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on the same processor, if possible, so that communication between them can be minimized.Needless to say, achieving all these goals simultaneously can be di�cult.Two scheduling paradigms have arisen to address the problem of scheduling multithreadedcomputations: work sharing and work stealing. In work sharing, whenever a processorgenerates new threads, the scheduler attempts to migrate some of them to other processorsin hopes of distributing the work to underutilized processors. In work stealing, however,underutilized processors take the initiative: they attempt to \steal" threads from otherprocessors. Intuitively, the migration of threads occurs less frequently with work stealingthan with work sharing, since when all processors have work to do, no threads are migratedby a work-stealing scheduler, but threads are always migrated by a work-sharing scheduler.The work-stealing idea dates back at least as far as Burton and Sleep's research on par-allel execution of functional programs [16] and Halstead's implementation of Multilisp [30].These authors point out the heuristic bene�ts of work stealing with regards to space andcommunication. Since then, many researchers have implemented variants on this strategy[11, 21, 23, 29, 34, 37, 46]. Rudolph, Slivkin-Allalouf, and Upfal [43] analyzed a random-ized work-stealing strategy for load balancing independent jobs on a parallel computer, andKarp and Zhang [33] analyzed a randomized work-stealing strategy for parallel backtracksearch. Recently, Zhang and Ortynski [48] have obtained good bounds on the communicationrequirements of this algorithm.In this paper, we present and analyze a work-stealing algorithm for scheduling \fullystrict" (well-structured) multithreaded computations. This class of computations encom-passes both backtrack search computations [33, 48] and divide-and-conquer computations [47],as well as dataow computations [2] in which threads may stall due to a data dependency.We analyze our algorithms in a stringent atomic-access model similar to the atomic message-passing model of [36] in which concurrent accesses to the same data structure are seriallyqueued by an adversary.Our main contribution is a randomized work-stealing scheduling algorithm for fully strictmultithreaded computations which is provably e�cient in terms of time, space, and com-munication. We prove that the expected time to execute a fully strict computation on Pprocessors using our work-stealing scheduler is T1=P + O(T1), where T1 is the minimumserial execution time of the multithreaded computation and T1 is the minimum executiontime with an in�nite number of processors. In addition, the space required by the executionis at most S1P , where S1 is the minimum serial space requirement. These bounds are bet-ter than previous bounds for work-sharing schedulers [10], and the work-stealing scheduleris much simpler and eminently practical. Part of this improvement is due to our focus-ing on fully strict computations, as compared to the (general) strict computations studiedin [10]. We also prove that the expected total communication of the execution is at mostO(PT1(1 + nd)Smax), where Smax is the size of the largest activation record of any threadand nd is the maximum number of times that any thread synchronizes with its parent. Thisbound is existentially tight to within a constant factor, meeting the lower bound of Wuand Kung [47] for communication in parallel divide-and-conquer. In contrast, work-sharingschedulers have nearly worst-case behavior for communication. Thus, our results bolster thefolk wisdom that work stealing is superior to work sharing.Others have studied and continue to study the problem of e�ciently managing the spacerequirements of parallel computations. Culler and Arvind [19] and Ruggiero and Sargeant2



[44] give heuristics for limiting the space required by dataow programs. Burton [14] showshow to limit space in certain parallel computations without causing deadlock. More recently,Burton [15] has developed and analyzed a scheduling algorithm with provably good time andspace bounds. Blelloch, Gibbons, Matias, and Narlikar [3, 4] have also recently developedand analyzed scheduling algorithms with provably good time and space bounds. It is notyet clear whether any of these algorithms are as practical as work stealing.The remainder of this paper is organized as follows. In Section 2 we review the graph-theoretic model of multithreaded computations introduced in [10], which provides a theo-retical basis for analyzing schedulers. Section 3 gives a simple scheduling algorithm whichuses a central queue. This \busy-leaves" algorithm forms the basis for our randomized work-stealing algorithm, which we present in Section 4. In Section 5 we introduce the atomic-accessmodel that we use to analyze execution time and communication costs for the work-stealingalgorithm, and we present and analyze a combinatorial \balls and bins" game that we useto derive a bound on the contention that arises in random work stealing. We then use thisbound along with a delay-sequence argument [41] in Section 6 to analyze the execution timeand communication cost of the work-stealing algorithm. To conclude, in Section 7 we brieydiscuss how the theoretical ideas in this paper have been applied to the Cilk programminglanguage and runtime system [8, 25], as well as make some concluding remarks.2 A model of multithreaded computationThis section reprises the graph-theoretic model of multithreaded computation introducedin [10]. We also de�ne what it means for computations to be \fully strict." We concludewith a statement of the greedy-scheduling theorem, which is an adaptation of theorems byBrent [13] and Graham [27, 28] on dag scheduling.A multithreaded computation is composed of a set of threads, each of which is a se-quential ordering of unit-time instructions. The instructions are connected by dependencyedges, which provide a partial ordering on which instructions must execute before whichother instructions. In Figure 1, for example, each shaded block is a thread with circlesrepresenting instructions and the horizontal edges, called continue edges, representing thesequential ordering. Thread �5 of this example contains 3 instructions: v10, v11, and v12.The instructions of a thread must execute in this sequential order from the �rst (leftmost)instruction to the last (rightmost) instruction. In order to execute a thread, we allocate forit a chunk of memory, called an activation frame, that the instructions of the thread canuse to store the values on which they compute.A P -processor execution schedule for a multithreaded computation determines whichprocessors of a P -processor parallel computer execute which instructions at each step. Anexecution schedule depends on the particular multithreaded computation and the number Pof processors. In any given step of an execution schedule, each processor executes at mostone instruction.During the course of its execution, a thread may create, or spawn, other threads. Spawn-ing a thread is like a subroutine call, except that the spawning thread can operate concur-rently with the spawned thread. We consider spawned threads to be children of the threadthat did the spawning, and a thread may spawn as many children as it desires. In this way,3
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v8Figure 1: A multithreaded computation. This computation contains 23 instructions v1; v2; : : : ; v23and 6 threads �1;�2; : : : ;�6.threads are organized into a spawn tree as indicated in Figure 1 by the downward-pointing,shaded dependency edges, called spawn edges, that connect threads to their spawned chil-dren. The spawn tree is the parallel analog of a call tree. In our example computation, thespawn tree's root thread �1 has two children, �2 and �6, and thread �2 has three children,�3, �4, and �5. Threads �3, �4, �5, and �6, which have no children, are leaf threads.Each spawn edge goes from a speci�c instruction|the instruction that actually doesthe spawn operation|in the parent thread to the �rst instruction of the child thread. Anexecution schedule must obey this edge in that no processor may execute an instruction ina spawned child thread until after the spawning instruction in the parent thread has beenexecuted. In our example computation (Figure 1), due to the spawn edge (v6; v7), instructionv7 cannot be executed until after the spawning instruction v6. Consistent with our unit-timemodel of instructions, a single instruction may spawn at most one child. When the spawninginstruction executes, it allocates an activation frame for the new child thread. Once a threadhas been spawned and its frame has been allocated, we say the thread is alive or living.When the last instruction of a thread executes, it deallocates its frame and the thread dies.An execution schedule generally respects other dependencies besides those representedby continue and spawn edges. Consider an instruction that produces a data value to beconsumed by another instruction. Such a producer/consumer relationship precludes theconsuming instruction from executing until after the producing instruction. To enforcesuch orderings, other dependency edges, called join edges, may be required, as shown inFigure 1 by the curved edges. If the execution of a thread arrives at a consuming instructionbefore the producing instruction has executed, execution of the consuming thread cannotcontinue|the thread stalls. Once the producing instruction executes, the join dependency isresolved, which enables the consuming thread to resume its execution|the thread becomesready. A multithreaded computation does not model the means by which join dependenciesget resolved or by which unresolved join dependencies get detected. In implementation,resolution and detection can be accomplished using mechanisms such as join counters [8],futures [30], or I-structures [2].We make two technical assumptions regarding join edges. We �rst assume that eachinstruction has at most a constant number of join edges incident on it. This assumption4



is consistent with our unit-time model of instructions. The second assumption is that nojoin edges enter the instruction immediately following a spawn. This assumption meansthat when a parent thread spawns a child thread, the parent cannot immediately stall. Itcontinues to be ready to execute for at least one more instruction.An execution schedule must obey the constraints given by the spawn, continue, and joinedges of the computation. These dependency edges form a directed graph of instructions,and no processor may execute an instruction until after all of the instruction's predecessorsin this graph have been executed. So that execution schedules exist, this graph must beacyclic. That is, it must be a directed acyclic graph, or dag. At any given step of anexecution schedule, an instruction is ready if all of its predecessors in the dag have beenexecuted.We make the simplifying assumption that a parent thread remains alive until all itschildren die, and thus, a thread does not deallocate its activation frame until all its children'sframes have been deallocated. Although this assumption is not absolutely necessary, it givesthe execution a natural structure, and it will simplify our analyses of space utilization. Inaccounting for space utilization, we also assume that the frames hold all the values used bythe computation; there is no global storage available to the computation outside the frames(or if such storage is available, then we do not account for it). Therefore, the space usedat a given time in executing a computation is the total size of all frames used by all livingthreads at that time, and the total space used in executing a computation is the maximumsuch value over the course of the execution.To summarize, a multithreaded computation can be viewed as a dag of instructions con-nected by dependency edges. The instructions are connected by continue edges into threads,and the threads form a spawn tree with the spawn edges. When a thread is spawned, anactivation frame is allocated and this frame remains allocated as long as the thread remainsalive. A living thread may be either ready or stalled due to an unresolved dependency.A given multithreaded program when run on a given input can sometimes generate morethan one multithreaded computation. In that case, we say the program is nondetermin-istic. If the same multithreaded computation is generated by the program on the inputno matter how the computation is scheduled, then the program is deterministic. In thispaper, we shall analyze multithreaded computations, not multithreaded programs. Speci�-cally, we shall not worry about how the multithreaded computation is generated. Instead,we shall study its properties in an a posteriori fashion.Because multithreaded computations with arbitrary dependencies can be impossible toschedule e�ciently [10], we study subclasses of general multithreaded computations in whichthe kinds of syncrhonizations that can occur are restricted. A strict multithreaded com-putation is one in which all join edges from a thread go to an ancestor of the thread inthe activation tree. In a strict computation, the only edge into a subtree (emanating fromoutside the subtree) is the spawn edge that spawns the subtree's root thread. For example,the computation of Figure 1 is strict, and the only edge into the subtree rooted at �2 is thespawn edge (v2; v3). Thus, strictness means that a thread cannot be invoked before all ofits arguments are available, although the arguments can be garnered in parallel. A fullystrict computation is one in which all join edges from a thread go to the thread's parent. Afully strict computation is, in a sense, a \well-structured" computation, in that all join edgesfrom a subtree (of the spawn tree) emanate from the subtree's root. The example compu-5



tation of Figure 1 is fully strict. Any multithreaded computation that can be executed in adepth-�rst manner on a single processor can be made either strict or fully strict by alteringthe dependency structure, possibly a�ecting the achievable parallelism, but not a�ecting thesemantics of the computation [5].We quantify and bound the execution time of a computation on a P -processor parallelcomputer in terms of the computation's \work" and \critical-path length." We de�ne thework of the computation to be the total number of instructions and the critical-pathlength to be the length of a longest directed path in the dag. Our example computation(Figure 1) has work 23 and critical-path length 10. For a given computation, let T (X ) denotethe time to execute the computation using P -processor execution schedule X , and letTP = minX T (X )denote the minimum execution time with P processors|the minimum being taken over all P -processor execution schedules for the computation. Then T1 is the work of the computation,since a 1-processor computer can only execute one instruction at each step, and T1 is thecritical-path length, since even with arbitrarily many processors, each instruction on a pathmust execute serially. Notice that we must have TP � T1=P , because P processors canexecute only P instructions per time step, and of course, we must have TP � T1.Early work on dag scheduling by Brent [13] and Graham [27, 28] shows that there exist P -processor execution schedules X with T (X ) � T1=P +T1. As the sum of two lower bounds,this upper bound is universally optimal to within a factor of 2. The following theorem,proved in [10, 20], extends these results minimally to show that this upper bound on TP canbe obtained by greedy schedules: those in which at each step of the execution, if at leastP instructions are ready, then P instructions execute, and if fewer than P instructions areready, then all execute.Theorem 1 (The greedy-scheduling theorem) For any multithreaded computation with workT1 and critical-path length T1, and for any number P of processors, any greedy P -processorexecution schedule X achieves T (X ) � T1=P + T1.Generally, we are interested in schedules that achieve linear speedup, that is T (X ) =O(T1=P ). For a greedy schedule, linear speedup occurs when the parallelism, which wede�ne to be T1=T1, satis�es T1=T1 = 
(P ).To quantify the space used by a given execution schedule of a computation, we de�ne thestack depth of a thread to be the sum of the sizes of the activation frames of all its ancestors,including itself. The stack depth of a multithreaded computation is the maximum stackdepth of any of its threads. We shall denote by S1 the minimum amount of space possible forany 1-processor execution of a multithreaded computation, which is equal to the stack depthof the computation. Let S(X ) denote the space used by a P -processor execution scheduleX of a multithreaded computation. We shall be interested in those execution schedules thatexhibit at most linear expansion of space, that is, S(X ) = O(S1P ), which is existentiallyoptimal to within a constant factor [10]. 6



3 The busy-leaves propertyOnce a thread � has been spawned in a strict computation, a single processor can completethe execution of the entire subcomputation rooted at � even if no other progress is madeon other parts of the computation. In other words, from the time the thread � is spawneduntil the time � dies, there is always at least one thread from the subcomputation rootedat � that is ready. In particular, no leaf thread in a strict multithreaded computation canstall. As we shall see, this property allows an execution schedule to keep the leaves \busy."By combining this \busy-leaves" property with the greedy property, we derive executionschedules that simultaneously exhibit linear speedup and linear expansion of space.In this section, we show that for any number P of processors and any strict multithreadedcomputation with work T1, critical-path length T1, and stack depth S1, there exists a P -processor execution schedule X that achieves time T (X ) � T1=P+T1 and space S(X ) � S1Psimultaneously. We give a simple online P -processor parallel algorithm|the Busy-LeavesAlgorithm|to compute such a schedule. This simple algorithm will form the basis for therandomized work-stealing algorithm presented in Section 4.The Busy-Leaves Algorithm operates online in the following sense. Before the tth step,the algorithm has computed and executed the �rst t � 1 steps of the execution schedule.At the tth step, the algorithm uses only information from the portion of the computationrevealed so far in the execution to compute and execute the tth step of the schedule. Inparticular, it does not use any information from instructions not yet executed or threads notyet spawned.The Busy-Leaves Algorithm maintains all living threads in a single thread pool whichis uniformly available to all P processors. When spawns occur, new threads are added tothis global pool, and when a processor needs work, it removes a ready thread from the pool.Though we describe the algorithm as a P -processor parallel algorithm, we shall not analyze itas such. Speci�cally, in computing the tth step of the schedule, we allow each processor to addthreads to the thread pool and delete threads from it. Thus, we ignore the e�ects of processorscontending for access to the pool. In fact, we shall only analyze properties of the scheduleitself and ignore the cost incurred by the algorithm in computing the schedule. (Schedulingoverheads will be analyzed for the randomized work-stealing algorithm, however.)The Busy-Leaves Algorithm operates as follows. The algorithm begins with the rootthread in the global thread pool and all processors idle. At the beginning of each step, eachprocessor either is idle or has a thread to work on. Those processors that are idle begin thestep by attempting to remove any ready thread from the pool. If there are su�ciently manyready threads in the pool to satisfy all of the idle processors, then every idle processor getsa ready thread to work on. Otherwise, some processors remain idle. Then, each processorthat has a thread to work on executes the next instruction from that thread. In general,once a processor has a thread, call it �a, to work on, it executes an instruction from �a ateach step until the thread either spawns, stalls, or dies, in which case, it performs accordingto the following rules.
➊ Spawns: If the thread �a spawns a child �b, then the processor �nishes the currentstep by returning �a to the thread pool. The processor begins the next step workingon �b. 7



processor activitystep thread pool p1 p21 �1: v12 v23 �2: v3 �1: v164 �2 �3: v4 v175 �1 �2 v5 �6: v186 �1 �2: v6 v197 �1 �2 �4: v7 v208 �2 v8 �1: v219 �1 �2: v910 �1 �5: v10 �2: v1311 �1 v11 v1412 �2 v12 �1: v2213 �1 �2: v1514 �1: v23Figure 2: A 2-processor execution schedule computed by the Busy-Leaves Algorithm for the com-putation of Figure 1. This schedule lists the living threads in the global thread pool at each stepjust after each idle processor has removed a ready thread. It also lists the ready thread beingworked on and the instruction executed by each of the 2 processors, p1 and p2, at each step. Livingthreads that are ready are listed in bold. The other living threads are stalled.
➋ Stalls: If the thread �a stalls, then the processor �nishes the current step by returning�a to the thread pool. The processor begins the next step idle.
➌ Dies: If the thread �a dies, then the processor �nishes the current step by checking tosee if �a's parent thread �b currently has any living children. If �b has no live childrenand no other processor is working on �b, then the processor takes �b from the pooland begins the next step working on �b. Otherwise, the processor begins the next stepidle.Figure 2 illustrates these three rules in a 2-processor execution schedule computed bythe Busy-Leaves Algorithm on the computation of Figure 1. Rule ➊: At step 2, processorp1 working on thread �1 executes v2 which spawns the child �2, so p1 places �1 back in thepool (to be picked up at the beginning of the next step by the idle p2) and begins the nextstep working on �2. Rule ➋: At step 8, processor p2 working on thread �1 executes v21 and�1 stalls, so p2 returns �1 to the pool and begins the next step idle (and remains idle sincethe thread pool contains no ready threads). Rule ➌: At step 13, processor p1 working on�2 executes v15 and �2 dies, so p1 retrieves the parent �1 from the pool and begins the nextstep working on �1.Besides being greedy, for any strict computation, the schedule computed by the Busy-Leaves Algorithm maintains the busy-leaves property: at every time step during theexecution, every leaf in the \spawn subtree" has a processor working on it. We de�ne thespawn subtree at any time step t to be the portion of the spawn tree consisting of just8



those threads that are alive at step t. To restate the busy-leaves property, at every time step,every living thread that has no living descendants has a processor working on it. We shallnow prove this fact and show that it implies linear expansion of space. It is worth notingthat not every multithreaded computation has a schedule that maintains the busy-leavesproperty, but every strict multithreaded computation does. We begin by showing that anyschedule that maintains the busy-leaves property exhibits linear expansion of space.Lemma 2 For any multithreaded computation with stack depth S1, any P -processor executionschedule X that maintains the busy-leaves property uses space bounded by S(X ) � S1P .Proof: The busy-leaves property implies that at all time steps t, the spawn subtree has atmost P leaves. For each such leaf, the space used by it and all of its ancestors is at most S1,and therefore, the space in use at any time step t is at most S1P .For schedules that maintain the busy-leaves property, the upper bound S1P is conser-vative. By charging S1 space for each busy leaf, we may be overcharging. For some com-putations, by knowing that the schedule preserves the busy-leaves property, we can appealdirectly to the fact that the spawn subtree never has more than P leaves to obtain tightbounds on space usage [6].We �nish this section by showing that for strict computations, the Busy-Leaves Algorithmcomputes a schedule that is both greedy and maintains the busy-leaves property.Theorem 3 For any number P of processors and any strict multithreaded computation withwork T1, critical-path length T1, and stack depth S1, the Busy-Leaves Algorithm computesa P -processor execution schedule X whose execution time satis�es T (X ) � T1=P + T1 andwhose space satis�es S(X ) � S1P .Proof: The time bound follows directly from the greedy-scheduling theorem (Theorem 1),since the Busy-Leaves Algorithm computes a greedy schedule. The space bound follows fromLemma 2 if we can show that the Busy-Leaves Algorithmmaintains the busy-leaves property.We prove this fact by induction on the number of steps. At the �rst step of the algorithm, thespawn subtree contains just the root thread which is a leaf, and some processor is workingon it. We must show that all of the algorithm rules preserve the busy-leaves property. Whena processor has a thread �a to work on, it executes instructions from that thread until iteither spawns, stalls, or dies. Rule ➊: If �a spawns a child �b, then �a is not a leaf (even if itwas before) and �b is a leaf. In this case, the processor works on �b, so the new leaf is busy.Rule ➋: If �a stalls, then �a cannot be a leaf since in a strict computation, the unresolveddependency must come from a descendant. Rule ➌: If �a dies, then its parent thread �bmay turn into a leaf. In this case, the processor works on �b unless some other processoralready is, so the new leaf is guaranteed to be busy.We now know that every strict multithreaded computation has an e�cient executionschedule, and we know how to �nd it. But these facts take us only so far. Execution schedulesmust be computed e�ciently online, and though the Busy-Leaves Algorithm does computee�cient execution schedules and does operate online, it surely does not do so e�ciently,except possibly in the case of small-scale symmetric multiprocessors. This lack of scalabilityis a consequence of employing a single centralized thread pool at which all processors mustcontend for access. In the next section, we present a distributed online scheduling algorithm,and in the following sections, we prove that it is both e�cient and scalable.9



4 A randomized work-stealing algorithmIn this section, we present an online, randomized work-stealing algorithm for scheduling mul-tithreaded computations on a parallel computer. Also, we present an important structurallemma which is used at the end of this section to show that for fully strict computations, thisalgorithm causes at most a linear expansion of space. This lemma reappears in Section 6 toshow that for fully strict computations, this algorithm achieves linear speedup and generatesexistentially optimal amounts of communication.In the Work-Stealing Algorithm, the centralized thread pool of the Busy-LeavesAlgorithm is distributed across the processors. Speci�cally, each processor maintains a readydeque data structure of threads. The ready deque has two ends: a top and a bottom.Threads can be inserted on the bottom and removed from either end. A processor treatsits ready deque like a call stack, pushing and popping from the bottom. Threads that aremigrated to other processors are removed from the top.In general, a processor obtains work by removing the thread at the bottom of its readydeque. It starts working on the thread, call it �a, and continues executing �a's instructionsuntil �a spawns, stalls, dies, or enables a stalled thread, in which case, it performs accordingto the following rules.
➊ Spawns: If the thread �a spawns a child �b, then �a is placed on the bottom of theready deque, and the processor commences work on �b.
➋ Stalls: If the thread �a stalls, its processor checks the ready deque. If the dequecontains any threads, then the processor removes and begins work on the bottommostthread. If the ready deque is empty, however, the processor begins work stealing: itsteals the topmost thread from the ready deque of a randomly chosen processor andbegins work on it. (This work-stealing strategy is elaborated below.)
➌ Dies: If the thread �a dies, then the processor follows rule ➋ as in the case of �astalling.
➍ Enables: If the thread �a enables a stalled thread �b, the now-ready thread �b isplaced on the bottom of the ready deque of �a's processor.A thread can simultaneously enable a stalled thread and stall or die, in which case we �rstperform rule ➍ for enabling and then rule ➋ for stalling or rule ➌ for dying. Except forrule ➍ for the case when a thread enables a stalled thread, these rules are analogous to therules of the Busy-Leaves Algorithm, and as we shall see, rule ➍ is needed to ensure that thealgorithm maintains important structural properties, including the busy-leaves property.The Work-Stealing Algorithm begins with all ready deques empty. The root thread ofthe multithreaded computation is placed in the ready deque of one processor, while the otherprocessors start work stealing.When a processor begins work stealing, it operates as follows. The processor becomesa thief and attempts to steal work from a victim processor chosen uniformly at random.The thief queries the ready deque of the victim, and if it is nonempty, the thief removes andbegins work on the top thread. If the victim's ready deque is empty, however, the thief triesagain, picking another victim at random. 10
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Figure 3: The structure of a processor's ready deque. The black instruction in each thread indicatesthe thread's currently ready instruction. Only thread �k may have been worked on since it lastspawned a child. The dashed edges are the \deque edges" introduced in Section 6.We now state and prove an important lemma on the structure of threads in the readydeque of any processor during the execution of a fully strict computation. This lemma isused later in this section to analyze execution space and in Section 6 to analyze executiontime and communication. Figure 3 illustrates the lemma.Lemma 4 In the execution of any fully strict multithreaded computation by the Work-StealingAlgorithm, consider any processor p and any given time step at which p is working on athread. Let �0 be the thread that p is working on, let k be the number of threads in p's readydeque, and let �1;�2; : : : ;�k denote the threads in p's ready deque ordered from bottom totop, so that �1 is the bottommost and �k is the topmost. If we have k > 0, then the threadsin p's ready deque satisfy the following properties:
➀ For i = 1; 2; : : : ; k, thread �i is the parent of �i�1.
➁ If we have k > 1, then for i = 1; 2; : : : ; k � 1, thread �i has not been worked on sinceit spawned �i�1.Proof: The proof is a straightforward induction on execution time. Execution begins withthe root thread in some processor's ready deque and all other ready deques empty, so thelemma vacuously holds at the outset. Now, consider any step of the algorithm at whichprocessor p executes an instruction from thread �0. Let �1;�2; : : : ;�k denote the k threadsin p's ready deque before the step, and suppose that either k = 0 or both properties hold.Let �00 denote the thread (if any) being worked on by p after the step, and let �01;�02; : : : ;�0k0denote the k0 threads in p's ready deque after the step. We now look at the rules of thealgorithm and show that they all preserve the lemma. That is, either k0 = 0 or bothproperties hold after the step.Rule ➊: If �0 spawns a child, then p pushes �0 onto the bottom of the ready dequeand commences work on the child. Thus, �00 is the child, we have k0 = k + 1 > 0, andfor j = 1; 2; : : : ; k0, we have �0j = �j�1. See Figure 4. Now, we can check both properties.Property ➀: If k0 > 1, then for j = 2; 3; : : : ; k0, thread �0j is the parent of �0j�1, since beforethe spawn we have k > 0, which means that for i = 1; 2; : : : ; k, thread �i is the parent of �i�1.11



Moreover, �01 is obviously the parent of �00. Property ➁: If k0 > 2, then for j = 2; 3; : : : ; k0�1,thread �0j has not been worked on since it spawned �0j�1, because before the spawn we havek > 1, which means that for i = 1; 2; : : : ; k � 1, thread �i has not been worked on since itspawned �i�1. Finally, thread �01 has not been worked on since it spawned �00, because thespawn only just occurred.
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Γ′ 0(a) Before spawn. (b) After spawn.Figure 4: The ready deque of a processor before and after the thread �0 that it is working onspawns a child. (Note that the threads �0 and �00 are not actually in the deque; they are thethreads being worked on before and after the spawn.)Rules ➋ and ➌: If �0 stalls or dies, then we have two cases to consider. If k = 0, theready deque is empty, so the processor commences work stealing, and when the processorsteals and begins work on a thread, we have k0 = 0. If k > 0, the ready deque is notempty, so the processor pops the bottommost thread o� the deque and commences work onit. Thus, we have �00 = �1 (the popped thread) and k0 = k � 1, and for j = 1; 2; : : : ; k0, wehave �0j = �j+1. See Figure 5. Now, if k0 > 0, we can check both properties. Property ➀:For j = 1; 2; : : : ; k0, thread �0j is the parent of �0j�1, since for i = 1; 2; : : : ; k, thread �i is theparent of �i�1. Property ➁: If k0 > 1, then for j = 1; 2; : : : ; k0 � 1, thread �0j has not beenworked on since it spawned �0j�1, because before the stall or death we have k > 2, whichmeans that for i = 2; 3; : : : ; k � 1, thread �i has not been worked on since it spawned �i�1.
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Γ′ 0(a) Before death. (b) After death.Figure 5: The ready deque of a processor before and after the thread �0 that it is working on dies.(Note that the threads �0 and �00 are not actually in the deque; they are the threads being workedon before and after the death.)Rule ➍: If �0 enables a stalled thread, then due to the fully strict condition, that pre-viously stalled thread must be �0's parent. First, we observe that we must have k = 0. If12



we have k > 0, then the processor's ready deque is not empty, and this parent thread mustbe bottommost in the ready deque. Thus, this parent thread is ready and Rule ➍ does notapply. With k = 0, the ready deque is empty and the processor places the parent thread onthe bottom of the ready deque. We have �00 = �0 and k0 = k + 1 = 1 with �01 denoting thenewly enabled parent. We only have to check the �rst property. Property ➀: Thread �01 isobviously the parent of �00.If some other processor steals a thread from processor p, then we must have k > 0, andafter the steal we have k0 = k�1. If k0 > 0 holds, then both properties are clearly preserved.All other actions by processor p|such as work stealing or executing an instruction that doesnot invoke any of the above rules|clearly preserve the lemma.Before moving on, it is worth pointing out how it may happen that thread �k has beenworked on since it spawned �k�1, since Property ➁ excludes �k. This situation arises when�k is stolen from processor p and then stalls on its new processor. Later, �k is reenabled by�k�1 and brought back to processor p's ready deque. The key observation is that when �k isreenabled, processor p's ready deque is empty and p is working on �k�1. The other threads�k�2;�k�3; : : : ;�0 shown in Figure 3 were spawned after �k was reenabled.We conclude this section by bounding the space used by the Work-Stealing Algorithmexecuting a fully strict computation.Theorem 5 For any fully strict multithreaded computation with stack depth S1, the Work-Stealing Algorithm run on a computer with P processors uses at most S1P space.Proof: Like the Busy-Leaves Algorithm, the Work-Stealing Algorithm maintains the busy-leaves property: at every time step of the execution, every leaf in the current spawn subtreehas a processor working on it. If we can establish this fact, then Lemma 2 completes theproof.That the Work-Stealing Algorithm maintains the busy-leaves property is a simple con-sequence of Lemma 4. At every time step, every leaf in the current spawn subtree must beready and therefore must either have a processor working on it or be in the ready dequeof some processor. But Lemma 4 guarantees that no leaf thread sits in a processor's readydeque while the processor works on some other thread.With the space bound in hand, we now turn attention to analyzing the time and commu-nication bounds for the Work-Stealing Algorithm. Before we can proceed with this analysis,however, we must take care to de�ne a model for coping with the contention that may arisewhen multiple thief processors simultaneously attempt to steal from the same victim.5 Atomic accesses and the recycling gameThis section presents the \atomic-access" model that we use to analyze contention during theexecution of a multithreaded computation by the Work-Stealing Algorithm. We introducea combinatorial \balls and bins" game, which we use to bound the total amount of delayincurred by random, asynchronous accesses in this model. We shall use the results of thissection in Section 6, where we analyze the Work-Stealing Algorithm.The atomic-access model is the machine model we use to analyze the Work-StealingAlgorithm. We assume that the machine is an asynchronous parallel computer with P13



processors, and its memory can be either distributed or shared. Our analysis assumes thatconcurrent accesses to the same data structure are serially queued by an adversary, as inthe atomic message-passing model of [36]. This assumption is more stringent than that inthe model of Karp and Zhang [33]. They assume that if concurrent steal requests are madeto a deque, in one time step, one request is satis�ed and all the others are denied. In theatomic-access model, we also assume that one request is satis�ed, but the others are queuedby an adversary, rather than being denied. Moreover, from the collection of waiting requestsfor a given deque, the adversary gets to choose which is serviced and which continue to wait.The only constraint on the adversary is that if there is at least one request for a deque, thenthe adversary cannot choose that none be serviced.The main result of this section is to show that if requests are made randomly by Pprocessors to P deques with each processor allowed at most one outstanding request, thenthe total amount of time that the processors spend waiting for their requests to be satis�edis likely to be proportional to the total number M of requests, no matter which processorsmake the requests and no matter how the requests are distributed over time. In order toprove this result, we introduce a \balls and bins" game that models the e�ects of queueingby the adversary.The (P;M)-recycling game is a combinatorial game played by the adversary, in whichballs are tossed at random into bins. The parameter P is the number of balls in the game,which is equal to the number of bins. The parameter M is the total number of ball tossesexecuted by the adversary. Initially, all P balls are in a reservoir separate from the P bins.At each step of the game, the adversary executes the following two operations in sequence:1. The adversary chooses some of the balls in the reservoir (possibly all and possiblynone), and then for each of these balls, the adversary removes it from the reservoir,selects one of the P bins uniformly and independently at random, and tosses the ballinto it.2. The adversary inspects each of the P bins in turn, and for each bin that contains atleast one ball, the adversary removes any one of the balls in the bin and returns it tothe reservoir.The adversary is permitted to make a total of M ball tosses. The game ends when M balltosses have been made and all balls have been removed from the bins and placed back in thereservoir.The recycling game models the servicing of steal requests by the Work-Stealing Algo-rithm. We can view each ball and each bin as being owned by a distinct processor. If a ballis in the reservoir, it means that the ball's owner is not making a steal request. If a ball isin a bin, it means that the ball's owner has made a steal request to the deque of the bin'sowner, but that the request has not yet been satis�ed. When a ball is removed from a binand returned to the reservoir, it means that the request has been serviced.After each step t of the game, there are some number nt of balls left in the bins, whichcorrespond to steal requests that have not been satis�ed. We shall be interested in the totaldelay D = PTt=1 nt, where T is the total number of steps in the game. The goal of theadversary is to make the total delay as large as possible. The next lemma shows that despite14



the choices that the adversary makes about which balls to toss into bins and which to returnto the reservoir, the total delay is unlikely to be large.Lemma 6 For any � > 0, with probability at least 1��, the total delay in the (P;M)-recyclinggame is O(M + P lgP + P lg(1=�)).1The expected total delay is at most M . In other words,the total delay incurred by M random requests made by P processors in the atomic-accessmodel is O(M+P lgP +P lg(1=�)) with probability at least 1��, and the expected total delayis at most M .Proof: We �rst make the observation that the strategy by which the adversary chooses aball from each bin is immaterial, and thus, we can assume that balls are queued in their binsin a �rst-in-�rst-out (FIFO) order. The adversary removes balls from the front of the queue,and when the adversary tosses a ball, it is placed on the back of the queue. If several ballsare tossed into the same bin at the same step, they can be placed on the back of the queuein any order. The reason that assuming a FIFO discipline for queuing balls in a bin does nota�ect the total delay is that the number of balls in a given bin at a given step is the sameno matter which ball is removed, and where balls are tossed has nothing to do with whichball is tossed.For any given ball and any given step, the step either �nishes with the the ball in a binor in the reservoir. De�ne the delay of ball r to be the random variable �r denoting thetotal number of steps that �nish with ball r in a bin. Then, we haveD = PXr=1 �r : (1)De�ne the ith cycle of a ball to be those steps in which the ball remains in a bin from theith time it is tossed until it is returned to the reservoir. De�ne also the ith delay of a ballto be the number of steps in its ith cycle.We shall analyze the total delay by focusing, without loss of generality, on the delay � = �1of ball 1. If we let m denote the number of times that ball 1 is tossed by the adversary, andfor i = 1; 2; : : : ; m, let di be the random variable denoting the ith delay of ball 1, then wehave � = Pmi=1 di.We say that the ith cycle of ball 1 is delayed by another ball r if the ith toss of ball 1places it in some bin k and ball r is removed from bin k during the ith cycle of ball 1. Sincethe adversary follows the FIFO rule, it follows that the ith cycle of ball 1 can be delayedby another ball r either once or not at all. Consequently, we can decompose each randomvariable di into a sum di = xi2 + xi3 + � � �+ xim of indicator random variables, wherexir = ( 1 if the ith cycle of ball 1 is delayed by ball r;0 otherwise.Thus, we have � = mXi=1 PXr=2xir : (2)1Greg Plaxton of the University of Texas, Austin has improved this bound to O(M) for the case when1=� is at most polynomial in M and P [40]. 15



We now prove an important property of these indicator random variables. Consider anyset S of pairs (i; r), each of which corresponds to the event that the ith cycle of ball 1 isdelayed by ball r. For any such set S, we claim thatPr8<: ^(i;r)2S(xir = 1)9=; � P�jSj : (3)The crux of proving the claim is to show thatPr8<:xir = 1 ������ ^(i0;r0)2S0(xi0r0 = 1)9=; � 1=P ; (4)where S 0 = S � f(i; r)g, whence the claim (3) follows from Bayes's Theorem.We can derive Inequality (4) from a careful analysis of dependencies. Because the adver-sary follows the FIFO rule, we have that xir = 1 only if, when the adversary executes the ithtoss of ball 1, it falls into whatever bin contains ball r, if any. A priori, this event happenswith probability either 1=P or 0, and hence, with probability at most 1=P . Conditioning onany collection of events relating which balls delay this or other cycles of ball 1 cannot in-crease this probability, as we now argue in two cases. In the �rst case, the indicator randomvariables xi0r0, where i0 6= i, tell whether other cycles of ball 1 are delayed. This informationtells nothing about where the ith toss of ball 1 goes. Therefore, these random variables areindependent of xir, and thus, the probability 1=P upper bound is not a�ected. In the secondcase, the indicator random variables xir0 tell whether the ith toss of ball 1 goes to the bincontaining ball r0, but this information tells us nothing about whether it goes to the bincontaining ball r, because the indicator random variables tell us nothing to relate where ballr and ball r0 are located. Moreover, no \collusion" among the indicator random variablesprovides any more information, and thus Inequality (4) holds.Equation (2) shows that the delay � encountered by ball 1 throughout all of its cyclescan be expresses as a sum of m(P � 1) indicator random variables. In order for � to equalor exceed a given value �, there must be some set containing � of these indicator randomvariables, each of which must be 1. For any speci�c such set, Inequality (3) says that theprobability is at most P�� that all random variables in the set are 1. Since there are�m(P�1)� � � (emP=�)� such sets, where e is the base of the natural logarithm, we havePr f� � �g � �emP� �� P��= �em� ��� �=P ;whenever � � max f2em; lgP + lg(1=�)g.Although our analysis was performed for ball 1, it applies to any other ball as well.Consequently, for any given ball r which is tossed mr times, the probability that its delay �rexceeds max f2emr; lgP + lg(1=�)g is at most �=P . By Boole's inequality and Equation (1),16



it follows that with probability at least 1� �, the total delay D is at mostD � PXr=1max f2emr; lgP + lg(1=�)g= �(M + P lgP + P lg(1=�)) ;since M = PPr=1mr.The upper bound E [D] � M can be obtained as follows. Recall that each �r is thesum of (P � 1)mr indicator random variables, each of which has expectation at most 1=P .Therefore, by linearity of expectation, E [�r] � mr. Using Equation (1) and again usinglinearity of expectation, we obtain E [D] �M .With this bound on the total delay incurred by M random requests now in hand, weturn back to the Work-Stealing Algorithm.6 Analysis of the work-stealing algorithmIn this section, we analyze the time and communication cost of executing a fully strict mul-tithreaded computation with the Work-Stealing Algorithm. For any fully strict computationwith work T1 and critical-path length T1, we show that the expected running time withP processors, including scheduling overhead, is T1=P + O(T1). Moreover, for any � > 0,the execution time on P processors is T1=P + O(T1 + lgP + lg(1=�)), with probability atleast 1� �. We also show that the expected total communication during the execution of afully strict computation is O(PT1(1 + nd)Smax), where nd is the maximum number of joinedges from a thread to its parent and Smax is the largest size of any activation frame.Unlike in the Busy-Leaves Algorithm, the \ready pool" in the Work-Stealing Algorithmis distributed, and so there is no contention at a centralized data structure. Nevertheless, itis still possible for contention to arise when several thieves happen to descend on the samevictim simultaneously. In this case, as we have indicated in the previous section, we makethe conservative assumption that an adversary serially queues the work-stealing requests.We further assume that it takes unit time for a processor to respond to a work-stealingrequest. This assumption can be relaxed without materially a�ecting the results so that awork-stealing response takes any constant amount of time.To analyze the running time of the Work-Stealing Algorithm executing a fully strictmultithreaded computation with work T1 and critical-path length T1 on a computer withP processors, we use an accounting argument. At each step of the algorithm, we collect Pdollars, one from each processor. At each step, each processor places its dollar in one ofthree buckets according to its actions at that step. If the processor executes an instructionat the step, then it places its dollar into the Work bucket. If the processor initiates a stealattempt at the step, then it places its dollar into the Steal bucket. And, if the processormerely waits for a queued steal request at the step, then it places its dollar into the Waitbucket. We shall derive the running-time bound by bounding the number of dollars in eachbucket at the end of the execution, summing these three bounds, and then dividing by P .We �rst bound the total number of dollars in the Work bucket.17



Lemma 7 The execution of a fully strict multithreaded computation with work T1 by theWork-Stealing Algorithm on a computer with P processors terminates with exactly T1 dollarsin the Work bucket.Proof: A processor places a dollar in theWork bucket only when it executes an instruction.Thus, since there are T1 instructions in the computation, the execution ends with exactly T1dollars in the Work bucket.Bounding the total dollars in the Steal bucket requires a signi�cantly more involved\delay-sequence" argument. We �rst introduce the notion of a \round" of work-steal at-tempts, and we must also de�ne an augmented dag that we then use to de�ne \critical"instructions. The idea is as follows. If, during the course of the execution, a large number ofsteals are attempted, then we can identify a sequence of instructions|the delay sequence|inthe augmented dag such that each of these steal attempts was initiated while some instruc-tion from the sequence was critical. We then show that a critical instruction is unlikely toremain critical across a modest number of steal attempts. We can then conclude that sucha delay sequence is unlikely to occur, and therefore, an execution is unlikely to su�er a largenumber of steal attempts.A round of steal attempts is a set of at least 3P but fewer than 4P consecutive stealattempts such that if a steal attempt that is initiated at time step t occurs in a particularround, then all other steal attempts initiated at time step t are also in the same round. Wecan partition all of the steal attempts that occur during an execution into rounds as follows.The �rst round contains all steal attempts initiated at time steps 1; 2; : : : ; t1, where t1 is theearliest time such that at least 3P steal attempts were initiated at or before t1. We say thatthe �rst round starts at time step 1 and ends at time step t1. In general, if the ith roundends at time step ti, then the (i + 1)st round begins at time step ti + 1 and ends at theearliest time step ti+1 > ti + 1 such that at least 3P steal attempts were initiated at timesteps between ti + 1 and ti+1, inclusive. These steal attempts belong to round i + 1. Byde�nition, each round contains at least 3P consecutive steal attempts. Moreover, since atmost P � 1 steal attempts can be initiated in a single time step, each round contains fewerthan 4P � 1 steal attempts, and each round takes at least 4 steps.The sequence of instructions that make up the delay sequence is de�ned with respect toan augmented dag obtained by modifying the original dag slightly. Let G denote the originaldag, that is, the dag consisting of the computation's instructions as vertices and its continue,spawn, and join edges as edges. The augmented dag G0 is the original dag G together withsome new edges, as follows. For every set of instructions u, v, and w such that (u; v) is aspawn edge and (u; w) is a continue edge, the deque edge (w; v) is placed in G0. Thesedeque edges are shown dashed in Figure 3. In Section 2 we made the technical assumptionthat instruction w has no incoming join edges, and so G0 is a dag. If T1 is the length of alongest path in G, then the longest path in G0 has length at most 2T1. It is worth pointingout that G0 is only an analytical tool. The deque edges have no e�ect on the scheduling andexecution of the computation by the Work-Stealing Algorithm.The deque edges are the key to de�ning critical instructions. At any time step duringthe execution, we say that an unexecuted instruction v is critical if every instruction thatprecedes v (either directly or indirectly) in G0 has been executed, that is, if for every in-struction w such that there is a directed path from w to v in G0, instruction w has been18



executed. A critical instruction must be ready, since G0 contains every edge of G, but aready instruction may or may not be critical. Intuitively, the structural properties of a readydeque enumerated in Lemma 4 guarantee that if a thread is deep in a ready deque, thenits current instruction cannot be critical, because the predecessor of the thread's currentinstruction across the deque edge has not yet been executed.We now formalize our de�nition of a delay sequence.De�nition 8 A delay sequence is a 3-tuple (U;R;�) satisfying the following conditions:� U = (u1; u2; : : : ; uL) is a maximal directed path in G0. Speci�cally, for i = 1; 2; : : : ; L�1, the edge (ui; ui+1) belongs to G0, instruction u1 has no incoming edges in G0 (in-struction u1 must be the �rst instruction of the root thread), and instruction uL has nooutgoing edges in G0 (instruction uL must be the last instruction of the root thread).� R is a positive integer number of steal-attempt rounds.� � = (�1; �01; �2; �02; : : : ; �L; �0L) is a partition of R (that is R = PLi=1(�i + �0i)), suchthat �0i 2 f0; 1g for each i = 1; 2; : : : ; L.The partition � induces a partition of a sequence of R rounds as follows. The �rst pieceof the partition corresponds to the �rst �1 rounds. The second piece corresponds to the next�01 consecutive rounds after the �rst �1 rounds. The third piece corresponds to the next �2consecutive rounds after the �rst (�1 + �01) rounds, and so on. We are interested primarilyin the pieces corresponding to the �i, not the �0i, and so we de�ne the ith group of roundsto be the �i consecutive rounds starting after the rith round, where ri = Pi�1j=1(�j + �0j).Because � is a partition of R and �0i 2 f0; 1g, for i = 1; 2; : : : ; L, we haveLXi=1 �i � R� L : (5)We say that a given round of steal attempts occurs while instruction v is critical if allof the steal attempts that comprise the round are initiated at time steps when v is critical.In other words, v must be critical throughout the entire round. A delay sequence (U;R;�)is said to occur during an execution if for each i = 1; 2; : : : ; L, all �i rounds in the ith groupoccur while instruction ui is critical. In other words, ui must be critical throughout all �irounds.The following lemma states that if at least R rounds take place during an execution,then some delay sequence (U;R;�) must occur. In particular, if we look at any execution inwhich at least R rounds occur, then we can identify a path U = (u1; u2; : : : ; uL) in the dagG0 and a partition � = (�1; �01; �2; �02; : : : ; �L; �0L) of the �rst R rounds, such that for eachi = 1; 2; : : : L, all of the �i rounds in the ith group occur while ui is critical. Each �0i indicateswhether ui is critical at the beginning of a round but gets executed before the round ends.Such a round cannot be part of any group, because no instruction is critical throughout.Lemma 9 Consider the execution of a fully strict multithreaded computation with critical-path length T1 by the Work-Stealing Algorithm on a computer with P processors. If at least4PR steal attempts occur during the execution, then some delay sequence (U;R;�) mustoccur. 19



Proof: For a given execution in which at least 4PR steal attempts take place, we constructa delay sequence (U;R;�) and show that it occurs. With at least 4PR steal attempts, theremust be at least R rounds. We construct the delay sequence by �rst identifying a set ofinstructions on a directed path in G0 such that for every time step during the execution,one of these instructions is critical. Then, we partition the �rst R rounds according to wheneach round occurs relative to when each instruction on the path is critical.To construct the path U , we work backwards from the last instruction of the root thread,which we denote by v1. Let vl1 denote a (not necessarily immediate) predecessor instructionof v1 in G0 with the latest execution time. Let (vl1; : : : ; v2; v1) denote a directed path fromvl1 to v1 in G0. We extend this path back to the �rst instruction of the root thread byiterating this construction as follows. At the ith iteration we have an instruction vli and adirected path in G0 from vli to v1. We let vli+1 denote a predecessor of vli in G0 with thelatest execution time, and let (vli+1; : : : ; vli+1; vli) denote a directed path from vli+1 to vliin G0. We �nish iterating the construction when we get to an iteration k in which vlk is the�rst instruction of the root thread. Our desired sequence is then U = (u1; u2; : : : ; uL), whereL = lk and ui = vL�i+1 for i = 1; 2; : : : ; L. One can verify that at every time step of theexecution, one of the vli is critical.Now, to construct the partition � = (�1; �01; �2; �02; : : : ; �L; �0L), we partition the sequenceof the �rst R rounds according to when each round occurs. We would like our partition tobe such that for each round (among the �rst R rounds), we have the property that if theround occurs while some instruction ui is critical, then the round belongs to the ith group.Start with �1, and let �1 equal the number of rounds that occur while u1 is critical. All ofthese rounds are consecutive at the beginning of the sequence, so these rounds comprise the1st group|that is, they are the �1 consecutive rounds starting after the r1 = 0 �rst rounds.Next, if the round that immediately follows those �rst �1 rounds begins after u1 has beenexecuted, then we set �01 = 0, and we go on to �2. Otherwise, that round begins while u1 iscritical and ends after u1 is executed (for otherwise, it would be part of the �rst group), sowe set �01 = 1, and we go on to �2. For �2, we let �2 equal the number of rounds that occurwhile u2 is critical. Note that all of these rounds are consecutive beginning after the �rstr2 = �1 + �01 rounds, so these rounds comprise the 2nd group. We continue in this fashion,letting each �i be the number of rounds that occur while ui is critical and letting each �0i bethe number of rounds that begin while ui is critical but do not end until after ui is executed.As an example, we may have a round that begins while ui is critical and then ends whileui+2 is critical, and in this case, we set �0i = 1 and �0i+1 = 0. In this example, the (i + 1)stgroup is empty, so we also set �i+1 = 0.We conclude the proof by verifying that the (U;R;�) as just constructed is a delaysequence and that it occurs. By construction, U is a maximal path in G0. Now considering�, we observe that each round among the �rst R rounds is counted exactly once in eithera �i or a �0i, so � is indeed a partition of R. Moreover, for i = 1; 2; : : : ; L, at most oneround can begin while the instruction ui is critical and end after ui is executed, so we have�0i 2 f0; 1g. Thus, (U;R;�) is a delay sequence. Finally, we observe that, by construction,for i = 1; 2; : : : ; L, the �i rounds that comprise the ith group all occur while the instructionui is critical. Therefore, the delay sequence (U;R;�) occurs.We now establish that a critical instruction is unlikely to remain critical across a modestnumber of rounds. Speci�cally, we �rst show that a critical instruction must be the ready20



instruction of a thread that is near the top of its processor's ready deque. We then use thisfact to show that after O(1) rounds, a critical instruction is very likely to be executed.Lemma 10 At every time step during the execution of a fully strict multithreaded computa-tion by the Work-Stealing Algorithm, each critical instruction is the ready instruction of athread that has at most 1 thread above it in its processor's ready deque.Proof: Consider any time step, and let u0 be the critical instruction of a thread �0. Sinceu0 is critical, �0 is ready. Hence, for some processor p, either �0 is in p's ready deque or �0is being worked on by p. If �0 has more than 1 thread above it in p's ready deque, thenLemma 4 guarantees that each of the at least 2 threads above �0 in p's ready deque is anancestor of �0. Let �1;�2; : : : ;�k denote �0's ancestor threads, where �1 is the parent of�0 and �k is the root thread. Further, for i = 1; 2; : : : ; k, let ui denote the instruction ofthread �i that spawned thread �i�1, and let wi denote ui's successor instruction in thread �i.Because of the deque edges, each instruction wi is a predecessor of u0 in G0, and consequently,since u0 is critical, each instruction wi has been executed. Moreover, because each wi is thesuccessor of the spawn instruction ui in thread �i, each thread �i for i = 1; 2; : : : ; k has beenworked on since the time step at which it spawned thread �i�1. But Lemma 4 guaranteesthat only the topmost thread in p's ready deque can have this property. Thus, �1 is the onlythread that can possibly be above �0 in p's ready deque.Lemma 11 Consider the execution of any fully strict multithreaded computation by theWork-Stealing Algorithm on a parallel computer with P � 2 processors. For any instructionv and any number r � 2 of steal-attempt rounds, the probability that any particular set of rrounds occur while the instruction v is critical is at most the probability that only 0 or 1 ofthe steal attempts initiated in the �rst r� 1 of these rounds choose v's processor, which is atmost e�2r+3.Proof: Let ta denote the �rst time step at which instruction v is critical, and let p denotethe processor in whose ready deque v's thread resides at time step ta. Consider any particularset of r rounds, and suppose that they all occur while instruction v is critical. Now, considerthe steal attempts that comprise the �rst r � 1 of these rounds, of which there must be atleast 3P (r � 1). Let tb denote the time step just after the time step at which the last ofthese steal attempts is initiated. Note that because the last round, like every round, musttake at least two (in fact, four) steps, the time step tb must occur before the time step atwhich instruction v is executed.We shall �rst show that of these 3P (r� 1) steal attempts initiated while instruction v iscritical and at least 2 time steps before v is executed, at most 1 of them can choose processorp as its target, for otherwise, v would be executed at or before tb. Recall from Lemma 10that instruction v is the ready instruction of a thread �, which has at most 1 thread aboveit in p's ready deque as long as v is critical.If � has no threads above it, then another thread cannot be placed above it until afterinstruction v is executed, since only by processor p executing instructions from � can anotherthread be placed above it in its ready deque. Consequently, if a steal attempt targetingprocessor p is initiated at some time step t � ta, we are guaranteed that instruction v is21



executed at a time step no later than t, either by thread � being stolen and executed or byp executing the thread itself.Now, suppose � has one thread �0 above it in p's ready deque. In this case, if a stealattempt targeting processor p is initiated at time step t � ta, then thread �0 gets stolenfrom p's ready deque no later than time step t. Suppose further that another steal attempttargeting processor p is initiated at time step t0, where ta � t � t0 < tb. Then, we know thata second steal will be serviced by p at or before time step t0 + 1. If this second steal getsthread �, then instruction v must get executed at or before time step t0 + 1 � tb, which isimpossible, since v is executed after time step tb. Consequently, this second steal must getthread �0|the same thread that the �rst steal got. But this scenario can only occur if inthe intervening time period, thread �0 stalls and is subsequently reenabled by the executionof some instruction from thread �, in which case instruction v must be executed before timestep t0 + 1 � tb, which is once again impossible.Thus, we must have 3P (r � 1) steal attempts, each initiated at a time step t such thatta � t < tb, and at most 1 of which targets processor p. The probability that either 0 or 1of 3P (r � 1) steal attempts chooses processor p is�1� 1P �3P (r�1)+ 3P (r � 1)� 1P ��1� 1P �3P (r�1)�1= �1 + 3(r � 1) PP � 1��1� 1P �3P (r�1)� (6r � 5)�1� 1P �3P (r�1)� (6r � 5) e�3(r�1)� e�2r+3for r � 2.We now complete the delay-sequence argument and bound the total dollars in the Stealbucket.Lemma 12 Consider the execution of any fully strict multithreaded computation with critical-path length T1 by the Work-Stealing Algorithm on a parallel computer with P processors.For any � > 0, with probability at least 1��, at most O(P (T1+lg(1=�))) work-steal attemptsoccur. The expected number of steal attempts is O(PT1). In other words, with probability atleast 1� �, the execution terminates with at most O(P (T1 + lg(1=�))) dollars in the Stealbucket, and the expected number of dollars in this bucket is O(PT1).Proof: From Lemma 9, we know that if at least 4PR steal attempts occur, then somedelay sequence (U;R;�) must occur. Consider a particular delay sequence (U;R;�) havingU = (u1; u2; : : : ; uL) and � = (�1; �01; �2; �02; : : : ; �L; �0L), with L � 2T1. We shall computethe probability that (U;R;�) occurs.Such a sequence occurs if for i = 1; 2; : : : ; L, each instruction ui is critical throughoutall �i rounds in the ith group. From Lemma 11, we know that the probability of the �irounds in the ith group all occurring while a given instruction ui is critical is at most theprobability that only 0 or 1 of the steal attempts initiated in the �rst �i� 1 of these rounds22



choose v's processor, which is at most e�2�i+3, provided �i � 2. (For those values of i with�i < 2, we shall use 1 as an upper bound on this probability.) Moreover, since the targetsof the work-steal attempts in the �i rounds of the ith group are chosen independently fromthe targets chosen in other rounds, we can bound the probability of the particular delaysequence (U;R;�) occurring as follows:Pr f(U;R;�) occursg= Y1�i�LPr fthe �i rounds of the ith group occur while ui is criticalg� Y1�i�L�i�2 e�2�i+3� exp 2664�20BB@ X1�i�L�i�2 �i1CCA+ 3L3775= exp 2664�20BB@ X1�i�L�i � X1�i�L�i<2 �i1CCA+ 3L3775� e�2((R�L)�L)+3L= e�2R+7L ;where the second-to-last line follows from Inequality (5).To bound the probability of some delay sequence (U;R;�) occurring, we need to countthe number of such delay sequences and multiply by the probability that a particular suchsequence occurs. The directed path U in the modi�ed dag G0 starts at the �rst instructionof the root thread and ends at the last instruction of the root thread. If the original dag hasdegree d, then G0 has degree at most d + 1. Consistent with our unit-time assumption forinstructions, we assume that the degree d is a constant. Since the length of a longest path inG0 is at most 2T1, there are at most (d+1)2T1 ways of choosing the path U = (u1; u2; : : : ; uL).There are at most �2L+RR � � �4T1+RR � ways to choose �, since � partitions R into 2L pieces.As we have just shown, a given delay sequence has at most an e�2R+7L � e�2R+14T1 chanceof occurring. Multiplying these three factors together bounds the probability that any delaysequence (U;R;�) occurs by (d+ 1)2T1 4T1 +RR !e�2R+14T1 ; (6)which is at most � for R = cT1 lg d + lg(1=�), where c is a su�ciently large constant.Thus, the probability that at least 4PR = �(P (T1 lg d + lg(1=�))) = �(P (T1 + lg(1=�)))steal attempts occur is at most �. The expectation bound follows, because the tail of thedistribution decreases exponentially.With bounds on the number of dollars in theWork and Steal buckets, we now state thetheorem that bounds the total execution time for a fully strict multithreaded computationby the Work-Stealing Algorithm, and we complete the proof by bounding the number ofdollars in the Wait bucket. 23



Theorem 13 Consider the execution of any fully strict multithreaded computation with workT1 and critical-path length T1 by the Work-Stealing Algorithm on a parallel computer withP processors. The expected running time, including scheduling overhead, is T1=P + O(T1).Moreover, for any � > 0, with probability at least 1� �, the execution time on P processorsis T1=P +O(T1 + lgP + lg(1=�)).2Proof: Lemmas 7 and 12 bound the dollars in the Work and Steal buckets, so we nowmust bound the dollars in theWait bucket. This bound is given by Lemma 6 which boundsthe total delay|that is, the total dollars in the Wait bucket|as a function of the numberM of steal attempts|that is, the total dollars in the Steal bucket. This lemma says thatfor any � > 0, with probability at least 1� �, the number of dollars in the Wait bucket is atmost a constant times the number of dollars in the Steal bucket plus O(P lgP +P lg(1=�)),and the expected number of dollars in theWait bucket is at most the number in the Stealbucket.We now add up the dollars in the three buckets and divide by P to complete this proof.The next theorem bounds the total amount of communication that a multithreaded com-putation executed by the Work-Stealing Algorithm performs in a distributed model. Theanalysis makes the assumption that at most a constant number of bytes need be communi-cated along a join edge to resolve the dependency.Theorem 14 Consider the execution of any fully strict multithreaded computation with critical-path length T1 by the Work-Stealing Algorithm on a parallel computer with P processors.Then, the total number of bytes communicated has expectation O(PT1(1+nd)Smax) where ndis the maximum number of join edges from a thread to its parent and Smax is the size in bytesof the largest activation frame in the computation. Moreover, for any � > 0, the probabilityis at least 1� � that the total communication incurred is O(P (T1 + lg(1=�))(1 + nd)Smax).Proof: We prove the bound for the expectation. The high-probability bound is analogous.By our bucketing argument, the expected number of steal attempts is at most O(PT1).When a thread is stolen, the communication incurred is at most Smax. Communication alsooccurs whenever a join edge enters a parent thread from one of its children and the parenthas been stolen, but since each join edge accounts for at most a constant number of bytes,the communication incurred is at most O(nd) per steal. Finally, we can have communicationwhen a child thread enables its parent and puts the parent into the child's processor's readydeque. This event can happen at most nd times for each time the parent is stolen, so thecommunication incurred is at most ndSmax per steal. Thus, the expected total communicationcost is O(PT1(1 + nd)Smax).The communication bounds in this theorem are existentially tight, in that there existfully strict computations that require 
(PT1(1 + nd)Smax) total communication for anyexecution schedule that achieves linear speedup. This result follows directly from a theoremof Wu and Kung [47], who showed that divide-and-conquer computations|a special case offully strict computations with nd = 1|require this much communication.2With Plaxton's bound [40] for Lemma 6, this bound becomes T1=P + O(T1), whenever 1=� is at mostpolynomial in M and P . 24



In the case when we have nd = O(1) and the algorithm achieves linear expected speedup|that is, when P = O(T1=T1)|the total communication is at most O(T1Smax). Moreover,if P � T1=T1, the total communication is much less than T1Smax, which con�rms the folkwisdom that work-stealing algorithms require much less communication than the possibly�(T1Smax) communication of work-sharing algorithms.7 ConclusionHow practical are the methods analyzed in this paper? We have been actively engaged inbuilding a C-based language calledCilk (pronounced \silk") for programming multithreadedcomputations [5, 8, 25, 32, 42]. Cilk is derived from the PCM \Parallel Continuation Ma-chine" system [29], which was itself partly inspired by the research reported here. The Cilkruntime system employs the Work-Stealing Algorithm described in this paper. Because Cilkemploys a provably e�cient scheduling algorithm, Cilk delivers guaranteed performance touser applications. Speci�cally, we have found empirically that the performance of an appli-cation written in the Cilk language can be predicted accurately using the model T1=P +T1.The Cilk system currently runs on contemporary shared-memory multiprocessors, suchas the Sun Enterprise, the Silicon Graphics Origin, the Intel Quad Pentium, and the DECAlphaserver. (Earlier versions of Cilk ran on the Thinking Machines CM-5 MPP, the IntelParagon MPP, and the IBM SP-2.) To date, applications written in Cilk include proteinfolding [38], graphic rendering [45], backtrack search, and the ?Socrates chess program [31],which won second prize in the 1995 ICCA World Computer Chess Championship runningon a 1824-node Paragon at Sandia National Laboratories. Our more recent chess program,Cilkchess, won the 1996 Dutch Open Computer Chess Tournament. A team programmingin Cilk won First Prize (undefeated) in the ICFP'98 Programming Contest sponsored by theInternational Conference on Functional Programming.As part of our research, we have implemented a prototype runtime system for Cilk on net-works of workstations. This runtime system, called Cilk-NOW [5, 11, 35], supports adaptiveparallelism, where processors in a workstation environment can join a user's computationif they would be otherwise idle and yet be available immediately to leave the computationwhen needed again by their owners. Cilk-NOW also supports transparent fault tolerance,meaning that the user's computation can proceed even in the face of processors crashing,and yet the programmer writes the code in a completely fault-oblivious fashion. A morerecent distributed implementation for clusters of SMP's is described in [42].We have also investigated other topics related to Cilk, including distributed shared mem-ory [6, 7, 24, 26] and debugging tools [17, 18, 22, 45]. Up-to-date information, papers, andsoftware releases can be found on the WorldWideWeb at http://supertech.lcs.mit.edu/cilk.For the case of shared-memory multiprocessors, we have recently generalized the timebound (but not the space or communication bounds) along two dimensions [1]. First, wehave shown that for arbitrary (not necessarily fully strict or even strict) multithreaded com-putations, the expected execution time is O(T1=P + T1). This bound is based on a newstructural lemma and an amortized analysis using a potential function. Second, we havedeveloped a nonblocking implementation of the work-stealing algorithm, and we have an-alyzed its execution time for a multiprogrammed environment in which the computation25
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