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Abstract. This paper studies the data locality of the work-stealing scheduling
algorithm on hardware-controlled shared-memory machines, where movement of
data to and from the cache is solely controlled by the hardware. We present lower
and upper bounds on the number of cache misses when using work stealing, and
introduce a locality-guided work-stealing algorithm and its experimental validation.

As a lower bound, we show that a work-stealing application that exhibits good
data locality on a uniprocessor may exhibit poor data locality on a multiprocessor.
In particular, we show a family of multithreaded computations Gn whose members
perform �(n) operations (work) and incur a constant number of cache misses on a
uniprocessor, while even on two processors the total number of cache misses soars to
�(n). On the other hand, we show a tight upper bound on the number of cache misses
that nested-parallel computations, a large, important class of computations, incur
due to multiprocessing. In particular, for nested-parallel computations, we show that
on P processors a multiprocessor execution incurs an expected O(C�m/s�PT∞)

more misses than the uniprocessor execution. Here m is the execution time of an
instruction incurring a cache miss, s is the steal time, C is the size of cache, and
T∞ is the number of nodes on the longest chain of dependencies. Based on this
we give strong execution time bounds for nested-parallel computations using work
stealing.

For the second part of our results, we present a locality-guided work-stealing
algorithm that improves the data locality of multithreaded computations by allowing
a thread to have an affinity for a processor. Our initial experiments on iterative data-
parallel applications show that the algorithm matches the performance of static-
partitioning under traditional work loads but improves the performance up to 50%
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over static partitioning under multiprogrammed work loads. Furthermore, locality-
guided work stealing improves the performance of work stealing up to 80%.

1. Introduction

Many of today’s parallel applications use sophisticated, irregular algorithms which are
best realized with parallel programming systems that support dynamic, lightweight
threads such as Cilk [8], Nesl [4], Hood [10], and many others [3], [16], [17], [21],
[32]. The core of these systems is a thread scheduler that balances load among the pro-
cesses (operating-system-level threads or virtual processors). In addition to a good load
balance, however, good data locality is essential in obtaining high performance from
modern parallel systems.

Several researches have studied techniques to improve the data locality of multi-
threaded programs. One class of such techniques is based on software-controlled distri-
bution of data among the local memories of a distributed shared-memory system [15],
[22], [26]. Another class of techniques is based on hints supplied by the programmer so
that “similar” tasks might be executed on the same processor [15], [31], [34]. Both these
classes of techniques rely on the programmer or compiler to determine the data access
patterns in the program, which may be very difficult when the program has complicated
data access patterns. Perhaps the earliest class of techniques was to attempt to execute
threads that are close in the computation graph on the same processor [1], [9], [20], [23],
[26], [28]. The work-stealing algorithm is the most studied of these techniques [9], [11],
[19], [20], [24], [37], [36]. Blumofe et al showed that fully strict computations achieve
a provably good data locality [7] when executed with the work-stealing algorithm on a
dag-consistent distributed shared-memory systems. In recent work, Narlikar showed that
work stealing improves the performance of space-efficient multithreaded applications
by increasing the data locality [29]. None of this previous work, however, has studied
upper or lower bounds on the data locality of multithreaded computations executed on
existing hardware-controlled shared-memory systems, where movement of data to and
from the cache is solely controlled by the hardware.

In this paper we present theoretical and experimental results on the data locality of
work stealing on hardware-controlled shared-memory systems (HSMSs). Our first set of
results are upper and lower bounds on the number of cache misses in multithreaded com-
putations executed by the work-stealing algorithm. Consider a multithreaded computa-
tion with T1 work (total number of instructions) and T∞ critical path (longest sequence of
dependencies). Let M1(C) denote the number of cache misses in the uniprocessor execu-
tion and let MP(C) denote the number of cache misses in a P-processor execution of the
computation with work stealing on an HSMS with cache size C . We show the following:

• Lower bounds on the number of cache misses for general computations:
We show that there is a family of computations Gn with T1 = �(n) such that
M1(C) = 3C while even on two processors the number of misses M2(C) = �(n).

• Upper bounds on the number of cache misses for nested-parallel computa-
tions: For a nested-parallel computation, we show that MP(C) ≤ M1(C)+2Cτ ,
where τ is the number of steals in the P-processor execution. We then show that
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the expected number of steals is O(�m/s�PT∞), where m is the time for a cache
miss and s is the time for a steal.

• Upper bound on the execution time of nested-parallel computations: We show
that the expected execution time of a nested-parallel computation on P processors
is O(T1(C)/P + m�m/s�CT∞ + (m + s)T∞), where T1(C) is the uniprocessor
execution time of the computation including cache misses.

As in previous work [5], [9], we represent a multithreaded computation as a directed
acyclic graph (dag) of instructions. Each node in the dag represents a single instruction
and the edges represent ordering constraints. A nested-parallel computation [4], [5] is de-
fined as a race-free computation that can be represented with a series-parallel dag [33].
Nested-parallel computations is an important, large class of computations, including
computations consisting of parallel loops and fork and joins and any nesting of them.
For example, most computations that can be expressed in Cilk [8], and all computations
that can be expressed in Nesl [4], are nested-parallel computations. Our results show
that nested-parallel computations have much better locality characteristics under work
stealing than do general computations. We also briefly consider another class of com-
putations, computations with futures [12]–[14], [20], [25], and show that they can be as
bad as general computations.

The second part of our results are on further improving the data locality of multi-
threaded computations with work stealing. In work stealing, a processor steals a thread
from a randomly (with uniform distribution) chosen processor when it runs out of work.
In certain applications, such as iterative data-parallel applications, random steals may
cause poor data locality. We introduce locality-guided work stealing to remedy this.
Locality-guided work stealing is a heuristic modification to work stealing that allows a
thread to have an affinity for a process. In locality-guided work stealing, when a process
gives priority to a thread that has affinity for the process. Some of the techniques that
researchers suggest for improving data locality can be realized with locality-guided work
stealing. For example, the programmer can achieve an initial distribution of work among
the processes or schedule threads based on hints by appropriately assigning affinities to
threads in the computation.

Our preliminary experiments with locality-guided work stealing give encouraging
results, showing that for iterative, data-parallel applications the performance is very close
to that of static partitioning in dedicated mode (i.e., when the user can lock down a fixed
number of processors), but does not suffer a performance cliff problem [10] in multipro-
grammed mode (i.e., when processors might be taken by other users or the OS). Figure 1
shows a graph comparing work stealing, locality-guided work stealing, and static parti-
tioning for a simple over-relaxation algorithm on a 14 processor Sun Ultra Enterprise.
The over-relaxation algorithm iterates over a one-dimensional array performing a three-
point stencil computation on each step. Since the data in the depicted experiment does not
fit into the L2 cache of one processor but fits into the collective L2 cache of six or more
processors, we observe superlinear speedups for static partitioning and locality-guided
work stealing. For this benchmark the following can be seen from the graph:

1. Locality-guided work stealing does significantly better than standard work steal-
ing since on each step the cache is prewarmed with the data accessed in the
step.
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Fig. 1. The speedup obtained by three different over-relaxation algorithms.

2. Locality-guided work stealing does approximately as well as static partitioning
for up to 14 processes.

3. When trying to schedule more than 14 processes on 14 processors static parti-
tioning exhibits a serious performance drop (the performance cliff problem). The
initial drop is due to load imbalance caused by the coarse-grained partitioning.
The performance then approaches that of work stealing as the partitioning gets
more fine-grained. On the other hand, locality-guided work stealing continues to
perform well even under highly multiprogrammed work loads.

We are interested in the performance of work-stealing computations on HSMSs. We
model an HSMS as a group of identical processors connected through an interconnect to
each other and to a memory shared by all processors. In addition, each processor has its
own cache containing C blocks and is managed by the memory subsystem automatically.
We allow for a variety of cache organizations and replacement policies, including both
direct-mapped and associative caches. We assign a server process with each processor
and associate the cache of a processor with its server process. One limitation of our work
is that we assume that there is no false sharing.

2. Related Work

As mentioned in Section 1, there are three main classes of techniques that researchers
have suggested to improve the data locality of multithreaded programs. In the first class,
the program data is distributed among the nodes of a distributed shared-memory system
by the programmer and a thread in the computation is scheduled on the node that holds
the data that the thread accesses [15], [22], [26]. In the second class, data-locality hints
supplied by the programmer are used in thread scheduling [15], [31], [34]. Techniques
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from both classes are employed in distributed shared-memory systems such as COOL
and Illinois Concert [15], [22] and are also used to improve the data locality of sequential
programs [31]. However, the first class of techniques do not apply directly to HSMSs,
because HSMSs do not allow software-controlled distribution of data among the caches.
Furthermore, both classes of techniques rely on the programmer to determine the data
access patterns in the application and, thus, may not be appropriate for applications with
complex data-access patterns.

The third class of techniques, which is based on execution of threads that are close
in the computation graph on the same process, is applied in many scheduling algorithms
including work stealing [1], [9], [23], [26], [28], [19]. Blumofe et al showed bounds
on the number of cache misses in a fully strict computation executed by the work-
stealing algorithm under the dag-consistent distributed shared memory of Cilk [7]. Dag
consistency is a relaxed memory-consistency model that is employed in the distributed
shared-memory implementation of the Cilk language. In a distributed Cilk application,
processes maintain the dag consistency by means of the BACKER algorithm. In [7]
Blumofe et al. bound the number of shared-memory cache misses in a distributed Cilk
application for caches that are maintained with the LRU replacement policy.

3. The Model

In this section we present a graph-theoretic model for multithreaded computations, de-
scribe the work-stealing algorithm, define series-parallel and nested-parallel computa-
tions, and introduce our model of an HSMS.

As with previous work [5], [9] we represent a multithreaded computation as a dag of
instructions (see Figure 2). Each node in the dag represents an instruction and the edges
represent ordering constraints. There are three types of edges: continuation, spawn, and
dependency edges. A thread is a sequential ordering of instructions and the nodes that
corresponds to the instructions are linked in a chain by continuation edges. A spawn
edge represents the creation of a new thread and goes from the node representing the
instruction that spawns the new thread to the node representing the first instruction of the
new thread. A dependency edge from instruction i of a thread to instruction j of some
other thread represents a synchronization between two instructions such that instruction
j must be executed after i . We draw spawn edges with thick straight arrows, dependency
edges with curly arrows, and continuation edges with straight arrows throughout this
paper. Also we show paths with wavy lines.
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Fig. 2. A dag for a multithreaded computation. Threads are shown as gray rectangles.
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We define the depth of a node u as the number of edges on the shortest path from
the root node to u. Let u and v be any two nodes in a dag. Then we call u an ancestor
of v, and v a descendant of u if there is a path from u to v. Any node is its descendant
and ancestor. We say that two nodes are relatives if there is a path from one to the other,
otherwise we say that the nodes are independent. We call a common descendant y of u
and v a merger of u and v if the paths from u to y and v to y have only y in common.
We define the least common ancestor of u and v as the ancestor of both u and v with
maximum depth. Similarly, we define the greatest common descendant of u and v, as
the descendant of both u and v with minimum depth. An edge (u, v) is redundant if there
is a path between u and v that does not contain the edge (u, v). The transitive reduction
of a dag is the dag with all the redundant edges removed. In a transitive reduction of a
dag, the children of a node are independent because otherwise the edge from the node
to one child is redundant.

In this paper we are only concerned with the transitive reduction of the dags. We
also require that the dags have a single node with in-degree 0, the root, and a single node
with out-degree 0, the final node. For a computation with an associated dag G, we define
the computational work, T1, as the number of nodes in G and the critical path, T∞, as
the number of nodes on the longest path of G.

In a multiprocess execution of a multithreaded computation, independent nodes can
execute at the same time. If two independent nodes read or modify the same data, we
say that they are RR or WW sharing, respectively. If one node is reading and the other
is modifying the data we say they are RW sharing. RW or WW sharing can cause data
races, and the output of a computation with such races usually depends on the scheduling
of nodes. Such races are typically indicative of a bug [18]. We refer to computations
that do not have any RW or WW sharing as race-free computations. In this paper we
consider only race-free computations.

The work-stealing algorithm is a thread scheduling algorithm for multithreaded com-
putations. The idea of work stealing dates back to the research of Burton and Sleep [11]
and has been studied extensively since then [2], [9], [19], [20], [24], [37], [36]. In the
work-stealing algorithm, each process maintains a pool of ready threads and obtains
work from its pool. When a process spawns a new thread the process adds the new
thread into its pool. When a process runs out of work and finds its pool empty, it chooses
a random process as its victim and tries to steal work from the victim’s pool.

In our analysis we imagine the work-stealing algorithm operating on individual
nodes in the computation dag rather than on the threads. Consider a multithreaded
computation and its execution by the work-stealing algorithm. We divide the execution
into discrete time steps such that at each step, each process is either working on a node,
which we call the assigned node, or is trying to steal work. The execution of a node takes
one time step if the node does not incur a cache miss and m steps otherwise. We say
that a node is executed at the time step that a process completes executing the node. The
execution time of a computation is the number of time steps that elapse between the time
step that a process starts executing the root node to the time step that the final node is
executed. The execution schedule specifies the activity of each process at each time step.

During the execution, each process maintains a deque (doubly ended queue) of ready
nodes; we call the ends of a deque the top and the bottom. When a node, u, is executed,
it enables some other node v if u is the last executed parent of v. We call the edge (u, v)
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an enabling edge and u the designated parent of v. When a process executes a node
that enables other nodes, one of the enabled nodes become the assigned node and the
process pushes the rest onto the bottom of its deque. If no node is enabled, then the
process obtains work from its deque by removing a node from the bottom of the deque.
If a process finds its deque empty, it becomes a thief and steals from a randomly chosen
process, the victim. This is a steal attempt and takes at least s and at most ks time steps
for some constant k ≥ 1 to complete. A thief process might make multiple steal attempts
before succeeding, or might never succeed. When a steal succeeds, the thief process
starts working on the stolen node at the step following the completion of the steal. We
say that a steal attempt occurs at the step it completes.

The work-stealing algorithm can be implemented in various ways. We say that
an implementation of work stealing is deterministic if, whenever a process enables
multiple nodes, say nodes 1, 2, . . . , n, the implementation always chooses the i th, for
some fixed i , as the assigned node of the next step, and the remaining nodes are always
placed in the deque in the same order. In this paper we are interested in deterministic
work-stealing implementation. This restriction is necessary for our bounds, because, in
a nondeterministic implementation, two executions of the same computation can exhibit
arbitrarily different locality depending on the nondeterministic choices that each process
makes when executing nodes.

This must be true for both multiprocess and uniprocess executions. We refer to a
deterministic implementation of the work-stealing algorithm together with the HSMS
that runs the implementation as a work stealer. For brevity, we refer to an execution of a
multithreaded computation with a work stealer as an execution. We define the total work
as the number of steps taken by a uniprocess execution, including the cache misses, and
denote it by T1(C), where C is the cache size. We denote the number of cache misses in
a P-process execution with C-block caches as MP(C). We define the cache overhead
of a P-process execution as MP(C) − M1(C), where M1(C) is the number of misses in
the uniprocess execution on the same work stealer.

We refer to a multithreaded computation for which the transitive reduction of the
corresponding dag is series-parallel [33] as a series-parallel computation. A series-
parallel dag G(V, E) is a dag with two distinguished vertices, a source, s ∈ V , and a
sink, t ∈ V , and can be defined recursively as follows (see Figure 3):

• Base: G consists of a single edge connecting s to t .
• Series composition: G consists of two series-parallel dags G1(V1, E1) and G2(V2,

E2) with disjoint edge sets, E1 ∩ E2 = ∅, such that s is the source of G1, t is the
sink of G1 and the source of G2, and u is the sink of G2. Moreover, V1 ∩V2 = {t}.

s t

2G1G

s t u
G2

G1

s t

(a) (b) (c)

Fig. 3. The recursive definition for series-parallel dags: (a) The base case, (b) the serial composition, and
(c) the parallel composition.
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• Parallel composition: The graph consists of two series-parallel dags G1(V1, E1)

and G2(V2, E2) with disjoint edges sets, E1 ∩ E2 = ∅, such that s and t are the
source and the sink of both G1 and G2. Moreover, V1 ∩ V2 = {s, t}.

A nested-parallel computation is a race-free series-parallel computation [5].
We also consider multithreaded computations that use futures [12]–[14], [20], [25].

The dag structures of computations with futures are defined elsewhere [6]. This is a
superclass of nested-parallel computations, but still much more restrictive than general
computations. The work-stealing algorithm for futures is a restricted form of the work-
stealing algorithm, where a process starts executing a newly created thread immediately,
putting its assigned thread onto its deque.

In our analysis we consider several cache organization and replacement policies
for an HSMS. We model a cache as a set of (cache) lines, each of which can hold
the data belonging to a memory block (a consecutive, typically small, region of mem-
ory). One instruction can operate on at most one memory block or a line. We say that
an instruction accesses a line when the instruction reads or modifies the line. We say
that an instruction overwrites a line l when the instruction accesses some other block
that is brought to line l in the cache. We say that a cache replacement policy is sim-
ple if it satisfies two conditions. First, the policy is deterministic. Second, whenever
the policy decides to overwrite a cache line, l, it makes the decision to overwrite l by
only using information pertaining to the accesses that are made after the last access to
l. We refer to a cache managed with a simple cache-replacement policy as a simple
cache. Simple caches and replacement policies are common in practice. For example,
the least-recently used (LRU) replacement policy, direct mapped caches, and set asso-
ciative caches, where each set is maintained by a simple cache replacement policy, are
simple.

With regard to the definition of RW or WW sharing, we assume that reads and writes
pertain to the whole block (line). This means we do not allow for false sharing—when
two processes accessing different portions of a block invalidate the block in each other’
s caches. In practice, false sharing is an issue that can often be avoided by knowledge
of the underlying memory system and appropriately padding the shared data to prevent
two processes from accessing different portions of the same block.

4. General Computations

This section establishes the lower bound for the data locality of work stealing. We
show that the cache overhead of a multiprocess execution of a general computation
can be large even though the uniprocess execution incurs a small, constant number
of misses. Furthermore, we demonstrate a similar result for computations with
futures.

Theorem 1. There is a family of computations

{Gn: n = kC, for k ∈ Z+}
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Fig. 4. The structure for dag of a computation with a large cache overhead.

with O(n) computational work, whose uniprocess execution incurs 3C misses while
any two-process execution of the computation incurs �(n) misses on a work stealer
with a cache size of C , assuming that S = O(C), where S is the maximum steal
time.

Proof. Figure 4 shows the structure of a dag, G4C for n = 4C . The nodes are numbered
in the order of a uniprocess execution. Node 1 represents a sequence of 2S instructions
whereas all the other nodes represent a sequence of C instructions accessing a set of C
distinct memory blocks . The nodes that access the same set of blocks are shaded with the
same tone and any other pair of nodes access two disjoint sets of blocks. In a uniprocess
execution, node 0, node 2, and node 9 each cause C misses and, therefore, the total
number of cache misses in a uniprocess execution is 3C . In a two-process execution, the
idle process tries to steal from the process executing the root once the execution starts.
Since node 1 takes 2S time stamps to execute and a steal attempt takes at most S time
stamps, the idle process successfully steals node 9 and starts executing it before node 2
starts executing. Therefore, each of nodes 2–8 execute after the symmetric nodes 9–11,
13, 15, 16, 18, respectively. Thus each leaf node is executed immediately after its left
parent by the same process and causes C cache misses since a leaf node and its left parent
access two disjoint sets of memory blocks. Therefore, in the two-process execution the
total number of cache misses is at least 4C = �(n).

The example dag G4C can be generalized for any k ∈ Z+. For GkC , the total number
of cache misses in a uniprocess execution is 3C , whereas it is at least kC = �(n) in a
two-process execution. The total work of the general dag is at most 5kC + C + 2S =
O(kC) = O(n), assuming S = O(C).

There exists computations similar to the computation in Figure 4 that generalizes
Theorem 1 for an arbitrary number of processes by making sure that all the processes
except two steal throughout any multiprocess execution. Even in the general case, The-
orem 1 can be generalized with the same bound on the expected number of cache misses
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Fig. 5. The structure for dag of a computation with futures that can incur a large cache overhead.

by exploiting the symmetry in Gn and by assuming certain distributions on the steal-time
(e.g., uniform distribution).

A lower bound similar to Theorem 1 holds for computations with futures as well.
Computing with futures is a fairly restricted form of multithreaded computing compared
with computing with events such as synchronization variables. The graph F in Figure 5
shows the structure of a dag whose multiprocess execution exhibits poor data locality even
though its uniprocess execution exhibits good data locality. In a two-process execution
of F , nodes 12 and 14 are executed on the same process as their left parents, nodes 7
and 9, respectively, causing additional cache misses.

5. Nested-Parallel Computations

In this section we show that the cache overhead of an execution of a nested-parallel
computation with a work stealer is at most twice the product of the number of steals
and the cache size. Our proof has two steps. First, we show that the cache overhead is
bounded by the product of the cache size and the number of nodes that are executed
“out of order” with respect to the uniprocess execution order. Second, we prove that the
number of such out-of-order executions is at most twice the number of steals.

Consider a computation G and its P-process execution, X P , with a work stealer
and the uniprocess execution, X1, with the same work stealer. Let v be a node in G and
let node u be the node that executes immediately before v in X1. Then we say that v is
drifted in X P if node u is not executed immediately before v by the process that executes
v in X P .

Lemma 2 establishes a key property of an execution with simple caches.

Lemma 2. Consider a process with a simple cache of C blocks. Let X1 denote the
execution of a sequence of instructions on the process starting with cache state S1 and
let X2 denote the execution of the same sequence of instructions starting with cache state
S2. Then X1 incurs at most C more misses than X2.
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Proof. We construct a one-to-one mapping between the cache lines in X1 and X2 such
that an instruction that accesses a line l1 in X1 accesses the line l2 in X2, if and only if l1

is mapped to l2. Consider X1 and let l1 be a cache line. Let i be the first instruction that
accesses l1. Let l2 be the cache line that the same instruction accesses or overwrites in
X2 and map l1 to l2. Since the caches are simple, any instruction that overwrites l1 in X1

overwrites l2 in X2 in the rest of the execution. Therefore, once i is executed, the number
of misses that overwrites l1 in X1 is equal to the number of misses that overwrites l2 in
X2. Since i itself can cause one miss, misses that overwrite l1 in X1 are at most one more
than the misses that overwrite l2 in X2. We construct the mapping for each cache line
in X1 in the same way. This mapping is one-to-one. To see this, assume, for the sake of
contradiction, that two distinct cache lines, l1 and l2, in X1 map to the same line in X2.
Let i1 and i2 be the first instructions of X1 accessing l1 and l2, respectively, such that
i1 is executed before i2. Since i1 and i2 map to the same line in X2 and the caches are
simple, i2 accesses l1 but then l1 = l2, a contradiction. Thus we conclude that the total
number of cache misses in X1 is at most C more than the misses in X2.

Note that, the bound in Lemma 2 is tight, if for example one execution starts with
an “empty” cache and the second starts with a cache that fits all the C blocks accessed,
then one execution incurs no misses while the other incurs exactly C misses.

Theorem 3. Let D denote the total number of drifted nodes in an execution of a nested-
parallel computation with a work stealer on P processes, each of which has a simple
cache with C words. Then the cache overhead of the execution is at most CD.

Proof. Let X P denote the P-process execution and let X1 be the uniprocess execu-
tion of the same computation with the same work stealer. We divide the multiprocess
computation into D pieces, each of which can incur at most C more misses than in the
uniprocess execution. Let u be a drifted node and let q be the process that executes u.
Let v be the next drifted node executed on q (or the final node of the computation). Let
the ordered set O represent the execution order of all the nodes that are executed after
u (u is included) and before v (v is excluded if it is drifted, included otherwise) on q in
X P . Then nodes in O are executed on the same process and in the same order in both
X1 and X P .

Now consider the number of cache misses during the execution of the nodes in O
in X1 and X P . Since the computation is nested parallel and therefore race free, a process
that executes in parallel with q does not cause q to incur cache misses due to sharing.
Therefore by Lemma 2 during the execution of the nodes in O the number of cache
misses in X P is at most C more than the number of misses in X1. This bound holds for
each of the D sequence of such instructions O corresponding to D drifted nodes. Since
the sequence starting at the root node and ending at the first drifted node incurs the same
number of misses in X1 and X P X P takes at most CD more misses than X1 and the cache
overhead is at most CD.

Lemma 2 (and thus Theorem 3) does not hold for caches that are not simple. For
example, consider the uniprocess execution of a sequence of instructions with the LFU
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replacement policy starting at two caches. The first cache is “warmed up”, i.e., it con-
tains the frequently accessed blocks and associates a high frequency number with each
block. The second cache contains blocks that are accessed rarely but associates a high
frequency number with each block. Thus in an execution starting with the second cache,
the frequently accessed blocks are overwritten at cache misses, because other blocks
have higher frequencies.

Now we show that the number of drifted nodes in an execution of a series-parallel
computation with a work stealer is at most twice the number of steals. The proof is based
on the representation of series-parallel computations as sp-dags. We call a node with
out-degree of at least 2 a fork node and partition the nodes of an sp-dag except the root
into three categories: join nodes, stable nodes, and nomadic nodes. We call a node that
has an in-degree of at least 2 a join node and partition all the nodes that have in-degree 1
into two classes: a nomadic node has a parent that is a fork node, and a stable node has
a parent that has out-degree 1. The root node has in-degree 0 and it does not belong to
any of these categories. Lemma 4 lists two fundamental properties of sp-dags; one can
prove both properties by induction on the number of edges in an sp-dag.

Lemma 4. Let G be an sp-dag. Then G has the following properties:

1. The least common ancestor of any two nodes in G is unique.
2. The greatest common descendant of any two nodes in G is unique and is equal

to their unique merger.

Lemma 5. Let s be a fork node. Then no child of s is a join node.

Proof. Let u and v denote two children of s and suppose u is a join node as in Figure 6.
Let t denote some other parent of u and let z denote the unique merger of u and v. Then
both z and u are mergers for s and t , which is a contradiction of Lemma 5. Hence u is
not a join node.

Corollary 6. Only nomadic nodes can be stolen in an execution of a series-parallel
computation by the work-stealing algorithm.

Proof. Let u be a stolen node in an execution. Then u is pushed on a deque and thus
the enabling parent of u is a fork node. By Lemma 5, u is not a join node and has an
incoming degree 1. Therefore u is nomadic.
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Fig. 6. Children of s and their merger.
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Fig. 7. The joint embedding of u and v.

Consider a series-parallel computation and let G be its sp-dag. Let u and v be two
independent nodes in G and let s and t denote their least common ancestor and greatest
common descendant, respectively, as shown in Figure 7. Let G1 denote the graph that is
induced by the relatives of u that are descendants of s and also ancestors of t . Similarly,
let G2 denote the graph that is induced by the relatives of v that are descendants of s
and ancestors of t . Then we call G1 the embedding of u with respect to v and G2 the
embedding of v with respect to u. We call the graph that is the union of G1 and G2 the
joint embedding of u and v with source s and sink t . Now consider an execution of G
and let y and z be the children of s such that y is executed before z. Then we call y the
leader and z the guard of the joint embedding.

Lemma 7. Let G(V, E) be an sp-dag and let y and z be two parents of a join node t in
G. Let G1 denote the embedding of y with respect to z and let G2 denote the embedding
of z with respect to y. Let s denote the source and t denote the sink of the joint embedding.
Then the parents of any node in G1 except for s and t are in G1 and the parents of any
node in G2 except for s and t are in G2.

Proof. Since y and z are independent, both of s and t are different from y and z (see
Figure 8). First, we show that there is not an edge that starts at a node in G1 except at

w

G2

G1

r u

v z

x y

ts

Fig. 8. The join node s is the least common ancestor of y and z. Nodes u and v are the children of s.
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s and ends at a node in G2 except at t and vice versa. For the sake of contradiction,
assume there is an edge (m, n) such that m �= s is in G1 and n �= t is in G2. Then m is
the least common ancestor of y and z; hence no such (m, n) exists. A similar argument
holds when m is in G2 and n is in G1.

Second, we show that there does not exists an edge that originates from a node
outside of G1 or G2 and ends at a node at G1 or G2. For the sake of contradiction, let
(w, x) be an edge such that x is in G1 and w is not in G1 or G2. Then x is the unique
merger for the two children of the least common ancestor of w and s, which we denote
with r . However, then t is also a merger for the children of r . The children of r are
independent and have a unique merger, hence there is no such edge (w, x). A similar
argument holds when x is in G2. Therefore we conclude that the parents of any node
in G1 except s and t are in G1 and the parents of any node in G2 except s and t are
in G2.

Lemma 8. Let G be an sp-dag and let y and z be two parents of a join node t in G.
Consider the joint embedding of y and z and let u be the guard node of the embedding.
Then y and z are executed in the same respective order in a multiprocess execution as
they are executed in the uniprocess execution if the guard node u is not stolen.

Proof. Let s be the source, t the sink, and v the leader of the joint embedding. Since
u is not stolen, v is not stolen. Hence, by Lemma 7, before it starts working on u, the
process that executes s executed v and all its descendants in the embedding except for t
Hence, z is executed before u and y is executed after u as in the uniprocess execution.
Therefore, y and z are executed in the same respective order as they execute in the
uniprocess execution.

Lemma 9. A nomadic node is drifted in an execution only if it is stolen.

Proof. Let u be a nomadic and drifted node. Then, by Lemma 5, u has a single parent
s that enables u. If u is the first child of s to execute in the uniprocess execution, then
u is not drifted in the multiprocess execution. Hence, u is not the first child to execute.
Let v be the last child of s that is executed before u in the uniprocess execution. Now,
consider the multiprocess execution and let q be the process that executes v. For the sake
of contradiction, assume that u is not stolen. Consider the joint embedding of u and v as
shown in Figure 8. Since all parents of the nodes in G2 except for s and t are in G2 by
Lemma 7, q executes all the nodes in G2 before it executes u and, thus, z precedes u on
q . But then u is not drifted, because z is the node that is executed immediately before u
in the uniprocess computation. Hence u is stolen.

Let us define the cover of a join node t in an execution as the set of all the guard
nodes of the joint embedding of all possible pairs of parents of t in the execution. The
following lemma shows that a join node is drifted only if a node in its cover is stolen.

Lemma 10. If a join node t is drifted, then a node in t’s cover is stolen.
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Proof. For the sake of contradiction, assume that no node in the cover of t , C(t), is
stolen. Let y and z be any two parents of t as in Figure 8. Then y and z are executed in
the same order as in the uniprocess execution by Lemma 8. However, then all parents of
t execute in the same order as in the uniprocess execution. Hence, the enabling parent of
t in the execution is the same as in the uniprocess execution. Furthermore, the enabling
parent of t has out-degree 1, because otherwise t is not a join node by Lemma 5 and,
thus, the process that enables t executes t . Therefore, t is not drifted, a contradiction.
Hence, a node in the cover of t is stolen.

Lemma 11. The number of drifted nodes in an execution of a series-parallel compu-
tation is at most twice the number of steals in the execution.

Proof. We associate each drifted node in the execution with a steal such that no steal
has more than two drifted nodes associated with it. Consider a drifted node, u. Then u
is not the root node of the computation and it is not stable either. Hence, u is either a
nomadic or join node. If u is nomadic, then u is stolen by Lemma 9 and we associate u
with the steal that steals u. Otherwise, u is a join node and there is a node in its cover
C(u) that is stolen by Lemma 10. We associate u with the steal that steals a node in its
cover. Now, assume there are more than two nodes associated with a steal that steals node
u. Then there are at least two join nodes t1 and t2 that are associated with u. Therefore,
node u is in the joint embedding of two parents of t1 and also t2. Let x1, y1 be the parents
of t1 and let x2, y2 be the parents of t2, as shown in Figure 9. Let s1 and s2 be the sources
of the two embeddings. Note that s1 �= s2, because otherwise nodes u and x1 have two
mergers. Then u has a parent that is a fork node and u is a join node, which contradicts
Lemma 5. Hence no such u exists.

Theorem 12. The cache overhead of an execution of a nested-parallel computation
with simple caches is at most twice the product of the number of misses in the execution
and the cache size.

Proof. Follows from Theorem 3 and Lemma 11.
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Fig. 9. Nodes t1 and t2 are two join nodes with the common guard u.
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6. An Analysis of Nonblocking Work Stealing

The nonblocking implementation of the work-stealing algorithm delivers a provably
good performance under traditional and multiprogrammed work loads. A description of
the implementation and its analysis is presented in [2]; an experimental evaluation is
given in [10]. In this section we extend the analysis of the nonblocking work-stealing
algorithm for classical work loads and bound the execution time of a nested-parallel
computation with a work stealer to include the number of cache misses, the cache-miss
penalty, and the steal time. First, we bound the number of steal attempts in an execution
of a general computation by the work-stealing algorithm. Then we bound the execution
time of a nested-parallel computation with a work stealer using results from Section 5.
The analysis that we present here is similar to the analysis given in [2] and uses the same
potential function technique.

We associate a nonnegative potential with nodes in a computation’s dag and show
that the potential decreases as the execution proceeds. We assume that a node in a
computation dag has out-degree at most 2. This is consistent with the assumption that
each node represents on instruction. Consider an execution of a computation with its dag,
G(V, E) with the work-stealing algorithm. The execution grows a tree, the enabling tree,
that contains each node in the computation and its enabling edge. We define the distance
of a node u ∈ V , d(u), as T∞−depth(u), where depth(u) is the depth of u in the enabling
tree of the computation. Intuitively, the distance of a node indicates how far the node is
away from end of the computation. We define the potential function in terms of distances.
At any given step i , we assign a positive potential to each ready node, all other nodes
have 0 potential. A node is ready if it is enabled and not yet executed to completion. Let
u denote a ready node at time step i . Then we define, ϕi (u), the potential of u at time
step i as

ϕi (u) =
{

32d(u)−1 if u is assigned;

32d(u) otherwise.

The potential at step i , �i , is the sum of the potential of each ready node at step i . When
an execution begins, the only ready node is the root node which has distance T∞ and
is assigned to some process, so we start with �0 = 32T∞−1. As the execution proceeds,
nodes that are deeper in the dag become ready and the potential decreases. There are no
ready nodes at the end of an execution and the potential is 0.

We give a few more definitions that enable us to associate a potential with each
process. Let Ri (q) denote the set of ready nodes that are in the deque of process q along
with q’s assigned node, if any, at the beginning of step i . We say that each node u in
Ri (q) belongs to process q . Then we define the potential of q’s deque as

�i (q) =
∑

u∈Ri (q)

ϕi (u).

In addition, let Ai denote the set of processes whose deque is empty at the beginning of
step i , and let Di denote the set of all other processes. We partition the potential �i into
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two parts,

�i = �i (Ai ) + �i (Di ),

where

�i (Ai ) =
∑
q∈Ai

�i (q) and �i (Di ) =
∑
q∈Di

�i (q),

and we analyze the two parts separately. Lemma 13 lists four basic properties of the
potential that we use frequently. The proofs for these properties are given in [2] and the
listed properties are correct independent of the time that execution of a node or a steal
takes. Therefore, we give a short proof sketch.

Lemma 13. The potential function satisfies the following properties:

1. Suppose node u is assigned to a process at step i . Then the potential decreases
by at least 2

3ϕi (u).
2. Suppose a node u is executed at step i . Then the potential decreases by at least

5
9ϕi (u) at step i .

3. Consider any step i and any process q in Di . The topmost node u in q’s deque
contributes at least three-quarters of the potential associated with q . That is, we
have ϕi (u) ≥ 3

4�i (q).
4. Suppose a process p chooses process q in Di as its victim at time step i (a steal

attempt of p targeting q occurs at step i). Then the potential decreases by at
least 1

2�i (q) due to the assignment or execution of a node belonging to q at the
end of step i .

Property 1 follows directly from the definition of the potential function. Property 2
holds because a node enables at most two children with smaller potential, one of which
becomes assigned. Specifically, the potential after the execution of node u decreases by
at least ϕ(u)(1 − 1

3 − 1
9 ) = 5

9ϕ(u). Property 3 follows from a structural property of the
nodes in a deque. The distance of the nodes in a process’ deque decrease monotonically
from the top of the deque to bottom. Therefore, the potential in the deque is the sum of
geometrically decreasing terms and dominated by the potential of the top node. The last
property holds because when a process chooses process q in Di as its victim, the node
at the top of q’ s deque is assigned at the next step. Therefore, the potential decreases by
2
3ϕi (u) by property 1. Moreover, ϕi (u) ≥ 3

4�i (q) by property 3 and the result follows.
Lemma 16 shows that the potential decreases as a computation proceeds. The proof

for Lemma 16 utilizes balls and bins game bound from Lemma 14.

Lemma 14 (Balls and Weighted Bins). Suppose that at least P balls are thrown in-
dependently and uniformly at random into P bins, where bin i has a weight Wi , for
i = 1, . . . , P . The total weight is W = ∑P

i=1 Wi . For each bin i , define the random
variable Xi as

Xi =
{

Wi if some ball lands in bin i ;

0 otherwise.
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If X = ∑P
i=1 Xi , then for any β in the range 0 < β < 1, we have Pr{X ≥ βW } >

1 − 1/((1 − β)e).

This lemma can be proven with an application of Markov’s inequality. The proof of a
weaker version of this lemma for the case of exactly P throws is similar and given in
[2]. Lemma 14 also follows from the weaker lemma because X does not decrease with
more throws.

We now show that whenever P or more steal attempts occur, the potential decreases
by a constant fraction of �i (Di ) with constant probability.

Lemma 15. Consider any step i and any later step j such that at least P steal attempts
occur at steps from i (inclusive) to j (exclusive). Then we have

Pr{�i − �j ≥ 1
4�i (Di )} > 1

4 .

Moreover, the potential decrease is because of the execution or assignment of nodes
belonging to a process in Di .

Proof. Consider all P processes and P steal attempts that occur at or after step i . For
each process q in Di , if one or more of the P attempts target q as the victim, then the poten-
tial decreases by 1

2�i (q) due to the execution or assignment of nodes that belong to q by
property 4 in Lemma 13. If we think of each attempt as a ball toss, then we have an instance
of the Balls and Weighted Bins Lemma (Lemma 14). For each process q in Di , we assign a
weight Wq = 1

2�i (q), and for each other process q in Ai , we assign a weight Wq = 0. The
weights sum to W = 1

2�i (Di ). Using β = 1
2 in Lemma 14, we conclude that the potential

decreases by at least βW = 1
4�i (Di ) with probability greater than 1−1/((1−β)e) > 1

4
due to the execution or assignment of nodes that belong to a process in Di .

We now bound the number of steal attempts in a work-stealing computation.

Lemma 16. Consider a P-process execution of a multithreaded computation with the
work-stealing algorithm. Let T1 and T∞ denote the computational work and the crit-
ical path of the computation. Then the expected number of steal attempts in the ex-
ecution is O(�m/s�PT∞). Moreover, for any ε > 0, the number of steal attempts is
O(�m/s�PT∞ + lg(1/ε)) with probability at least 1 − ε.

Proof. We analyze the number of steal attempts by breaking the execution into phases
of �m/s�P steal attempts. We show that with constant probability, a phase causes the
potential to drop by a constant factor. The first phase begins at step t1 = 1 and ends at
the first step t ′

1 such that at least �m/s�P steal attempts occur during the interval of steps
[t1, t ′

1]. The second phase begins at step t2 = t ′
1 + 1, and so on. We first show that there

are at least m steps in a phase. A process has at most one outstanding steal attempt at
any time and a steal attempt takes at least s steps to complete. Therefore, at most P steal
attempts occur in a period of s time steps. Hence a phase of steal attempts takes at least
�(�m/s�P)/P� · s ≥ m time units.
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Consider a phase beginning at step i , and let j be the step at which the next phase
begins. Then i + m ≤ j . We will show that we have Pr{�j ≤ 3

4�i } > 1
4 . Recall that

the potential can be partitioned as �i = �i (Ai ) + �i (Di ). Since the phase contains
�m/s�P steal attempts, Pr{�i − �j ≥ ( 1

4 )�i (Di )} > 1
4 due to execution or assignment

of nodes that belong to a process in Di , by Lemma 15. Now we show that the potential
also drops by a constant fraction of �i (Ai ) due to the execution of assigned nodes that
are assigned to the processes in Ai . Consider a process, say q in Ai . If q does not have
an assigned node, then �i (q) = 0. If q has an assigned node u, then �i (q) = ϕi (u). In
this case, process q completes executing node u at step i + m − 1 < j at the latest and
the potential drops by at least 5

9ϕi (u) by property 2 of Lemma 13. Summing over each
process q in Ai , we have �i − �j ≥ 5

9�i (Ai ). Thus, we have shown that the potential
decreases at least by a quarter of �i (Ai ) and �i (Di ). Therefore no matter how the total
potential is distributed over Ai and Di , the total potential decreases by a quarter with
probability more than 1/4, that is, Pr{�i − �j ≥ 1

4�i } > 1
4 .

We say that a phase is successful if it causes the potential to drop by at least a
quarter. A phase is successful with probability at least 1/4. Since the potential starts at
�0 = 32T∞−1 and ends at 0 (and is always an integer), the number of successful phases
is at most (2T∞ − 1) log4/3 3 < 8T∞. The expected number of phases needed to obtain
8T∞ successful phases is at most 32T∞. Thus, the expected number of phases is O(T∞),
and because each phase contains �m/s�P steal attempts, the expected number of steal
attempts is O(�m/s�PT∞). The high probability bound follows by an application of the
Chernoff bound.

Theorem 17. Let MP(C) be the number of cache misses in a P-process execution of
a nested-parallel computation with a work stealer that has simple caches of C blocks
each. Let M1(C) be the number of cache misses in the uniprocess execution. Then

MP(C) = M1(C) + O

(⌈m

s

⌉
CPT∞ +

⌈m

s

⌉
CP ln

(
1

ε

))

with probability at least 1 − ε. The expected number of cache misses is

M1(C) + O
(⌈m

s

⌉
CPT∞

)
.

Proof. Theorem 12 shows that the cache overhead of a nested-parallel computation is
at most twice the product of the number of steals and the cache size. Lemma 16 shows
that the number of steal attempts is O(�m/s�P(T∞ + ln(1/ε))) with probability at least
1 − ε and the expected number of steals is O(�m/s�PT∞). The number of steals is not
greater than the number of steal attempts. Therefore the bounds follow.

Theorem 18. Consider a P-process, nested-parallel, work-stealing computation with
simple caches of C blocks. Then, for any ε > 0, the execution time is

O

(
T1(C)

P
+ m

⌈m

s

⌉
C

(
T∞ + ln

(
1

ε

))
+ (m + s)

(
T∞ + ln

(
1

ε

)))
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with probability at least (1 − ε). Moreover, the expected running time is

O

(
T1(C)

P
+ m

⌈m

s

⌉
CT∞ + (m + s)T∞

)
.

Proof. We use an accounting argument to bound the running time. At each step in the
computation, each process puts a dollar into one of two buckets that matches its activity
at that step. We name the two buckets as the work and the steal bucket. A process puts a
dollar into the work bucket at a step if it is working on a node in the step. The execution
of a node in the dag adds either one or m dollars to the work bucket. Similarly, a process
puts a dollar into the steal bucket for each step that it spends stealing. Each steal attempt
takes O(s) steps. Therefore, each steal adds O(s) dollars to the steal bucket. The number
of dollars in the work bucket at the end of execution is at most O(T1 + (m − 1)MP(C)),
which is

O

(
T1(C) + (m − 1)

⌈m

s

⌉
CP

(
T∞ + ln

(
1

ε′

)))

with probability at least 1 − ε′.
The total number of dollars in steal bucket is the total number of steal attempts

multiplied by the number of dollars added to the steal bucket for each steal attempt,
which is O(s). Therefore, the total number of dollars in the steal bucket is

O

(
s
⌈m

s

⌉
P

(
T∞ + ln

(
1

ε′

)))

with probability at least 1 − ε′. Each process adds exactly one dollar to a bucket at each
step so we divide the total number of dollars by P to get the high probability bound in
the theorem. A similar argument holds for the expected time bound.

7. Locality-Guided Work Stealing

The work-stealing algorithm achieves good data locality by executing nodes that are
close in the computation graph on the same process. For certain applications, however,
regions of the program that access the same data are not close in the computational
graph. As an example, consider an application that takes a sequence of steps, each of
which operates in parallel over a set or array of values. We call such an application
an iterative data-parallel application. Such an application can be implemented using
work stealing by forking a tree of threads on each step, in which each leaf of the tree
updates a region of the data (typically disjoint). Figure 10 shows an example of the trees
of threads created in two steps. Each node represents a thread and is labeled with the
process that executes it. The gray nodes are the leaves. The threads synchronize in the
same order as they fork. The first and second steps are structurally identical, and each
pair of corresponding gray nodes update the same region, often using much of the same
input data. The dashed rectangle in Figure 10, for example, shows a pair of such gray
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Fig. 10. The tree of threads created in a data-parallel work-stealing application.

nodes. To get good locality for this application, threads that update the same data on
different steps ideally should run on the same processor, even though they are not “close”
in the dag. In work stealing, however, this is highly unlikely to happen due to the random
steals. Figure 10, for example, shows an execution where all pairs of corresponding gray
nodes run on different processes.

In this section we describe and evaluate locality-guided work stealing, a heuristic
modification to work stealing which is designed to allow locality between nodes that
are distant in the computational graph. In locality-guided work stealing, each thread can
be given an affinity for a process, and when a process obtains work it gives priority to
threads with affinity for it. To enable this, in addition to a deque each process maintains a
mailbox: a first-in-first-out (FIFO) queue of pointers to threads that have affinity for the
process. There are then two differences between the locality-guided work-stealing and
work-stealing algorithms. First, when creating a thread, a process will push the thread
onto both the deque, as in normal work stealing, and also onto the tail of the mailbox of
the process that the thread has affinity for. Second, a process will first try to obtain work
from its mailbox before attempting a steal. Because threads can appear twice, once in a
mailbox and once on a deque, there needs to be some form of synchronization between
the two copies to make sure the thread is not executed twice.

A number of techniques that have been suggested to improve the data locality of
multithreaded programs can be realized by the locality-guided work-stealing algorithm
together with an appropriate policy to determine the affinities of threads. For example,
an initial distribution of work among processes can be enforced by setting the affinities
of a thread to the process that it will be assigned at the beginning of the computation.
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We call this locality-guided work stealing with initial placements. Likewise, techniques
that rely on hints from the programmer can be realized by setting the affinity of threads
based on the hints. In the next section we describe an implementation of locality-guided
work stealing for iterative data-parallel applications. The implementation described can
be modified easily to implement other techniques mentioned.

7.1. Implementation

We built locality-guided work stealing into Hood. Hood is a multithreaded programming
library with a nonblocking implementation of work stealing that delivers provably good
performance under both traditional and multiprogrammed work loads [2], [10], [30].

In Hood the programmer defines a thread as a C++ class, which we refer to as the
thread definition. A thread definition has a method named run that defines the code
that the thread executes. The run method is a C++ function which can call Hood library
functions to create and synchronize with other threads. A rope is an object that is an
instance of a thread definition class. Each time the run method of a rope is executed,
it creates a new thread. A rope can have an affinity for a process, and when the Hood
run-time system executes such a rope, the system passes this affinity to the thread. If the
thread does not run on the process for which it has affinity, the affinity of the rope is
updated to the new process.

Iterative data-parallel applications can effectively use ropes by making sure all
“corresponding” threads (threads that update the same region across different steps) are
generated from the same rope. A thread will therefore always have an affinity for the
process on which its corresponding thread ran on the previous step. The dashed rectangle
in Figure 10, for example, represents two threads that are generated in two executions of
one rope. To initialize the ropes, the programmer needs to create a tree of ropes before
the first step. This tree is then used on each step when forking the threads.

To implement locality-guided work stealing in Hood, we use a nonblocking queue
for each mailbox. Since a thread is put to a mailbox and to a deque, one issue is making
sure that the thread is not executed twice, once from the mailbox and once from the deque.
One solution is to remove the other copy of a thread when a process starts executing it.
In practice, this is not efficient because it has a large synchronization overhead. In our
implementation, we do this lazily: when a process starts executing a thread, it sets a flag
using an atomic update operation such as test-and-set or compare-and-swap to mark the
thread. When executing a thread, a process identifies a marked thread with the atomic
update and discards the thread. The second issue comes up when one wants to reuse the
thread data structures, typically those from the previous step. When a thread’s structure
is reused in a step, the copies from the previous step, which can be in a mailbox or a
deque needs to be marked invalid. One can implement this by invalidating all the multiple
copies of threads at the end of a step and synchronizing all processes before the next
step starts. In multiprogrammed work loads, however, the kernel can swap a process out,
preventing it from participating to the current step. Such a swapped out process prevents
all the other processes from proceeding to the next step. In our implementation, to avoid
the synchronization at the end of each step, we time-stamp thread data structures such
that each process closely follows the time of the computation and ignores a thread that
is “out-of-date.”
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7.2. Experimental Results

In this section we present the results of our preliminary experiments with locality-
guided work stealing on two small applications. The experiments were run on a 14
processor Sun Ultra Enterprise with 400 MHz processors and 4M byte L2 cache each,
and running Solaris 2.7. We used theprocessor bind system call of Solaris 2.7 to bind
processes to processors to prevent the Solaris kernel from migrating a process among
processors, causing the process to loose its cache state. When the number of processes
is less than number of processors we bind one process to each processor, otherwise we
bind processes to processors such that processes are distributed among processors as
evenly as possible.

We use the applications Heat and Relax in our evaluation. Heat is a Jacobi over-
relaxation that simulates heat propagation on a two-dimensional grid for a number of
steps. This benchmark was derived from similar Cilk [27] and SPLASH [35] benchmarks.
The main data structures are two equal-sized arrays. The algorithm runs in steps, each
of which updates the entries in one array using the data in the other array, which was
updated in the previous step. Relax is a Gauss–Seidel over-relaxation algorithm that
iterates over one a one-dimensional array updating each element by a weighted average
of its value and that of its two neighbors. We implemented each application with four
strategies, static partitioning, work stealing, locality-guided work stealing, and locality-
guided work stealing with initial placements. The static partitioning benchmarks divide
the total work equally among the number of processes and makes sure that each process
accesses the same data elements in all the steps. It is implemented directly with Solaris
threads. The three work-stealing strategies are all implemented in Hood. The plain work-
stealing version uses threads directly, and the two locality-guided versions use ropes by
building a tree of ropes at the beginning of the computation. The initial placement strategy
assigns initial affinities to the ropes near the top of the tree to achieve a good initial load
balance. We use the following prefixes in the names of the benchmarks: static (static
partitioning), none (work stealing), lg (locality-guided work stealing), and ip (lg with
initial placement).

We ran all Heat benchmarks with -x, 8K, -y, 128, -s, 100 parameters.
With these parameters each Heat benchmark allocates two arrays of double-precision
floating-point numbers of 8192 columns and 128 rows and does relaxation for 100 steps.
We ran all Relax benchmarks with the parameters -n, 3M, -s, 100. With these
parameters each Relax benchmark allocates one array of 3 million double-precision
floating-point numbers and does relaxation for 100 steps. With the specified input pa-
rameters, a Relax benchmark allocates 16 Megabytes and a Heat benchmark allocates
24 Megabytes of memory for the main data structures. Hence, the main data structures
for Heat benchmarks fit into the collective L2 cache space of four or more processes
and the data structures for Relax benchmarks fit into that of six or more processes. The
data for no benchmark fits into the collective L1 cache space of the Ultra Enterprise.
We observe superlinear speedups with some of our benchmarks when the collective
caches of the processes hold a significant amount of frequently accessed data. Table 7.2
shows characteristics of our benchmarks. Neither the work-stealing benchmarks nor the
locality-guided work-stealing benchmarks have significant overhead compared with the
serial implementation of the corresponding algorithms.
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Table 1. Measured benchmark characteristics.∗

Work Overhead Critical path Average
Benchmark (T1) (T1/Ts ) length (T∞) par. (T1/T∞)

staticHeat 15.95 1.10
heat 16.25 1.12 0.045 361.11
lgHeat 16.37 1.12 0.044 372.05
ipHeat 16.37 1.12 0.044 372.05
staticRelax 44.15 1.08
relax 43.93 1.08 0.039 1126.41
lgRelax 44.22 1.08 0.039 1133.84
ipRelax 44.22 1.08 0.039 1133.84

∗We compiled all applications with Sun CC compiler using -xarch =
v8plus -O5 -dalign flags. All times are given in seconds. Ts denotes
the execution time of the sequential algorithm for the application and Ts is
14.54 for Heat and 40.99 for Relax.

Figures 11 and 1 show the speedup of theHeat andRelaxbenchmarks, respectively,
as a function of the number of processes. The static partitioning benchmarks deliver su-
perlinear speedups under traditional work loads but suffer from the performance cliff
problem and deliver poor performance under multiprogramming work loads. The work-
stealing benchmarks deliver poor performance with almost any number of processes.
The locality-guided work-stealing benchmarks with or without initial placements, how-
ever, match the static partitioning benchmarks under traditional work loads and deliver
superior performance under multiprogramming work loads. The initial placement strat-
egy improves the performance under traditional work loads, but it does not perform
consistently better under multiprogrammed work loads. This is an artifact of binding
processes to processors. The initial placement strategy distributes the load among the
processes equally at the beginning of the computation but binding creates a load imbal-
ance between processors and increases the number of steals. Indeed, the benchmarks that

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processes

linear
heat

lgHeat
ipHeat

staticHeat

Fig. 11. Speedup of heat benchmarks on 14 processors.



The Data Locality of Work Stealing 345

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e 

of
 d

rif
te

d 
le

av
es

Number of Processes

heat
lgheat
ipheat

Fig. 12. Percentage of bad updates for the Heat benchmarks.

employ the initial-placement strategy does worse only when the number of processes is
slightly greater than the number of processors.

Locality-guided work stealing delivers good performance by achieving good data
locality. To substantiate this, we counted the average number of times that an element
is updated by two different processes in two consecutive steps, which we call a bad
update. Figure 12 shows the percentage of bad updates in our Heat benchmarks with
work stealing and locality-guided work stealing. The work-stealing benchmarks incur a
high percentage of bad updates, whereas the locality-guided work-stealing benchmarks
achieve a very low percentage. Figure 13 shows the number of random steals for the
same benchmarks for a varying number of processes. The graph is similar to the graph
for bad updates, because it is the random steals that cause the bad updates. The figures
for the Relax application are similar.
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