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AN APPLICATION OF GENERALIZED TREE PEBBLING
TO SPARSE MATRIX FACTORIZATION*

JOSEPH W. H. LIU,

Abstract. A generalized version of the pebble game for trees is described. It is motivated by the study of
out-of-core methods for the Cholesky factorization of sparse matrices. A solution to the generalized pebbling
problem will give an equivalent ordering ofthe sparse matrix, so that the reordered matrix requires the minimum
amount of in-core storage for its out-of-core factorization using the scheme in 12]. An efficient algorithm is
presented to determine such an optimal solution.
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1. Introduction. It is well known that many sparse matrix problems can be con-
veniently studied using graph-theoretic approaches. For example, the problem ofreducing
or minimizing bandwidth for a sparse symmetric matrix structure can be examined as a
linear layout problem for graphs [4]. The fill-reduction ordering problem is closely related
to the graph separator problem [10].

In this paper, we consider a problem encountered in the out-of-core solution of a
sparse symmetric matrix. We want to find an equivalent ordering ofa given sparse matrix,
which will minimize the amount of in-core storage requirement for the successful exe-
cution of an out-of-core factorization scheme. We show that this sparse matrix problem
can be transformed to a graph problem as a general form of the pebble game for rooted
trees. This pebble game is originally introduced to study register allocation in straight-
line programs [2]. It has received much attention on different variations of the basic
problem [6]-[9], 14]-[ 16].

The generalized form of the game studied in this paper is quite different from the
others in the literature. The number of pebbles required to satisfy a tree node can now
be more than one. We provide an efficient algorithm to solve this generalized pebble
game problem, and the underlying approach is similar to the one used by Yannakakis
[20] to solve the related min-cut linear arrangement for trees. It should be noted that the
algorithm can also be used to determine the best possible ordering for the out-of-core
multifrontal method [3], 17] in terms of primary storage reduction.

An outline of this paper is as follows. In 2, we describe briefly the necessary
background on the sparse out-of-core factorization scheme introduced by the author in
[12]. We formally introduce the class of equivalent orderings to be considered in the
paper. It is based on the important tree structure, called the elimination tree, obtained
from the sparse Cholesky factor matrix. The storage requirement on a fixed ordering for
the out-of-core scheme is also derived.

In 3, the problem of finding an optimal equivalent ordering that minimizes the
primary storage requirement is transformed into the generalized pebble game problem.
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A brief summary of existing pebbling algorithms to solve special forms of this pebble
game is also presented.

Sections 4 to 6 are devoted to the devdopment ofan algorithm to solve the generalized
pebble game. An overview of the method is given in 4. The overall scheme makes use
ofthe recursive structure of trees. It determines optimal orderings for subtrees, and then
combines them to yield an optimal ordering for the entire tree.

Section 5 introduces the notion of a cost sequence. It is adapted from the one used
by Yannakakis [20] on the min-cut layout problem for trees. This notion is essential in
developing the overall optimal algorithm. Optimality is now in terms ofthis cost sequence
together with a newly-defined partial order. In 6, the algorithm to combine optimal
subtree orderings is described. We prove that the overall ordering found is indeed optimal.
The computational complexity of this algorithm is also addressed.

Section 7 contains our concluding remarks. There are three theorems in 6, whose
proofs are quite involved and lengthy. In order not to obscure the essential ideas in the
paper, these proofs are postponed and presented in an appendix.

2. Statement of the problem.
2.1. Background on sparse out-of-core factorization. Let A be a given n by n sparse

symmetric positive definite matrix, ordered appropriately by some fill-reducing ordering
[5] (e.g., the minimum degree ordering). Let L be the (lower-triangular) Cholesky factor
ofA. The notations r/(Lj.) and r/(L.j) are used to denote the number of nonzeros in the
jth row and jth column of L, respectively.

In 12], the author proposes an out-of-core scheme for the sparse Cholesky factor-
ization of large sparse matrices. The scheme is demonstrated to be quite effective in
computing sparse Cholesky factors of extremely large matrices using auxiliary storage.
It is based on the idea of matrix storage reorganization. A working storage vector in
memory is provided to store nonzero entries of the Cholesky factor L. We shall refer to
it as the "primary storage vector" for L.

If this primary storage can accommodate all nonzeros in the factor L, factorization
will be carried out by the conventional in-core method [5]. Otherwise, this storage vector
will be reorganized when need arises during the course of factorization. In each organi-
zation, only those values that are required for subsequent steps of factorization are to be
retained in memory. In this way, it allows much larger problems to be solved in a given
amount of primary storage, without having to rely on excessive data I/O to and from
auxiliary storage. Indeed, auxiliary storage is used only to store the computed columns
of the Cholesky factor.

In this out-of-core algorithm, the minimum amount of primary storage required
during the computation of the jth column ofL is given by

j--I

Z {r/(L,k)-r/(Lk,)} +n(L,).
k=l

It is easy to see that this is actually the number of nonzero entries in the set

L[j] { liklk <=j <- i}.

This rectangular window is the shaded region as illustrated in Fig. 2.1. We shall use
rt(Ltjl) to denote the number of nonzeros in this region.

Therefore, the minimum primary storage requirement for the successful completion
of the entire factorization using the out-of-core scheme is

max ((Ltil)l =<j-< n}.
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FIG. 2.1. Region requiredfor the computation ofcolumn j ofL.

Note that this quantity is fixed once the structure ofthe matrix is specified and its ordering
is given.

2.2. The problem: Primary storage minimization. For a given fill-reducing ordering,
it is well known that there exists a class of orderings that are equivalent in terms of fills
and operations. It is based on the so-called elimination tree structure. This tree structure
defines a class of equivalent orderings, each having the same set of filled edges as the
original ordering 13], 18].

Consider the structure of the Cholesky factor L. We define the elimination tree of
A to be the tree with n nodes { 1, 2, n}, and node is the parent of node j if and
only if

min {kl lkj 0 },
that is, is the row subscript ofthe first off-diagonal nonzero in columnj ofL. We assume
that the matrix A is irreducible, so that the structure is indeed a tree, and n is the root
of this tree. (IfA is reducible, then the elimination tree defined above is actually a forest
which consists of several trees.) Figure 2.2 contains a 10-by-10 matrix example whose

A

1 x

x x 3

x x x

4 x x

5xx

xx6x

xxx7x

xSx

x9
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FIG. 2.2. A matrix example.
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diagonal entries are labeled by the corresponding equation/variable numbers. Its elimi-
nation tree is displayed in Fig. 2.3.

Any reordering that numbers nodes before parent nodes in the elimination tree is
known to be equivalent to the original ordering. In other words, the number of fills and
the amount of arithmetic operations to perform the factorization remain unchanged.
Such orderings are referred to as topological orderings of the tree 19]. In this paper, we
consider the problem of determining a topological ordering for a given elimination tree
that will minimize the primary storage requirement for the out-of-core algorithm in 12].

We first re-specify the problem in graph-theoretic terms. Let T (X, E) be a given
rooted tree of n nodes. For each node x eXin the tree T, two integer values are associated
with it: row(x) and col(x). For any topological ordering r: x, x, x, the core cost
at x is defined to be

j-I

core(x.) {col(xg) row(xk) } + COI(x).
kl

The core cost of T with respect to the given ordering r is then

max {core(x)l =<j =< n}.
Our objective here is to determine an optimal ordering r that will minimize the core
cost of T over all topological orderings of T.

In this paper, only topological orderings with respect to an elimination tree will be
considered. Unless otherwise stated, we shall use ordering ofa tree to refer to a topological
ordering, that is, one that numbers nodes before parent nodes.

3. On generalized pebbling.
3.1. Problem transformation. In this section, we transform the problem in 2 to a

generalized form of a much-studied combinatorial problem: the pebble game for trees
[8], [14], [16]. The game can be used as a model for register allocation in straight-line
programs.

FIG. 2.3. The elimination tree ofmatrix in Fig. 2.2.
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Consider a given tree T and the values row(x) and col(x) associated with each node
x of T. For any (topological) ordering r: xl, x2, "’", xn, the core cost as defined in the
previous section can be expressed recursively as follows:

and for j > 1,
corer(Xl) col(x1),

corer(xj) (corer(xj_ 1)- row(x_ 1)} + col(x).
It should be clear that a portion of the value corer(x) comes from nodes in the

subtree rooted at x. This contribution from the subtree is independent of the ordering
r, since nodes in the subtree under xj are always ordered before x.

To aid the study of this problem, we let T[x] denote the subtree of T rooted at a
node x. It is also convenient to expand each original node x of T into two nodes x/ and
x- as shown in Fig. 3.1. The node x/ can be regarded as x during the processing of its
column, with x- as x after its processing.

Then, we can associate with each node x the two quantities:

z(x-) X {col(z)- row(z)},
TIx]

r(x+) z(x-) + row(x).

The value z(x+) represents the number of nonzeros in columns of L from the subtree
T[x], that are required during the processing of the column x in the factorization. On
the other hand, z(x-) is the number of nonzeros in columns of L associated with T[x]
that are still required after the processing of x. They are the storage requirements con-
tributed from the nodes in the subtree T[x]. Note that these two values depend only on
the structure of the tree T, and are independent of any topological ordering.

We can now express the core cost in terms of(x/) and z(x-). The formulation will
be clearer if we introduce corer(xj.+) and corer(x)-), which are the storage requirements
during and after the processing of column x, respectively. Let

core(x) 0.
For j >- 1, then we have

corer(x]) corer(xf_ 1) -- "/’(Xf Z {T(X)IXc is a child ofxj },

corer(x)-) corer(x) + -(xf -(xf ).

This formulation actually provides a more uniform framework to study the problem.
Consider the transformed tree with the 2n number of nodes

+ x;)

col(x)/row

FIG. 3.1. Tree transformation.
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Rename these nodes to {Yl, Y2, Y2n}. If {xj } is a topological ordering on the original
tree, it is clear that {yj } is also a topological ordering on the transformed tree. For each
node, associate a r value as follows: for =< j -< n,

(y2_ )= .(x). ,(y2) .(x;).

The transformed elimination tree of the example in Fig. 2.3 is given in Fig. 3.2. The
labels in the original tree should be interpreted as "col(x)/row(x)," while that in the
transformed tree are the corresponding r-values. This tree structure will be used repeatedly
throughout the paper.

Since xf is the only child node ofxf, the core cost in terms of the transformed tree
can be collectively and conveniently expressed as:

core(y0) 0,

core(y) core(y_ ) + r(y) { r(Yc)lYc is a child ofy }

for =< j =< 2n. It should be clear that an optimal topological ordering on the transformed
tree in terms of the core cost will induce one on the original tree. Henceforth, we shall
discard the values row(x) and col(x). Instead, we assume that a nonnegative value r(y)
is associated with each node y and corer(y) is defined as above in terms of r(y).

3.2. The generalized pebble game. The transformed problem in 3.1 can be for-
mulated as a generalized version of the pebble game. Let T be a given rooted tree of m

col(x)/row(x)

3@ 3@

FIG. 3.2. The transformed tree ofthe example in Fig. 2.2.
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nodes. For each node y in T, there is a nonnegative value r(y) associated with it. The
number r(y) represents the number of pebbles required to satisfy the node y (a node y
is said to be satisfied if there are r(y) pebbles in this node). The generalized pebble game
is played according to the following rules:

(a) If all children of an unpebbled node y are satisfied, pebbles may be placed on
y (thus, a leaf node can be pebbled).

(b) If all children on an unpebbled node y are satisfied, pebbles may be moved from
its children nodes to y.

(c) A pebble may be removed from a node y if there are more than r(y) pebbles
in it.

The goal of the game is, starting with no pebbles in the tree, to pebble the root of
the given tree. The pebbling proceeds in moves, each move is an application of one of
the above rules. The problem here is to determine a sequence of moves that will achieve
the goal using the minimum number of pebbles. The sequence of moves will simply
correspond to a topological ordering on the given tree.

Note that the standard (black) pebble game [8], [14] is the special case with
r(y) for all nodes y in the tree. It should also be clear to the reader that the optimal
solution to this generalized pebble game will be an optimal one for the primary storage
minimization problem of the previous section.

3.3. Existing pebbling algorithms. The original pebble game is the special case with
all pebble values r(y) equal to 1. The solution for this standard problem can be found
in [8], 14]. It is helpful to compare this scheme with the general algorithm provided
later, we describe the method below. The description follows that in [8].

For a given rooted tree T with r(y) for every node y, let p(T) be the mini-
mum number of pebbles required to pebble the root. If T has only one node (the root),
obviously we have p(T) 1. Otherwise, assume that the root has children nodes, and
let T, ..., Tt be the subtrees under the root. Then

p(T) max {p(Tk) + k- },
l_k_t

where the subtrees are ordered such that

p(T,) >-... >= p(Tt).
This observation will give an algorithm that computes the value p(T) and at the same
time determines an (topological) ordering that achieves this minimum value. It is inter-
esting to point out that the ordering determined by this algorithm will always number
nodes within any subtree of T consecutively.

In 11 ], the author considers the primary storage minimization of the out-of-core
multifrontal method due to Duff and Reid [3], [17]. That problem can be formulated
again as a tree pebble game, where the values r(y) can now be greater than one. However,
due to the nature of the multifrontal method, postorderings are to be considered, that is,
subtree nodes should be ordered consecutively [1 ]. This, therefore, may be regarded as
the generalized pebble game as described in 3.2, except for the more restrictive nature
ofthe move sequence (postorderings). A solution to this problem is also provided in 11 ].
We include a brief description here for future comparison.

For a given rooted tree T with r(,) values, let/(T) be the minimum number of
pebbles required to pebble the root, subject to the restriction that subtree nodes are to
be pebbled consecutively. Assume that y is the root of T with t children: s, , st. Let
T, ..., Tt be the subtrees rooted at these children nodes.
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If T has only one node y (that is, 0),/(T) z(y). Otherwise, we have

/(T) max max (T) + r(s) r(y)
l_k_t

j=l

where the subtrees are ordered such that

/(T) r(sl) N"" (T,) r(s,).

An algorithm, based on this obseation, can be foulated to compute the value (T)
and to determine a postordefing that achieves this minimum value.

It is interesting to point out that if postordefings are not required in the out-of-core
multifrontal method, the problem becomes more involved. Indeed, the algorithm to be
developed in this paper will be applicable in such setting. It will Nve the best possible
topoloNcal ordering (not necessarily postordefing) so that the ordered matrix will require
the least amount of pfima storage in its out-of-core multifrontal factofization. For
clarity, the author will focus only on the use of the ordering algorithm for the out-of-
core factofization method described in 2. Its use in the context of multifrontal method
will be left to the reader.

4. Overview of strategy for optimal ordering. Given a rooted tree T of m nodes,
each node y having a pebble value r(y). Our objective is to deteine a topoloNcal
ordering of the tree so that the pebble game following this ordering requires the least
number of pebbles.

For any (topoloNcal) ordering r: Yl, Y2,’", Ym, define the sequence of values
peb( ):

peb,(y0) 0,

peb(y) peb,(y_ l) + r(y) {r(yc)lYc is a child ofy },

for N j N m. The value peb,(y) represents the total number of pebbles used during the
pebbling of the node y; it may be appropriately called the accumulated pebble value at
the node y using ordering r. The number of pebbles required to pebble the entire tree
T using this ordering is Nven by:

peb(T) max {peb.(y)l NjN m}.

In other words, our objective is to find one such topoloNcal ordering that will minimize
this pebble requirement peb,(T).

The recursive structure of trees can often be used to design ecient algorithms to
solve problems on rooted trees. The approach is to proceed bottom up in the rooted tree.
For evew node y with children nodes sl, "", st, solutions are deteined for all the
subtrees rooted at Sk (1 k t). These solutions are then combined to produce one for
the subtree rooted at y. A recursive use ofthis will solve the Nven problem on the overall
rooted tree. Solutions to our pebbling problem are topoloNcal ordefings that minimize
the number ofpebbles. We shall use this bottom up approach to combine optimal subtree
ordefings.

Let us first introduce some relevant teinology for tree ordefings. Consider any
rooted subtree of T, say T[y], rooted at the node y. Let r be an ordering on T. The
restriction ofthis ordering r on T[y] is itself an ordering for this subtree. We shall denote
this subtree ordering by r[y] and refer to it as the induced ordering of r on T[y]. On the
other hand, let ff be an ordering on the subtree T[y]. is said to be compatible with r
if ff is the same as the induced ordering r[y].
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For example, in Fig. 3.2, the induced ordering r[y ] on the subtree T[y 1] is given
by the node sequence:

YT Ys, Y9, Yo,y

However, the following ordering on T[yl]:

Y9 Y7 Yo, Ys Y

is not compatible with the original tree ordering.
Using this bottom up approach to our pebble minimization problem, we can describe

our strategy as follows. Here, y is the input node with children nodes s, ..., st; and r
is the returned optimal ordering for the tree T[y] rooted at y.

ALGORITHM 4.1. Pebble-Ordering (T[y], 7r).
begin

If t 0 then
return the sequence r: y

else
begin
Fork:= ltotdo

Pebble-Ordering (T[Sk],
Combine the optimal subtree orderings kk, k 1,

to give an optimal ordering r for T[y] such that
r is compatible with each ffk;

end;
end.

Therefore, a strategy for optimal ordering can be obtained if we can provide an
efficient solution to the one-level problem: combining optimal orderings of subtrees to
form one for the tree. Each subtree ordering kk is optimal, that is, it minimizes the value
ofpebk(T[Sk]). However, this condition is not sufficient to guarantee the existence of an
optimal ordering for T[y] compatible with each one of the subtree orderings ffk.

A simple example is provided in Fig. 4.1 to illustrate this point. The ordering Zl,

z2, z3, z4, zs, z6 minimizes the pebble cost of 10 on the subtree T[z6]. It is easy to verify
that for all orderings on the entire tree compatible with this subtree ordering on T[z6],
the pebble cost will be at least 14. Yet, the following ordering

ZI, Z2,24, Z5,27, Z8, Z3, Z6, Z9

will have a pebble cost of only 10.
In the next section, we introduce a new criterion for optimal orderings. We shall

show that with this more involved criterion, there always exists an optimal compatible
ordering for T[y].

5. Pebble cost sequence and partial order.
5.1. Definition of pebble cost sequence. Let T be a given rooted tree of m nodes.

Our objective is to find an optimal ordering that minimizes the overall pebble cost in
the generalized pebble game:

peb(T) min {peb(T)lr is a topological ordering}.

As noted in 4, it is not sufficient to combine subtree orderings that minimize only the
pebble costs ofthe subtrees. We need a more elaborate pebble cost function. This function
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10

10

6 4

1 8

FIG. 4.1. Example to show compatible subtree ordering.

is adapted from the one used by Yannakakis [20] in his polynomial algorithm for the
related problem of min-cut linear arrangement for trees.

Consider a topological ordering for the given tree T:

7r: y y2 ym.

This defines the following sequence of values:

peb(yl), peb(y2), peb(ym).

We now introduce the pebble cost sequence/function. Put Vo 0. Let h be the largest
subscript of the y’s such that

H peb(Yh,) max {peb,(yj)lVo <j <= m},
and V be the largest subscript such that

VI peb(yv) min {peb(yj)lhl <=j <- m}.
We then define recursively hi, vi, and Hi, Vi as follows: hi is the largest subscript where
the maximum pebble cost value Hi occurs from vi- to m, and vi the largest subscript
where the minimum pebble cost value V/occurs from hi to m. Thus, we have a cost
sequence, denoted by Pcost(T, r):

(H, V,H2, V2, ,Hr, Vr)

and these values occur at the following sequence of nodes:

Yh Y,, Yh:, Y,.’:, Yhr, Y,,r"

Since the tree is rooted at Ym, the last value V must occur at this node, that is, v m
ory y. Note also that the value of r depends on the tree structure, the pebble values
and the ordering.

To illustrate the notion of this cost sequence, we consider the example in Fig. 3.2.
It is clear that the pebble cost sequence for the tree is given by:

Pcost(T, r) (9, 0),

and they occur at the nodes:

(YI3, Y20)"
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However, ifwe only consider the subtree T[y8] in this example with the induced ordering
r[y8], the pebble cost sequence is then:

Pcost(T[y8], r[y8]) (6, 2, 5, 3),

and these values occur at the nodes:

(YI3, YI4, YI7 Y18).

Note that the pebble requirement in the subtree T[y6] does not affect the pebble sequence
for T[y8].

We shall sometimes refer to the locations Yh as the hills and Yv as the valleys of the
given tree and ordering. The quantities Hi and Vi are also referred to as the hill and valley
values, respectively. The motivation for the choice ofthese terminologies should be clear
from the plot of accumulated pebble cost values peb(yj) against yj. The plot for the
subtree T[y18] of Fig. 3.2 is illustrated in Fig. 5.1.

Let Pcost(T, r) (H, VI, Hr, Vr) be a cost sequence. It is clear from definition
that

HI peb(T).

The following property is also obvious.
LEMMA5.1. HI>H2>"" >Hr >-- Vr> > VI > Vo O.
5.2. A partial order for pebble cost sequences. We want to compare different to-

pological orderings on a rooted tree with respect to their pebble cost sequences. To prepare
for that, we introduce a partial order on these sequences. Let a and 3 be two pebble cost
sequences:

O/--(Arl, 1,""",/r, ), 3--(HI, VI,""", Ur, Vr).
Wc say that a -< 3 if and only if for every (1 -< _-< , there exists a j (1 _-< j =< r) such
that

/_-<Hj and l?i -< Vj.
THEOREM 5.2. ""<" is a partial order on cost sequences.
Proof It is obvious that "-<" is transitive and reflexive. It remains to show that it

is anti-symmetric. Let

(HI, VI, ,Hr, Vr).

Pebble
Cost
Value

h I

9 10 11 13 14 15

h 2

v2

Node Sequence in T[Y 8
FIG. 5.1. Plot ofpebble cost for subtree T[y8] in Fig. 3.2.
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Assume that a -( and < a. Consider any Hi and V. By the definition of"-(", there
exists a j such that/i --< Hj and I?i _-< Vj. Since/.-( a, for this j, there is a k such that
/-/j =< k and Vj _-< l?k. Combining we have Ii <- Hk and l?i --< I?k so that by Lemma 5. l,
we must have k. This implies that/i Hj and l?i Vj.

It remains to show that for every -<_ -<_ ?,

Ii Hi and I?/= Vi.
We prove this by induction on i. For l, by the property established above, there
exists aj such that 1 Hj. Assume for contradiction that j l, so that by Lemma 5.1
Hj < H1. Then since/ -( a, for H, there must be a k such that HI Hk. Combining,
we have

t1 --< Hj < HI </-k
This contradicts Lemma 5.1 on the cost sequence a. Therefore, / H1 (so that
Vl= Vl).

The same argument can be used for the inductive step. Therefore the sequence a
must be an initial subsequence of/3. By symmetry,/3 must also be an initial subsequence
of a. Hence, a and/ must be identical cost sequences. [2]

The next theorem follows directly from definition. It shows the relevance of the
pebble cost sequence and the partial order "-,(" in the context of pebble minimization.

THEOREM 5.3. For two orderings k and r ofthe tree T, if
Pcost(T, k) "( Pcost(T, r)

then peb(T) =< peb,(T).
The implication of this simple observation is that in order to determine an optimal

ordering that minimizes the overall pebble requirement, we can restrict our search for
an ordering (if it exists) such that

Pcost(T, ) -< Pcost(T, r)
for all orderings r.

6. Combining subtree orderings.
6.1. Combine algorithm based on subtree segments. In this section, we show how

to solve the one-level problem: combining optimal subtree orderings to give an optimal
ordering for the overall tree. Here, optimality is with reference to the pebble cost sequence
and the partial order "-" introduced in the last section.

Let T be a given tree rooted at the node y, and s, s2,’", st be the children
nodes of y. Assume that k, kt are given orderings on the respective subtrees
T[s,], T[st].

We want to construct an optimal ordering for T which is compatible with each
subtree ordering. Obviously, the last node in this ordering must be y, the root. The
problem is how to interleave nodes from the subtrees under y so that the resulting
pebble cost sequence is minimized. The idea is quite simple: for each hill value in a
subtree, we should try to use appropriately-chosen valley values for the remaining subtrees.
This will help to reduce the impact of the hill value on the pebble cost sequence.

To facilitate the discussion, we introduce the notion of valley segments for an ordered
tree. Consider a subtree T[y] with an ordering k. Let its pebble cost sequence be:

Pcost(T[y], k) (HI, V1, Mr, Vr),

and let these values occur at the nodes

Yh, Yo Yhr,
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There are r valley segments of T[y]; for =< k -< r, the kth valley segment consists ofthe
nodes

Yvk_+ ,Yvk_+2, ,Y.

In other words, it is the sequence of nodes in between two valley nodes (including yo
but not Yo_ ). We shall define its segment value to be Hk Vk.

For example, consider the subtree T[y8] in Fig. 3.2. There are two valley segments:

Y7,Ys,Y9,Yo,Y,Y2,YI3,Yl4, Y5,Y6,Y7,YI8

and their segment values are 4 and 2, respectively. But the subtree T[y6] has only one
segment:

Y YE, Y3, Y4, Ys, Y6

which is the entire subtree, and its segment value is 3.
Valley nodes are appropriate locations to switch from one subtree to another when

combining subtree orderings. Valley segments are relevant notions, and nodes within
each segment can be treated as an entity. Indeed, the following algorithm combines the
given subtree orderings based on an arrangement of the segments in all subtrees. As
before, kk is a subtree ordering of T[sg], where s, st are children nodes of the root
y in the tree T.

ALGORITHM 6.1. Combine (T[y], )

begin
Fork:- ltotdo

Determine the valley segments of the subtree T[sg]
using the cost sequence Pcost(T[sg], kk);

Arrange the segments from all the subtrees in descending order of their
segment values: (hill value-valley value};

Based on this segment arrangement, order the nodes in each segment
consecutively, followed by the root y;

Return this ordering as ff
end.

We shall use the notation (ffl, 2, t) to refer to the ordering k on T[y]
obtained by Algorithm 6.1. When 1, this ordering can be obtained simply by appending
the root y to the subtree ordering ff of its only subtree.

It is easy to see that the ordering obtained by Algorithm 6.1 is compatible with each
subtree ordering fig. Indeed, the segments within each subtree are already in descending
sequence with respect to their segment values (it follows from Lemma 5.1). This means
the relative order of nodes in each subtree is always preserved by the new ordering.

On applying Algorithm 6.1 to the subtree T[y9] ofthe example in Fig. 3. l, we note
that the root Y19 has two children nodes Y6 and YlS. The subtree T[y6] has one segment
of value 3; while the subtree T[y8] has two segments of value 4 and 2, respectively.
Therefore the ordering returned by Algorithm 6.1 will be the nodes in the segment (with
value 4):

YT, Ys, Y9, Yo, YI|, Y12, YI3, Y4,

followed by the segment (with value 3):
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then by (with value 2):
Yls, Yl6, Y17, Y8,

and finally by the node Y9. With this new ordering, the pebble cost sequence for T is
reduced from (9, 0) to (8, 0).

6.2. Properties of the combine algorithm. We shall state some important properties
of the ordering (kl, fit) obtained from Algorithm 6.1. The detailed proofs are
lengthy, and we shall provide them at the end ofthe paper in the Appendix. The following
sequence of theorems is to establish the optimality of the "Combine" algorithm when
used recursively in the "Pebble-Ordering" algorithm of 4.

THEOREM 6.1. Let k ,b(, bt). For any ordering 7r’ that orders nodes within
each subtree segment consecutively and is compatible with each b,

Pcost(T, k) "< Pcost(T, 7r’).

THEOREM 6.2. Let ,r be any topological ordering on the tree T[y], which is compatible
with each subtree ordering bk. There exists an ordering r’ on T[y], that orders nodes in
subtree segments consecutively, such that

Pcost(T, r’) "< Pcost(T, r).

THEOREM 6.3. Let k be another subtree orderingfor T[s], where

Pcost(T[Sk], Pk) "< Pcost(T[Sk], k).

Ifr O(k, "", , t), and k O(b, , kt), then

Pcost(T, -) -< Pcost( T, p).

The proofs of Theorems 6.1-6.3 are left to the Appendix. Theorem 6.1 says that
the cost sequence returned from Algorithm 6.1 is the smallest possible (in terms of"-<")
among all orderings that are based on the valley segments. Theorem 6.2 implies that if
it is the smallest among segment-based orderings, it will also be the smallest among all
orderings compatible with the individual subtree orderings. Finally, Theorem 6.3 points
out the effect ofan improved subtree ordering on the combined ordering . We can now
use these results to establish the optimality of our overall ordering algorithm.

THEOREM 6.4. Let r be the ordering on T[y] returnedfrom Algorithm 4.1 ("Pebble-
Ordering" ), where subtree orderings are combined by Algorithm 6.1 ("Combine"). Then
for any topological ordering r of T[y],

Pcost(T, ) "< Pcost(T, r).

Proof. We prove the result by induction on the number m ofnodes in the tree T[y].
The result is obviously true if m 1. Assume that the result is true for all trees with less
than m modes. Let the children nodes of y be s, ..., st; and ffk be the ordering ob-
tained from the execution of "Pebble-Ordering (T[sk], kk)." So can be expressed as
(I)(l, "’", ’/t).

Consider any ordering r of T[y], and their induced subtree orderings r[sk], for
-< k -< t. Let r’ be the ordering O(r[sl], r[s/]). By Theorems 6.1 and 6.2, ,r’ has

the best pebble cost sequence relative to all orderings compatible with each subtree ordering
r[sk]. In other words,

Pcost(T, r’) "< Pcost(T, r).

But, by the inductive assumption, in each subtree T[Sk],

Pcost(T[Sk], kk) "< Pcost(T[sk], r[sk]).
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A repeated application of Theorem 6.3 and the transitive property of the partial order
"-<" (Theorem 5.2) will give

Pcost( T, ) -< Pcost(T, r’).

Therefore, the result follows.
Theorem 6.4 shows that Algorithms 4.1 and 6.1 can be used to yield a topological

ordering that minimizes the pebble cost sequence Pcost(T, ) and hence the pebble
cost value peb(T). We now determine the time complexity of this algorithm. We show
that Algorithm 4.1 (Pebble-Ordering) and Algorithm 6.1 (Combine) can be implemented
in time O(m), where m is the number of nodes in the tree.

Assume that the given tree T[y] is rooted at y with rn nodes, and the root y has t
children nodes. Since the valley segments within each subtree are already in descending
sequence with respect to their segment values, we need only to merge the segments from
the subtrees. This can be implemented efficiently by the multiway merge ], and it will
take at most {m log t} time units to perform the t-way merge. Furthermore, the com-
putation of the new pebble cost sequence on the tree requires at most m time units.
Therefore, iff(m) is the amount of work to execute Algorithm 4.1 using Algorithm 6.1
for combining subtree orderings, then

f(m) m log2 + m + , f(mk),
l_k_t

where mk is the number of nodes in the kth subtree under the node y. This means that
,kmk=m 1.

A simple induction on m will show that f(m) <= m2. This upper bound, though
attainable, is often too pessimistic. In practice, the number of hill/valley values in the
pebble cost sequence Pcost is often much smaller than the number ofnodes in the subtree,
so that the amount ofwork required for the merging ofsegments is usually much smaller
than {m log2 t}. Indeed, in the application of this algorithm for storage minimization
for the out-of-core sparse matrix factorization, the execution time will usually be linear
with respect to the order of the matrix.

7. Concluding remarks. We have shown that the core storage minimization problem
for the out-of-core factorization scheme in 12] can be studied using a generalized form
ofthe combinatorial problem ofpebble game. An efficient algorithm is provided to solve
this generalized pebble game problem. It is based on the notion of cost sequences, adapted
from Yannakakis [20].

It is interesting to compare the algorithm provided in 6 with the two existing
algorithms in 3 for solving the standard pebble game and for solving the general game
by postorderings. In the case of the standard pebble game where each pebble value is 1,
the cost sequence of each subtree is of the form:

(H, (p(T), ),

where H p(T) is the hill value for the subtree, and is (necessarily) the valley value
at the root of the subtree. Ordering the subtrees in descending sequence of the subtree
hill values {p(T)} is obviously equivalent to ordering them in descending sequence of
the subtree segment values {P(Tk) }. Therefore, the algorithm in 3 for this standard
game is a special case of the general algorithm in 4.

On the other hand, the use of postorderings implies the use of a restricted form of
the cost sequence. The restricted cost sequence can be taken to be of the form:

(H, V) ((T), r(y)),
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where H fi(T) is the first hill value for the subtree T and V z(y) is the pebble value
for the root y of this subtree. Indeed, the algorithm described in 3 can be viewed
as one that orders the subtrees in descending sequence of their segment values
{ fi(Tk) r(sk)} (except that there is only one segment for each subtree).

The methodology provided in this paper to solve the generalized tree pebble game
should be of theoretical and algorithmic interest. Currently, in the out-of-core sparse
factorization scheme of 12], postorderings are used. In practice, it is simple to implement,
and is demonstrated to be very effective. Although one can construct matrix structures
to show that postorderings are not sufficient in general for primary storage minimization,
it should still be highly recommended. More practical justification seems to be warranted
for the use of the optimal algorithm presented in this paper in the context of out-of-core
factorization.

Appendix.
A.I. Best subtree segment arrangement (Theorem 6.1). In this appendix, w provid

detailed proofs for Theorems 6.1-6.3. We first establish the following lemma which is
useful to compare two cost sequences based on the partial order "-<."

LEMMA A.1. Let r: y, Y2, "’", Ym and

Pcost(T, r) (n V Hr, Vr).

For two values I and l?, I <= II and 17" <- Vfor somej ifand only ifthere exists some
node y in the sequence r such that

/-)-< peb(yq), I7"_-< min {peb(yp)lq<-p<=m}.

Proof Let (Yhl, Yv, , Yh,, Yv,) be the nodes at which the values ofthe pebble cost
sequence Pcost(T, r) occur.

"ifpart." Let the node yq in the lemma be in the segment between the valley nodes
yoj_l and yoj. From definition, we have

H=< peb(yq) =< peb(yh) =/-/.
Moreover, q =< vj, so that by the condition on V in this lemma,

I7"=< peb,(y,,) V.
"only ifpart." Let/ -< and 17" =< V. Then take q hj. The result is obvious. [3

Let us follow the same notations as in 6.1. That is, let the given tree T be rooted
at the node y, which has s, ..., st as its children nodes. To help the discussions and
formal proofs, we first introduce a definition.

Consider a node z in the tree. The pebble cost of z in T with ordering r is given by
peb(z). We shall use the notation peb,tsk(z) to denote the pebble contribution to the
value peb(z) from nodes in the subtree T[s]. Some properties ofthis value are expressed
in the next lemma, and the proofs are straightforward and are omitted.

LEMMA A.2. (a) peb,(z) Y,= peb,tskl(z).
(b) If the node z belongs to the subtree T[Sk], then peb,4(z) is simply the pebble

cost at the node z ofthe tree T[Sk] using the induced ordering r[Sk].
(C) Ifthe node z does not belong to the subtree T[Sk], then

peb,4s,l(z) peb,4,l(x,)

wherex is the last nodefrom the subtree T[s] appearing before z in the sequence r. []

COROLLARY A.3. Consider two orderings r and r on the tree T such that
[sk] r[s], that is, the same subtree ordering when restricted to T[s]. For two nodes
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Y. and z, let Y andx be the last nodefrom T[&] appearing before and including Y. and z
in the ordering 7r and r, respectively"

: Yk’’" ’’’, "It’: Xk’’" Z’’’,

(a) ifYk Xk, then pebtskl(ff peb,tskl(z),
(b) ifpebisl(Yk) <---- peb,[](Xk), then peb[l() -< peb,[sl(Z). V1

Note that in Corollary A.3, and r can be the same ordering. To illustrate the
results, consider the ordering in Fig. 3.2 and the two subtrees under the node Yl9 with
children s Y6 and s2 Y8, we have

peb(y4) pebtyd(y4) + pebtysj(y4) 4 + 0 4,

peb,(y9) peb,tvl(Y9) + peb,tv81(Y9) 3 + 5 8.
Note also that

peb,4y](yj) 3 for all 7 =<j-< 18,

peb,v,s)(yj) 0 for all _-<j -< 6.

We are now ready to examine properties of orderings that are based on subtree
segments, that is, nodes in each subtree segment are ordered consecutively. As in 6.1,
let ff, ff2, fit be given orderings on the respective subtrees T[s], T[s2], T[st].
These orderings on the subtrees define segments based on their individual valley values.
We shall use the term segment ordering to refer to any ordering on the entire tree that
numbers nodes in each subtree segment consecutively. In other words, each segment
ordering corresponds to an arrangement of the subtree segments followed by the
node y. The proof of the next lemma is straightforward and is omitted.

LEMMA A.4. Let r be a segment ordering on T that is compatible with each sub-
tree ordering Pk. Let (H, V) be a hill value pair in the pebble cost sequence
Pcost(T, r).

(a) The hill value H occurs either at a hill location in some subtree T[s] or at the
node y.

(b) The valley value V occurs either at a valley location in some subtree T[Sk] or at
the node y.

(c) IfH occurs at a hill node x in the subtree T[Sk], then V occurs at the valley node
in this subtree immediatelyfollowing x or at the root y. [3

THEOREM A.5. Let r be a segment ordering on T that is compatible with each
subtree ordering Pk. Interchanging any two neighboring (subtree) segments that are not
in.descending sequence oftheir segment values will not increase thepebble cost sequence.

Proof Consider two neighboring (subtree) segments that are not in sequence with
respect to their segment values. The two segments must come from two different subtrees,
since r maintains the relative order of segments for each subtree and segments from the
same subtree are already in descending sequence.

For concreteness, let the first segment belong to the subtree T[sa] with ha and va as
its hill and valley nodes, respectively. Also let T[Sb], hb, Vb correspond to the second
segment. We can view the given ordering as:

7r: "(’’’ ha’" 1)a)(’’" hb’’" 1)b)’’"

where parentheses are used here to identify the two segments. The given condition in
the theorem can be expressed as:

(,,) peb,4al(ha) peb.ts.l(Va) =< peb,4ol(hb) peb,4e](Vb)
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since by Lemma A.2(b), the left- and right-hand sides are the segment values of the two
subtree segments.

Now consider the new ordering - by interchanging only these two segments:

7r: "..(... hb"" vb)("" ha’" 1)a)’’’.

We are to show that Pcost(T, ) -< Pcost(T, r). By Lemma A. 1, for each hill/valley pair
of the new sequence if, it is sufficient to find a node yq in the sequence r satisfying the
conditions in that lemma. Consider any hill/valley value pair (H, V) in the sequence. Let the hill value occur at the node x.

Case 1. x is outside the two segments under consideration. Then by Lemma A.4(a),
x must be either the root y or a hill location in one subtree. Choose Yu to be the same
node x in the r sequence, and it is easy to verify that this node satisfy the conditions in
Lemma A. 1.

Case 2. x belongs to the segment (... hb 1)6). By Lemma A.4(a), x must be the
node hb. The node yq for Lemma A. will be chosen to be hb (=x) in the r sequence.
Indeed, applying Corollary A.3, we have

peb(x) pebtskl(hb) + pebtsa](hb
k/a

peb,4sk](hb) + pebtsal(hb)
k/a

-< pebts(hb) + peb,[Sa](1)a)
k4a

peb,4k](hb) + peb,4,,](hb) peb(hb).
k4a

By Lemma A.4, we have
V= min {peb(Vb), peb(y)}.

Applying Corollary A.3, we have

pebt(Vb)

_
peb,tal(Vb)

SO that
peb(Vb) -< peb,(Vb).

Therefore, the value Vmust be less than the accumulated pebble value ofany node after
hb in r.

Case 3. x belongs to the segment (... ha l)a). This means that x ha. We shall
choose yq for Lemma A. again to be the node hb in r. Again by Corollary A.3, we have

peb(x) pebtskl(ha + pebtsal(ha) + pebts,r,(ha)
k/a,b, peb,4skl(ha) + peb,4s,,l(ha) + pebtsbl(Vb)
k/ a,b

peb,,.ts,](ha) + peb,4sa](ha) + peb,4s,r,](Vb).
k/a,b

But, by the given condition (, ,) on the two segments in r, this value must be no greater
than

peb,4skl(ha) + peb,4s,l(hb) + peb,4s,,l(Va) peb,4skl(hb) + peb,4s,l(hb) + peb,ts,l(hb)
k q a,b k q a,b

peb,(hb).
The condition on the value V can be verified in the same way as in Case 2.
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Therefore, in all cases, for a given pair (H, V) in Pcost(T, ), we can bound them
by a corresponding pair from Pcost(T, r). It follows from definition that

Pcost(T, ) -< Pcost(T, 70. []

ProofofTheorem 6.1. Let b (, bt). Consider any given segment ordering
r’ compatible with each subtree ordering kk. A finite number of neighboring subtree
segment interchanges will transform r’ to . Repeated applications of Theorem A.5 for
such interchanges together with the transitivity of "-<" (Theorem 5.2) will show that

Pcost(T, ) -< Pcost(T, r’). U]

A.2. Segment orderings are sufficient (Theorem 6.2). Theorem 6.2 says that in
order to search for an ordering that will minimize the cost sequence, it is sufficient to
look for a segment ordering that is compatible with the subtree orderings. The following
is a constructive proof.

ProofofTheorem 6.2. Let r be any given ordering on the tree T rooted at y, which
is compatible with each subtree ordering ffk ofthe subtree T[s,]. We shall prove the result
by constructing a segment ordering r’ such that

Pcost(T, r’) -< Pcost(T, r).

Construct the new ordering r’ from r as follows:
(a) Remove all nodes from the sequence r except the root y and hill locations of

the subtrees;
(b) Replace each hill location by the subtree segment associated with it.

It should be clear that r’ is still compatible with each subtree ordering k, and orders
nodes in each subtree segment consecutively. Moreover, it maintains the relative order
of all the subtree hill nodes in the original ordering r. It remains to show that the pebble
cost sequence of r’ is no greater than that of r.

Consider any hill/valley value pair (H, V) in Pcost(T, r’). Let the hill value occur
at the node x. It is sufficient to find a node yq in the original sequence r satisfying the
conditions in Lemma A. 1. Ifx is the root y, pick this root as the node yq and the conditions
in Lemma A. are clearly satisfied. Otherwise, by Lemma A.4(a), x must be a hill node
in one of the subtrees. Let x ha belonging to the subtree T[sa], and Va be the valley
node immediately following ha in the pebble cost sequence of this subtree. That is

7r’: (’’’ ha’" l)a)’’’.

We now show that y for Lemma A. can be chosen to be the node x. We first claim
that for each k, peb,tsl(x _-< peb,4sl(x). By Corollary A.3, since x belongs to T[sa], we
have

peb,tsal(X) pebtsal(X).

For k a, let the last segment from the subtree T[s] before x in r’ be (..- h.-. vk).
(If no such segment exists, then peb,tkl(x 0, and the result holds.) By Corollary A.3,

peb,,ts,l(x) peb,,[Sal(lk) peb,tsal(V).

Let x be the last node from T[s] before x in r. Since r’ maintains the relative order of
all the subtree hill values, x must appear after the hill node hk of T[s]. By the definition
of the valley node v and Corollary A.3, we have

pebtskl(vk =< pebtsl(xk pebtsl(x).

Combining, we have proved the claim.
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Using the result of the claim, we then have

peb(x) peb,tskl(x)
k

_-< pebtskl(x)= peb(x).
k

Finally, by Lemma A.4(c),

V min {peb.,(Va), peb,,(y)}
and we need to show that V =< peb(z), for all nodes z after x in the r sequence.
If z y, it is obviously true. Otherwise, it can be verified that for all k,
peb,t](Va) =< pebt](z). This implies that peb,(Va) =< peb(z), and hence the result.

A.3. Monotonicity ofCombine algorithm (Theorem 6.3). Theorem 6.3 provides the
monotone property of the "Combine" algorithm with respect to subtree orderings. In
words, better subtree orderings will yield a better overall ordering by Algorithm 6.1.
Before the proof, we introduce a lemma.

LEMMA A.6. Given two cost sequences with

(Hi, Vl He, Ve) -< H VI Hr Vr).

For <- <- , define thefunctionf(,) by

f(i) min {klIi <- Hk, ’ri Vk}

If < j, thenf(i) <- f(j).
Proof By definition off(i) and Lemma 5.1, we have

IYlj <= Hf(), 17"i < <= Vf(i).

If Hi <-- Hf()2 then by definition off(i): we must have f(i) <-f(j). On the other hand,
if Hf() < Hi, which together with Hi <-- Hf(i), we have Hf() < Hf(o. By Lemma
5.1, we must have f(i) < f(j).

Proofof Theorem 6.3. Let k and ffk be two subtree orderings on T[s], with

Pcost(T[s], k) "< Pcost(T[s], kk).
As in the theorem, let

(, ,, ,).

We shall prove the result by first improving on the ordering k. We are going to replace
subtree segments from Pcost(T[sk], g) in the ordering ff by those from Pcost(T[Sk],
ffk). Since Pcost(T[Sk], kk) "< Pcost(T[Sk], bk), we can associate each segment from kk to
one in k using the mappingf(.) of Lemma A.6. From k, construct the new ordering
k’ as follows:

(a) For the ith subtree segment from Pcost(T[Sk], bk), insert it before the corre-
spondingf(i)th segment of Pcost(T[Sk], bk) in k;

(b) Remove all subtree segments of Pcost(T[sg], b) from the ordering.
It is clear that ’ is a segment ordering using the new kk. Furthermore, by Lemma

A.6, it is compatible with the new subtree ordering kk. We claim that

Pcost(T, k’) "< Pcost(T, if).

The proof uses the same technique (Lemma A. 1) as before and will be skipped.
Finally, let

(, ...,, ..., ).
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By Theorem 6.1, we have

and hence the result. []

Pcost(T, 9) -’( Pcost(T, k’),
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