of the models.

A.3 Details of the reduction from Vertex Cover

In the reduction from Vertex Cover, let us first discuss the cost of
a pebbling in more detail.

Target nodes of input groups in the first level are first computed
(when visiting the input group), then possibly turned to blue once
and later back to red (if the group is not followed by the second-
level input group that includes the target node), and deleted after
the second-level input group is visited. Thus, such nodes incur a
cost of at most 2; with N · (N −1) such target nodes altogether, this
sums up to a cost of at most 2 · N · (N − 1).

Target nodes of input groups in the second level are only com-
puted once, and possibly turned to blue (in order to free the red
pebble on them). With N such target nodes, this amounts to a cost
of at most N .

Filler nodes (inserted to increase the cardinality of each input
group to k) are only computed once, and then can be deleted, so
they incur no cost.

Finally the common nodes, as discussed earlier, are computed
when the first-level group is visited, possibly turned to blue and
then back to red (if the visiting of the two groups does not happen
consecutively), and then deleted for free. Thus depending on the
number of consecutive visits, the common nodes incur a cost of
|VC | · k ′, where k ′ denotes the number of common nodes in an
input group (i.e. k ′ = k − N ).

Note that these describe the maximal number of transfer moves
that any reasonable pebbling would execute on the nodes in ques-
tion. If an approximation algorithm executes some additional trans-
fer moves on some nodes, then it can be further simplified to obtain
an approximation algorithmwith even lower cost. Thus, we can as-
sume that our approximation algorithm only executes thesemoves.
As such, the algorithm has a total cost of |VC | · k ′ +O(N 2). Thus
by choosing, e.g., k ′ = Θ(N 3), the cost of the pebbling is indeed
determined by the size of the vertex cover found.

Formally, the proof of inapproximability is as follows. In any
valid pebbling, each input group is visited at least once, since all

target nodes have to be computed at some point, and all red peb-
bles are required to compute the target nodes of an input group.
Given a pebbling, consider the sequence obtained by only taking
the first visitation of each input group. If a and b are neighboring
nodes ofG, then the first-level group ofa precedes the second-level
group of b in this sequence. Furthermore, we can assume that the
first-level group of node a always precedes the second-level group
of a; otherwise, we can simply swap them without changing the
magnitude of the total cost.

In this sequence, each time when the first-level group of a is
not followed by the second-level group of a immediately, a cost
of at least k ′ is incurred, since the red pebbles from the first-level
group cannot be deleted yet, but they are needed elsewhere for
the common nodes of the next group in the sequence, so they all
have to be turned blue. Hence, theminimal possible number of non-
consecutively appearing group-pairs (multiplied by 2k ′) is a lower
bound on the cost of any pebbling. If a and b are neighbors in G,
then at most one of them can have its two groups consecutively;
thus, the set of nodes for which the groups are consecutive forms
an independent set. If we find a large independent set inG, then the
complement of this set is a small vertex coverVC ofG. Thus ifVC0

is the smallest vertex cover, then 2k ′ · |VC0 | is a lower bound on
the cost of any pebbling strategy in our DAG. On the other hand,
as discussed, a pebbling of cost 2k ′ · |VC0 |+O(N 2) is indeed always
possible.

Thus assume we have a δ -approximation algorithm (with δ < 2)
for the pebbling problem, and we run it on our construction. Since
running time is dominated by the |VC | · k ′ term discussed above,
the remaining terms in O(N 2) become irrelevant asymptotically;
that is, for N large enough, a δ -approximation for every DAG is
only possible if the approximation algorithm is always able to find
a pebbling where the first- and second-level groups only appear
non-consecutively for at most δ · |VC0 | nodes of G. Since the re-
maining nodes form an independent set, this implies that the set
of non-consecutive input groups provides a vertex cover of size at
most δ · |VC0 | in G. Since the DAG construction is polynomial in
N , this implies that a polynomial time δ -approximation algorithm
for the pebbling problem would also provide a polynomial time δ -
approximation for Vertex Cover, contradicting the unique games
conjecture. Thus if the conjecture holds, then such an algorithm
cannot exist.

Finally, note that our reduction requires a relatively large num-
ber of red pebbles: as k ′ = ω(N 2), k = k ′ + N and R = k + 1,
the pebbling problem obtained has an input parameter R = ω(N 2).
However, this R is only large in terms of N , the size of the original
graph in the Vertex Cover problem. On the other hand, R can be
significantly smaller than the size of our DAG: we are free to add
a large number of further nodes to the DAG that incur no cost and
have no effect on the pebbling of the described construction. As
the DAG size only needs to remain polynomial in N , this shows
that for any integer c , we can have a reduction to a pebbling prob-

lem with R = O(n 1
c ), with n being the size of the DAG. Thus, our

reduction also works if R in the pebbling problem is restricted to
smaller values.
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A.4 The greedy method in other models

In fact, defining a greedy algorithm in the remaining models (be-
sides oneshot) is already not straightforward. With recomputa-
tions allowed, even if we choose the next node to compute, we
need to decide whether to obtain the inputs from blue pebbles or
through recomputation (in fact, even earlier: when we move a red
pebble away from a node, we have to decide whether to turn it to
blue or delete it).

However, we can adapt the construction to these models if we
interpret the greedy approach as an ordering of the very first com-
putation of nodes. Similarly to before, we can add a H2C gadget to
ensure that recomputations are not beneficial in any case. In this
interpretation, our results hold for any pebbling that uses a greedy
heuristic to process the DAG, even if it is a ‘clever greedy’ algo-
rithm in the sense that for each new computation, it knows (from
an oracle) the cheapest method to compute the specific node. In
this sense, our results also hold in the other models, even for such
moderately intelligent greedy heuristics.

Let us now consider the nodel and compcost models. In these
models, the pebbling of the graph has an inherent cost of Ω(n), and
hence we need a different choice of parameters. Let k be a large
constant value, k ′ be a slightly smaller constant, and ℓ = Θ(

√
n).

Recall that the number of nodes in our greedy construction is in
the magnitude of ℓ2 · k .

This implies that the commonnodes of groups now only amount
to k ′ · ℓ = O(√n) nodes in the graphs, so most nodes of the graph

are the extra nodes in the
(ℓ+1
2

)
groups. These can either be tar-

get nodes of the input group below, or nodes inserted into upper-
most/lowermost groups of a column tomisguide the greedy heuris-
tic, or further filler nodes to ensure that each input group has the
same size. Note that the number of misguiding nodes is only O(1)
in each column, and by merging the filler nodes in the different
groups of each column, we can also ensure that we only use O(1)
filler nodes in each column. This reduces both the number of filler
nodes and misguiding nodes toO(1) · ℓ = O(√n), so most nodes of
the graph are indeed target nodes.

This already limits the number of source nodes in the graph to
O(√n), allowing us to add a H2C gadget to the construction with-
out any significant effect on the total number of nodes. Since al-
most all nodes of the graph (n−O(

√
n) of them) are now non-source

nodes, the minimal cost of a pebbling in the compcostmodel is in-
deed in themagnitude of ϵ ·n. Also, since the number of red pebbles
k + 1 is a constant, the minimal pebbling cost is n −O(1) ≈ n in the
nodel model. This shows that enabling the source nodes through
the H2C gadget is not a dominant part of the pebbling cost.

Recall that in our construction, the greedy algorithm has a cost
in the magnitude of k · ℓ2, while the optimum cost is in the mag-
nitude of (k − k ′) · ℓ2. Choosing a large constant k and a k ′ that
is only slightly smaller, we can create an arbitrary constant factor
difference between the optimum and greedy pebblings. As the cost
of any two pebblings are within a constant factor, this amounts to
a significant difference in these models. In particular in the nodel
model, this allows us to reach a factor 2∆− c difference for a small
constant c , essentially reaching the maximal difference factor of
2∆ + 1 for larger ∆ values.

Finally, let us consider the base model. We also add a H2C gad-
get here to ensure that source nodes (and most importantly among
these, common nodes) are never recomputed. This adds an extra
cost ofO(1) · k · ℓ, since these nodes initially have to be computed
at some point. With this, the cost of greedy pebbling is now in the
magnitude of ℓ ·k + ℓ2 ·k , thus it is still dominated by the progress
through the grid. The cost of the optimum is in the magnitude of
ℓ · k + ℓ2 · (k − k ′). Hence by choosing ℓ = Θ( 3

√
n), k = Θ( 3

√
n)

and k ′ = k − O(1), we get a cost of Θ(n) for the greedy pebbling

and Θ(n
2
3 ) for the optimum. Thus in the base model, there can be

a factor of Θ( 3
√
n) difference between the two algorithms.

B RESTRICTION TO CONSTANT INDEGREE

The main idea for the constant degree gadget (CD gadget) has al-
ready been outlined before. If R − 1 red pebbles are placed on the
leftmost nodes, then using twomore pebbles, the entire gadget can
be pebbled for free (in the oneshot and base models), regardless
of the value of h. However, if we want to pebble the gadget using
fewer than R − 1 red pebbles on the leftmost nodes, then the red
pebbles have to be moved around within the leftmost nodes, incur-
ring a cost of at least 2 for every layer (assuming that the leftmost
nodes cannot be recomputed for free), and hence a total cost of at
least 2h. For h large enough, this already ensures that any reason-
able pebbling has to place a red pebble on all the leftmost nodes at
some point.

Note that this modification also requires us to raise the num-
ber of available red pebbles from R to R + 1. When adapting our
constructions to constant indegree, we transform each input group
into a CD gadget, and thus the construction will behave as before
with R + 1 available red pebbles.

Note that each input group is used to compute some specific
target nodes in our constructions. After replacing the input groups
by CD gadgets, we can simply add these target nodes to the end
of the CD gadget, drawing an edge from the last node in the last
layer of the CD gadget to all the target nodes. This ensures that
in any pebbling with reasonable cost, the target nodes can only be
enabled after R − 1 red pebbles have been placed in the leftmost
nodes of the CD gadget.

B.1 NP-hardness

The constant degree gadgets are rather straightforward to use in
the Hamiltonian Path reduction. Recall that the maximal allowed
cost C in each of the models is within O(N 2). Hence a choice of
h = C + 1 (or much higher) already ensures that if any pebbling
strategy does not have all red pebbled at an input group at some
point in time, then computing the constant degree gadget has a
cost of at least C + 1, and thus it is invalid. Therefore, any valid
pebbling still has to visit all the input groups (i.e., have all red
pebbles in the input group and its targets at some point), and a
pebbling again comes down to the order of visiting the groups.
Note that the number of nodes in the DAG still remains within
O(N 2) · h = O(N 4).

Note that to have constant indegree for all nodes of the graph,
we also have to transform the H2C gadget which is added in some
of the models. This happens exactly the same way as with other
input groups: we add 3 CD gadgets for every source node, with the
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leftmost nodes of the CD gadget being group B of the H2C gadget,
and the target node being one of the 3 starter nodes. Hence the
computation of any starter node (in reasonable cost) also requires
us to place all red pebbles on group B of the H2C gadget.

Note that this is already sufficient for the oneshot and base

models, where, after all red pebbles are moved to a CD gadget, the
computation of the h layers of the gadget is completely free. The
other two models also require some modification in the allowed
cost C . In nodel, we have to turn each node of each layer blue in
every CD gadget, which raises the total cost by (R − 1) ·h for each
added CD gadget. In compcost, while the intermediate nodes can
be deleted for free again, the computation of the layers in each CD
gadget amounts to an extra cost of (R − 1) · h · ϵ .

B.2 Inapproximability

In the reduction from Vertex Cover, we also simply have to selecth
large enough in order to use CD gadgets. Since the optimum cost is
always at mostO(N ·k), choosing h = Θ(N 2 ·k2) ensures that any
node not placing all red pebbles in an input group simultaneously
(and thus incurring a cost of at least h) is not a constant-factor
approximation.

Note that we only consider this construction in the oneshot

model, where processing a CD gadget is free; therefore, replacing
input groups by CD gadgets does not modify the cost of any (rea-
sonable) pebbling strategy.

B.3 Construction for the greedy algorithm

Themethod, however, requires somemodifications to be applicable
to our results on the greedy algorithm.

First of all, note that in the greedy construction, the transforma-
tion is not even required for the case of the nodel and compcost

models. In these models, we have selected k = O(1), which already
ensures that every target node in the construction has constant
indegree.

Let us now consider the construction in the other two models.
Note that previously, since each computation required the use of
all red pebbles, it did not matter how the greedy algorithm selects
the red pebbles to use for a specific computation. This becomes a
more significant question in our construction for ∆ = O(1). How-
ever, using CD gadgets with a high h value essentially ensures that
we always study the most clever greedy algorithm that select red
pebbles in an optimal way. Such a clever greedy algorithm always
removes the red pebbles from the already processed input groups
into the input group that is currently being processed; this way,
computing all nodes of the CD gadget happens at no cost. In any
other case, the computation requires a cost of at least h, so if we se-
lect h to be larger than the worst-case cost of the clever algorithm,
then any suboptimal choice of red pebbles will certainly result in a
higher total cost than the greedy algorithm that selects red pebbles
optimally. Hence in this case, it is enough to compare the optimum
pebbling to the greedy algorithm with the most intelligent choice
of red pebbles.

For this construction, we slightly modify the original CD gadget.
In the leftmost row of Figure 1, let us replace each node by a small
group of constant size; the indegree of each node in the gadget will
still remain a constant after this. This modification allows to take

the O(1) extra nodes (i.e., the ones besides the common nodes) in
each input group, and add it to each small leftmost group in the
gadget. Thus the only difference between the leftmost groups of
the gadget will essentially be that each contains a separate com-
mon node of the specific input group.

The addition of a few more nodes to each leftmost group allows
us to analyze the greedy algorithm more easily. Let us take differ-
ent constants c1 > c2 > c3. For each input group, let us create
c1 specific nodes that are included in each leftmost group of the
CD gadget obtained from the input group. For each column of the
grid, let us add c2 nodes that are included in each input group in
the given column of the grid. Finally, let us use c1 nodes to mis-
guide the greedy heuristic such that it prefers the bottom group of
the next column after the top group of the previous column. This
ensures that whenever the greedy algorithm starts processing an
input group, it will prefer to continue with the next leftmost group
of the gadget until all the leftmost groups are filled with red peb-
bles. After the entire CD gadget is pebbled, it will prefer to move
to the input group above (in the grid), or the next column if it is al-
ready at the top of the current column. This ensures that the greedy
algorithm follows the pattern discussed in Section 8 through the
grid.

The extra H2C gadgets in the base model can be transformed
as we have seen in the previous constructions.

Let us now discuss the choice of parameters required. In the
oneshotmodel, we can choose ℓ to be a slowly growing function
in ω(1) as before. In this case, the cost of the greedy algorithm can
go up to as much as k ′. Now if we select k ′ = Θ̃(

√
n), then a choice

of h = Θ̃(√n) ensures that trying to pebble an input group without
using all the red pebbles is already more costly than the total cost
of the greedy method. Since the number of nodes in the graph is in
themagnitude of ℓ2 ·k ·h, this is indeed a valid choice of parameters.
As the optimum pebbling has a cost ofO((k − k ′) · ℓ2), this shows
that the greedy algorithm can be a factor Θ̃(√n) worse than the
optimum.

In the base model, with k ′ = k −O(1) as before, the cost of the
greedy algorithm is essentially ℓ2 ·k , while the cost of the optimum
pebbling is ℓ2 + ℓ ·k (see Appendix A.4). If we choose h = Θ(ℓ2 ·k),
we can ensure that not using all red pebbles for an input group is
alwaysworse than the greedy cost of ℓ2 ·k . Since we haveΘ(ℓ2 ·k ·h)
nodes in the graph, we can choose h = Θ(

√
n), ℓ = Θ( 6

√
n) and

k = Θ( 6
√
n). This results in a cost ofΘ(

√
n) for the greedy algorithm

and a cost of Θ( 3
√
n) for the optimal pebbling, showing that the

difference can go up to a factor of Θ( 6
√
n).

C PEBBLING WITH DIFFERENT STARTING
OR FINISHING STATES

Asmentioned in Section 3, some papers on the topic consider slightly
different definitions for the initial and/or finishing state of peb-
blings. In particular, the original paper of Hong et al [12] intro-
ducing the problem also uses these alternative definitions. We now
show that for all our results, the settings are essentially equivalent,
and applying the alternative definitions only result in an asymptot-
ically insignificant difference in cost.
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In our definitions, we consider source nodes as regular nodes
with 0 inputs, which are, thus, always computable for free. In con-
trast to this, some studies assume that source nodes already con-
tain a blue pebble in the beginning, and are not computable at all;
you have to turn these blue pebble to a red one in order to start
computation. Note that we can also adapt our results to such a
setting: as described in Section 3 when analyzing the number of
source nodes, we can add a single source s0 to the DAG and make
this the input of every other node. In this case, s0 becomes the only
source node of the graph, so the (possibly many) original sources
can be computed for free as before. Turning s0 to red in the begin-
ning will induce an extra cost of 1, but this does not affect any of
our results. This transformation into a single-source DAG already
been described in [6] before.

Note that together with the observations of Section 3, this shows
that both definitions of initialization (freely computable sources, or
sources starting with blue pebbles) can model both possible situa-
tions of interest (when source nodes are free to compute, and when
source nodes should incur some cost). If source nodes are free to
compute, we can still make them incur some cost using a H2C gad-
get (as in Section 3); and if source nodes start with blue pebbles,
we can still reduce the incurred cost to 1 using a single source s0
(as shown above).

Also, while in our definition, we consider a pebbling finished
when all sink nodes contain a pebble (either red or blue), some pa-
pers explicitly require each sink node to contain a blue pebble in
the end of the pebbling. Note, however, that once each sink node
has a pebble of some color, we can turn all these pebbles blue at an
extra cost of at most 1 per sink node. One can observe that in each
of our constructions, the number of sink nodes is always asymptot-
ically smaller than the cost of the optimal pebbling, and thus this
extra cost of 1 per sink node has no effect on the magnitude of the
total cost. Hence, our results also hold if all sinks are required to
have a blue pebble in the end.

More specifically, the construction of Section 5 only has 1 sink
node, and an extra cost of 1 does not have any major effect on
the behavior of the tradeoff. For the Hamiltonian Path reduction,
any valid pebbling has to turn all but 1 sink node blue in any case;
thus the different setting also only increases the cost by 1 (thus
we also have to increment the maximal allowed cost by 1). In the
Vertex Cover reduction, the only sink nodes are the target nodes
of second-level groups, thus the DAG contains N sink nodes. Since
we have specifically chosen k much larger than N , unless G con-
tains a vertex cover of size 0, an increase of N in the cost has no
effect on the reductions. Finally, the construction for the greedy
algorithm has ℓ sink nodes, and a cost increase of ℓ has no effect
asymptotically in any of the models.
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