
Part 2, course 2: Cache Oblivious Algorithms

CR05: Data Aware Algorithms

September 17, 2010



2 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



3 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



4 / 26

Motivation for Cache-Oblivious Algorithms

I/O-optimal algorithms in the external memory model:
Depend on the memory parameters B and M: cache-aware

I Blocked-Matrix-Product: block size b =
√
M/3

I Merge-Sort: K = M/B − 1

I B-Trees: degree of a node in O(B)

Goal: design I/O-optimal algorithms that do not known M and B

I Self-tuning

I Optimal for any value of cache parameters
→ optimal for any level of the cache hierarchy!

Cache-Oblivious model:

I Ideal-cache model

I No explicit operations on blocks as in external memory algos.



5 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



6 / 26

Main Tool: Divide and Conquer

Major tool:

I Split problem into smaller sizes

I At some point, size gets smaller than the cache size:
no I/O needed for next recursive calls

I Analyse I/O for these “leaves” of the recursion tree
and divide/merge operations

Example: Recursive matrix multiplication:

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)

I If N > 1, compute:
C1,1 = RecMatMult(A1,1,B1,1) + RecMatMult(A1,2,B2,1)
C1,2 = RecMatMult(A1,1,B1,2) + RecMatMult(A1,2,B2,2)
C2,1 = RecMatMult(A2,1,B1,1) + RecMatMult(A2,2,B2,1)
C2,2 = RecMatMult(A2,1,B1,2) + RecMatMult(A2,2,B2,2)

I Base case: multiply elements



6 / 26

Main Tool: Divide and Conquer

Major tool:

I Split problem into smaller sizes

I At some point, size gets smaller than the cache size:
no I/O needed for next recursive calls

I Analyse I/O for these “leaves” of the recursion tree
and divide/merge operations

Example: Recursive matrix multiplication:

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)

I If N > 1, compute:
C1,1 = RecMatMult(A1,1,B1,1) + RecMatMult(A1,2,B2,1)
C1,2 = RecMatMult(A1,1,B1,2) + RecMatMult(A1,2,B2,2)
C2,1 = RecMatMult(A2,1,B1,1) + RecMatMult(A2,2,B2,1)
C2,2 = RecMatMult(A2,1,B1,2) + RecMatMult(A2,2,B2,2)

I Base case: multiply elements



7 / 26

Recursive Matrix Multiply: Analysis

C1,1 = RecMatMult(A1,1,B1,1) + RecMatMult(A1,2,B2,1)
C1,2 = RecMatMult(A1,1,B1,2) + RecMatMult(A1,2,B2,2)
C2,1 = RecMatMult(A2,1,B1,1) + RecMatMult(A2,2,B2,1)
C2,2 = RecMatMult(A2,1,B1,2) + RecMatMult(A2,2,B2,2)

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



7 / 26

Recursive Matrix Multiply: Analysis

RecMatMultAdd(A1,1,B1,1,C1,1); RecMatMultAdd(A1,2,B2,1,C1,1))
RecMatMultAdd(A1,1,B1,2,C1,2); RecMatMultAdd(A1,2,B2,2,C1,2))
RecMatMultAdd(A2,1,B1,1,C2,1); RecMatMultAdd(A2,2,B2,1,C2,1))
RecMatMultAdd(A2,1,B1,2,C2,2); RecMatMultAdd(A2,2,B2,2,C2,2))

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



7 / 26

Recursive Matrix Multiply: Analysis

RecMatMultAdd(A1,1,B1,1,C1,1); RecMatMultAdd(A1,2,B2,1,C1,1))
RecMatMultAdd(A1,1,B1,2,C1,2); RecMatMultAdd(A1,2,B2,2,C1,2))
RecMatMultAdd(A2,1,B1,1,C2,1); RecMatMultAdd(A2,2,B2,1,C2,1))
RecMatMultAdd(A2,1,B1,2,C2,2); RecMatMultAdd(A2,2,B2,2,C2,2))

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



7 / 26

Recursive Matrix Multiply: Analysis

RecMatMultAdd(A1,1,B1,1,C1,1); RecMatMultAdd(A1,2,B2,1,C1,1))
RecMatMultAdd(A1,1,B1,2,C1,2); RecMatMultAdd(A1,2,B2,2,C1,2))
RecMatMultAdd(A2,1,B1,1,C2,1); RecMatMultAdd(A2,2,B2,1,C2,1))
RecMatMultAdd(A2,1,B1,2,C2,2); RecMatMultAdd(A2,2,B2,2,C2,2))

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



7 / 26

Recursive Matrix Multiply: Analysis

RecMatMultAdd(A1,1,B1,1,C1,1); RecMatMultAdd(A1,2,B2,1,C1,1))
RecMatMultAdd(A1,1,B1,2,C1,2); RecMatMultAdd(A1,2,B2,2,C1,2))
RecMatMultAdd(A2,1,B1,1,C2,1); RecMatMultAdd(A2,2,B2,1,C2,1))
RecMatMultAdd(A2,1,B1,2,C2,2); RecMatMultAdd(A2,2,B2,2,C2,2))

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



7 / 26

Recursive Matrix Multiply: Analysis

RecMatMultAdd(A1,1,B1,1,C1,1); RecMatMultAdd(A1,2,B2,1,C1,1))
RecMatMultAdd(A1,1,B1,2,C1,2); RecMatMultAdd(A1,2,B2,2,C1,2))
RecMatMultAdd(A2,1,B1,1,C2,1); RecMatMultAdd(A2,2,B2,1,C2,1))
RecMatMultAdd(A2,1,B1,2,C2,2); RecMatMultAdd(A2,2,B2,2,C2,2))

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



7 / 26

Recursive Matrix Multiply: Analysis

RecMatMultAdd(A1,1,B1,1,C1,1); RecMatMultAdd(A1,2,B2,1,C1,1))
RecMatMultAdd(A1,1,B1,2,C1,2); RecMatMultAdd(A1,2,B2,2,C1,2))
RecMatMultAdd(A2,1,B1,1,C2,1); RecMatMultAdd(A2,2,B2,1,C2,1))
RecMatMultAdd(A2,1,B1,2,C2,2); RecMatMultAdd(A2,2,B2,2,C2,2))

I 8 recursive calls on matrices of size N/2× N/2
I Number of I/O for size N × N: T (N) = 8T (N/2)
I Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

I No cost on merge, all I/O cost on leaves
I Height of the recursive call tree: h = log2(N/(

√
M/3))

I Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

I Same performance as blocked algorithm!
I What if we choose 3N2 = B as base case ?
I If I/Os not only on leaves: use Master Theorem for

divide-and-conquer recurrences



8 / 26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:



8 / 26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:



8 / 26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:

y: 0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110

x:
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

111111



8 / 26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:

Also known as the Z-Morton layout

Other recursive layouts:

I U-Morton, X-Morton, G-Morton

I Hilbert layout

Address computations may become expensive /
Possible mix of classic tiles/recursive layout



9 / 26

Homework 3 – Cache Oblivious Matrix Transposition

Deadline – September 22

Proposed algorithm to transpose an n × n matrix A into B:

MatrixTanspose(A):
for i=1, . . . , n do

for j=1, . . . , n do
Bi ,j ← Aj ,i

return B

Both matrices A and B are stored in row-major layout (each row
one after the other).

1. Compute the I/O complexity of this algorithm in the external
memory model, with cache size M and block size B.

2. Design a cache-oblivious divide-and-conquer algorithm for this
problem (when n is a power of two), and analyse its I/O
complexity. Is it asymptotically optimal ?



10 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



11 / 26

Static Search Trees

Problem with B-trees: degree depends on B /
Binary search tree with recursive layout:

I Complete binary search tree with N nodes
(one node per element)

I Stored in memory using recursive “van Emde Boas” layout:
I Split the tree at the middle height
I Top subtree of size ∼

√
N → recursive layout

I ∼
√
N subtrees of size ∼

√
N → recursive layout

I If height h is not a power of 2, set subtree height to 2dlog2 he = ddhee
I one subtree stored contiguously in memory

(any order among subtrees)

Static Cache-Oblivious Trees
Recursive memory layout ≡ van Emde Boas layout

Bk

A

B1

A B1 Bk· · ·

· · ·

h

⌈h/2⌉

⌊h/2⌋

· · ·

· · ·
· · · · · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·· · ·

· · · · · ·

Degree O(1) Searches use O(logB N) I/Os
Range reportings use
O
(
logB N + k

B

)
I/Os
Prokop 1999

Best possible (log2 e + o(1)) logB N Bender, Brodal, Fagerberg, Ge, He, Hu
Iacono, López-Ortiz 2003

12



12 / 26

Static Search Trees – Analysis

Static Cache-Oblivious Trees
Recursive memory layout ≡ van Emde Boas layout

Bk

A

B1

A B1 Bk· · ·

· · ·

h

⌈h/2⌉

⌊h/2⌋

· · ·

· · ·
· · · · · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·· · ·

· · · · · ·

Degree O(1) Searches use O(logB N) I/Os
Range reportings use
O
(
logB N + k

B

)
I/Os
Prokop 1999

Best possible (log2 e + o(1)) logB N Bender, Brodal, Fagerberg, Ge, He, Hu
Iacono, López-Ortiz 2003

12

I/O complexity of search operation:

I For simplicity, assume N is a power of two

I For some height h, a subtree fits in one block (B ≈ 2h)

I Reading such a subtree requires at most 2 blocks

I Root-to-leaf path of length log2N

I I/O complexity: O(log2N/ log2 B) = O(logB N)

I Meets the lower bound ,
I Only static data-structure /



13 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



14 / 26

Cache-Oblivious Sorting: Funnels

I Binary Merge Sort: cache-oblivious ,, not I/O optimal /
I K-way MergeSort: depends on M and B /, I/O optimal ,

New data-structure: K-funnel

I Complete binary tree with K leaves

I Stored using van Emde Boas layout

I Buffer of size K 3/2 between each subtree
and the topmost part
(total: K 2 in these buffers)

I Each recursive subtree is a
√
K -funnel

Total storage in a K funnel: Θ(K 2)
(storage S(K ) = K 2 + (1 +

√
K )S(

√
K ))



14 / 26

Cache-Oblivious Sorting: Funnels

I Binary Merge Sort: cache-oblivious ,, not I/O optimal /
I K-way MergeSort: depends on M and B /, I/O optimal ,

New data-structure: K-funnel

I Complete binary tree with K leaves

I Stored using van Emde Boas layout

I Buffer of size K 3/2 between each subtree
and the topmost part
(total: K 2 in these buffers)

I Each recursive subtree is a
√
K -funnel

buffer

buffer

buffer

1

k

Figure 4-1: Illustration of a k-merger. A k-merger is built recursively out of k left k-

mergers 1, 2, . . . , k, a series of buffers, and one right k-merger .

Since this complicated flow of control makes a k-merger a bit tricky to describe,
we explain the operation of the k-merger pictorially. Figure 4-1 shows a repre-
sentation of a k-merger, which has k sorted sequences as inputs. Throughout its
execution, the k-merger maintains the following invariant.

Invariant The invocation of a k-merger outputs the first k3 elements of the sorted sequence
obtained by merging the k input sequences.

A k-merger is built recursively out of k-mergers in the following way. The k
inputs are partitioned into k sets of k elements, and these sets form the input
to the k left k-mergers 1, 2, . . . , k in the left part of the figure. The out-

puts of these mergers are connected to the inputs of k buffers. Each buffer is a
FIFO queue that can hold 2k3 2 elements. Finally, the outputs of the buffers are
connected to the k inputs of the right k-merger in the right part of the figure.
The output of this final k-merger becomes the output of the whole k-merger. The
reader should notice that the intermediate buffers are overdimensioned. In fact,
each buffer can hold 2k3 2 elements, which is twice the number k3 2 of elements
output by a k-merger. This additional buffer space is necessary for the correct
behavior of the algorithm, as will be explained below. The base case of the recur-
sion is a k-merger with k 2, which produces k3 8 elements whenever invoked.

A k-merger operates recursively in the following way. In order to output k3

elements, the k-merger invokes k3 2 times. Before each invocation, however, the
k-merger fills all buffers that are less than half full, i.e., all buffers that contain less
than k3 2 elements. In order to fill buffer i, the algorithm invokes the corresponding

24

Total storage in a K funnel: Θ(K 2)
(storage S(K ) = K 2 + (1 +

√
K )S(

√
K ))



15 / 26

Lazy Funnels

I Consider resulting tree where edges are buffers

I Output buffer of a K-funnel has size K 3

Fill algorithm: while output buffer not full

1. If left input buffer empty, call Fill on left child

2. If right input buffer empty, call Fill on right child

3. Perform one merge step:
Move smallest element of left and right buffers to output

I Buffer exhaustion propagates upward

I I/O complexity of filling output buffer of size K 3:

O

(
K 3

B
logM K 3 + K

)



16 / 26

Funnel Sort

Funnel-Sort

1. Split input in N1/3 segments of size N2/3

2. Sort segments recursively

3. Use funnel with K = N1/3 to produce output

I/O complexity: O(SORT (N))
Nb of comparisons: O(N logN)

Analysis (big picture):

I Some J-funnel fits in cache, together with its input buffers

I When input buffer empty, J-funnel may be flushed to memory

I Bound the number of flushes and I/Os in the funnel



17 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



18 / 26

PMA: Packed Memory Array

Goal: Store N ordered elements in array of size P = cN
Contradictory objectives:

I Pack nodes for fast scan of S elements (O(1 + S/B))

I Leave enough room for fast insertion

PMA:

I Array divided into segments of size logP

I Virtual complete binary tree whose leaves are these segments

I Density of a node:

ρ =
number of elements in subtree

capacity of the subtree

I Constraints on density: 1/2− 1/4d/h ≤ ρ ≤ 3/4 + 1/4d/h
d : depth of the node, h: height of the tree
→ up in the tree: less slack on density



19 / 26

Packed Memory Array: Details

Insertion algorithm:

I Find segment (leaf in the tree)

I If segment not full, insert (move other elements if needed)
I If segment full, before inserting the element:

1. Climb in tree to find ancestor that respects density constraints
Parallel left and right scan counting elements

2. Rebalance subtree: redistribute all elements uniformly in
existing leafs
Some additional scans

3. For big changes in N: rebuild everything

(Same for deletions)
Amortized cost of insertion: O(1 + log2N/B)



19 / 26

Packed Memory Array: Details

Insertion algorithm:

I Find segment (leaf in the tree)

I If segment not full, insert (move other elements if needed)
I If segment full, before inserting the element:

1. Climb in tree to find ancestor that respects density constraints
Parallel left and right scan counting elements

2. Rebalance subtree: redistribute all elements uniformly in
existing leafs
Some additional scans

3. For big changes in N: rebuild everything

(Same for deletions)
Amortized cost of insertion: O(1 + log2N/B)



20 / 26

Cache-Oblivious B-Trees

I PMA to store elements

I Static Search Tree with Θ(N) leaves
a node store the maximum of its two children

I Bi-directional pointers between tree leaves and PMA cells

I Search: using search tree

I Insertion: in the PMA, then propagate changes in the tree

Theorem (Cache-oblivious B-Trees).

This data-structure has the following I/O cost:

I Insertion and deletions in O(logB N + (log2N)/B) (amortized)

I Search in O(logB N)

I Scanning K consecutive elements in O(dK/Be)

NB: Removing the (log2N)/B term leads to loosing fast scanning



21 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



22 / 26

Distribution sweeping for geometric problem

Distribution sweeping:
I Sort geometric objects (e.g. w.r.t. one dimension)
I Split problem into strips
I Divide-and-conquer approach on strips
I Merge results via a sweep of strips in another dimension

(cache-oblivious merge: 2-way)

Multidimensional Maxima Problem

Given a set of points in d dimensions, a point p = (p1, p2, . . . , pd)
dominates another point q if pi ≥ qi for all i . Given N points,
report the maximal points (points non dominated).

I 1D: Single maximum
I 2D: Simple sweep algorithm:

1. Sort point by decreasing first coordinate
2. Report point if its second coordinate is larger than the one of

the last reported point

What about the 3D problem ?



22 / 26

Distribution sweeping for geometric problem

Distribution sweeping:
I Sort geometric objects (e.g. w.r.t. one dimension)
I Split problem into strips
I Divide-and-conquer approach on strips
I Merge results via a sweep of strips in another dimension

(cache-oblivious merge: 2-way)

Multidimensional Maxima Problem

Given a set of points in d dimensions, a point p = (p1, p2, . . . , pd)
dominates another point q if pi ≥ qi for all i . Given N points,
report the maximal points (points non dominated).

I 1D: Single maximum
I 2D: Simple sweep algorithm:

1. Sort point by decreasing first coordinate
2. Report point if its second coordinate is larger than the one of

the last reported point

What about the 3D problem ?



22 / 26

Distribution sweeping for geometric problem

Distribution sweeping:
I Sort geometric objects (e.g. w.r.t. one dimension)
I Split problem into strips
I Divide-and-conquer approach on strips
I Merge results via a sweep of strips in another dimension

(cache-oblivious merge: 2-way)

Multidimensional Maxima Problem

Given a set of points in d dimensions, a point p = (p1, p2, . . . , pd)
dominates another point q if pi ≥ qi for all i . Given N points,
report the maximal points (points non dominated).

I 1D: Single maximum
I 2D: Simple sweep algorithm:

1. Sort point by decreasing first coordinate
2. Report point if its second coordinate is larger than the one of

the last reported point

What about the 3D problem ?



23 / 26

Divide-and-Conquer for 3D Maxima

I Sort points according to z

I Divide points in strips

I For each strip: report (output) maximal points sorted by
decreasing x

Base case: strip with a single point (reported)
When merging strips A and B (with zB > zA):

I all points in B have larger z : all maximal points kept

I maximal points in A are maximal in A ∪ B iff there are not
dominated by some maximal point of B

Merging Algorithm:

I Scan maximal points of A and B by decreasing x

I Keep track of the largest yB of nodes from B

I If next node comes from B: keep it (output), update yB
I If next node comes from A and has larger y than current yB :

keep it (output), otherwise, delete it



23 / 26

Divide-and-Conquer for 3D Maxima

I Sort points according to z

I Divide points in strips

I For each strip: report (output) maximal points sorted by
decreasing x

Base case: strip with a single point (reported)
When merging strips A and B (with zB > zA):

I all points in B have larger z : all maximal points kept

I maximal points in A are maximal in A ∪ B iff there are not
dominated by some maximal point of B

Merging Algorithm:

I Scan maximal points of A and B by decreasing x

I Keep track of the largest yB of nodes from B

I If next node comes from B: keep it (output), update yB
I If next node comes from A and has larger y than current yB :

keep it (output), otherwise, delete it



23 / 26

Divide-and-Conquer for 3D Maxima

I Sort points according to z

I Divide points in strips

I For each strip: report (output) maximal points sorted by
decreasing x

Base case: strip with a single point (reported)
When merging strips A and B (with zB > zA):

I all points in B have larger z : all maximal points kept

I maximal points in A are maximal in A ∪ B iff there are not
dominated by some maximal point of B

Merging Algorithm:

I Scan maximal points of A and B by decreasing x

I Keep track of the largest yB of nodes from B

I If next node comes from B: keep it (output), update yB
I If next node comes from A and has larger y than current yB :

keep it (output), otherwise, delete it



24 / 26

Divide-and-Conquer for 3D Maxima

Summary of algorithm:

1. Sort by decreasing z

2. Recursively process strips

3. Merge sorted sequences by comparing to yB , remove some
nodes

Cache-oblivious version:

I Step 1: (Lazy) Funnel-Sort

I Step 3: (Lazy) Funnel-Sort with modified merger to
remember yB
(O(1) extra space on each node)

Complexity: O(SORT (N))



24 / 26

Divide-and-Conquer for 3D Maxima

Summary of algorithm:

1. Sort by decreasing z

2. Recursively process strips

3. Merge sorted sequences by comparing to yB , remove some
nodes

Cache-oblivious version: ?

I Step 1: (Lazy) Funnel-Sort

I Step 3: (Lazy) Funnel-Sort with modified merger to
remember yB
(O(1) extra space on each node)

Complexity: O(SORT (N))



24 / 26

Divide-and-Conquer for 3D Maxima

Summary of algorithm:

1. Sort by decreasing z

2. Recursively process strips

3. Merge sorted sequences by comparing to yB , remove some
nodes

Cache-oblivious version:

I Step 1: (Lazy) Funnel-Sort

I Step 3: (Lazy) Funnel-Sort with modified merger to
remember yB
(O(1) extra space on each node)

Complexity: O(SORT (N))



25 / 26

Outline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees
Cache-Oblivious Sorting: Funnels
Dynamic Data-Structures
Distribution sweeping for geometric problem
Conclusion



26 / 26

Conclusion

I Clean model, algorithms independent from architectural
parameters M and B

I Good news: match external memory bounds in most cases

I Best tool: divide-and-conquer
I Base case of the analysis differs from algorithm base case:

I Sometimes N = Θ(M) (mergesort, matrix mult.,. . . )
I Sometimes N = Θ(B) (static search tree, . . . )

I New algorithmic solutions to force data locality

I Can lead to real performance gains for large N


	Cache Oblivious Algorithms and Data Structures
	Motivation
	Divide and Conquer
	Static Search Trees
	Cache-Oblivious Sorting: Funnels
	Dynamic Data-Structures
	Distribution sweeping for geometric problem
	Conclusion


