Data Aware Algorithms — Part 1

Loris Marchal

October 17, 2023

Data Aware Algorithms

Topics covered:
» Pebble game models
[/Os lower bounds

>
» Communication-avoiding algorithms
» Cache oblivious algorithms

>

Memory-aware scheduling

Contact: loris.marchal@ens-lyon.fr
More material:

http://perso.ens-lyon.fr/loris.marchal/data-aware-algorithms-warsaw.html

http://perso.ens-lyon.fr/loris.marchal/data-aware-algorithms-warsaw.html

High Performance Computing

» Numerical simulations drive new discoveries

P> Larger systems with better accuracy: more data and computation
3/43

Data access problem

Evolution of computing speed vs. data access speed (bandwidth)

=) 100 —— Node compute power (FLOP/s)
= ~*= Node bandwidth (Gbit/s)
S o Byte-per-flop ratio
55
£ 10
22
2 -
T 2 [GB/s
s] @ Byte-per-| FLOP: 0.001 [B/F]
o g 1
= oo
=«
sy Averages in 2010:
s 2 B Node power: 31 [GF/s]
i B Node BW: 2.7 [GB/s]
2 01| © Byu per-FLOP: 0.09 [B/F] %0.08]
S e” e‘z"' 5 &v éf” 3 e':\ s
v v v v v v v v v

Year source: https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Byte-per-flop ratio keeps decreasing = Data access critical for
performance

4/43

https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Beyond the memory wall

» Time to move the data > Time to compute on the data
» Similar problem in microprocessor design: “memory wall”

» Traditional workaround:
add a faster but smaller “cache” memory

» Now a hierarchy of caches !

CPU Core

Register:

L1 Cache (on
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory

5/ 43

Energy required for communications

10000
1000
w
]
S
L 100 -
S
[y = now (45nm)
10 - m 2018 (11nm in this case)
1 .
N3 < X
Q \9 ‘\‘}Q \\\Q (‘S\Q Qy"® (\e’g '}z@
R ¢ OO O
& & &
> © 0‘{\ o&\ Source: John Shalf, LBL
N

6/43

Computing with bounded cache/memory

» Limited amount of fast cache
» Performance sensitive to data locality
» Optimize data reuse

» Avoid data movements (I/Os) between memory and cache(s)
(time-consuming and energy-consuming)

7/43

Computing with bounded cache/memory

» Limited amount of fast cache
» Performance sensitive to data locality
» Optimize data reuse

» Avoid data movements (I/Os) between memory and cache(s)
(time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem

7/43

Data Aware Algorithms — Part 1

Pebble game models
Algorithm Design and Data Movement: the Matrix Product Case
Analysis and Lower Bounds for Parallel Algorithms

Conclusion

Data Aware Algorithms — Part 1

Pebble game models

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers J %
» Model expressions as Directed Acyclic Graphs é % ég\@

5-2z)x(1+x+y)
Rules of the game:

10 / 43

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers J %
» Model expressions as Directed Acyclic Graphs @é % ég\@

5-2z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

10 / 43

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers J %
» Model expressions as Directed Acyclic Graphs @é é} ég\@

5-2z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

10 / 43

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers G/ %
» Model expressions as Directed Acyclic Graphs @é é} é&

5-2z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

10 / 43

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers G/ %
» Model expressions as Directed Acyclic Graphs é % é&

5-2z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

10 / 43

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers G{ %
» Model expressions as Directed Acyclic Graphs é % é&

5-2z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

» Goal: computation all vertices, use minimal number of pebbles

10 / 43

Pebble game for register allocation

O

» From the 70s: limit usage of scarce registers G{ %
» Model expressions as Directed Acyclic Graphs é % é&

5-2z)x(1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

» If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

» Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs 10/ a3

Pebble Game — Complexity, variants, space-time tradeoffs

Progressive pebble game:
P Forbid pebbling twice the same vertex, NP-Hard

More general problem with re-computation:
» PSpace-complete

Variant with pebble shifting:

» Rule 3 — If all predecessors of an unpebbled vertex v are pebbled, a
pebble may be shifted from a predecessor to v.

Space-Time Tradoffs — Example

Every pebbling strategy for any program computing the multiplication of
two N x N matrices uses a space S and time T respecting the following

inequality: (S+1)T > N3/4

11/ 43

Space-Time tradeoffs — FFT example

» Fast-Fourrier Transform

P> Recursive graph based on the “exchange graph” with 2 inputs and 2
outputs

FFT graph with 8 input/output vertices (depth k = 3)
n = 2K vertices at each level

» Strategy minimizing the computation cost? the memory?
12 / 43

Strategy 1:
> Pebble level by level
» Requires 2n = 25*1 pebbles (or n + 2 if done carefully)
» No recomputations (minimum number of steps)
Strategy 2:

» Pebble one tree up to one output, then start over
(variant: pebble two outputs before re-starting)

> Uses k + 1 pebbles
(minimum value since it contains binary tree of depth k)

» Large number of recomputations

13/ 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]
New rules:

» Limited number of red pebbles (=memory
slots)

14 / 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory
slots) J %
» Replace red pebble by blue pebble (WRITE)

EHSP NS

14 / 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]

New rules:
» Limited number of red pebbles (=memory
slots) / %
» Replace red pebble by blue pebble (WRITE)

EHSP NS

14 / 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]
New rules:

» Limited number of red pebbles (=memory 9
slots)
» Replace red pebble by blue pebble (WRITE) é é@ é \(D

14 / 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]
New rules: @

» Limited number of red pebbles (=memory
slots)

» Replace red pebble by blue pebble (WRITE) /
» Replace blue pebble by red pebble (READ) é éa é \@

14 / 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]

New rules: @
» Limited number of red pebbles (=memory
slots)

» Replace red pebble by blue pebble (WRITE)
» Replace blue pebble by red pebble (READ) éé@ é \@

Goal: minimize number of WRITE

14 / 43

When memory too limited: minimize 1/0s

Red/Blue pebble game [Hong & Kung, 1981]

New rules: @
» Limited number of red pebbles (=memory
slots)

» Replace red pebble by blue pebble (WRITE)
» Replace blue pebble by red pebble (READ) éé@ é \@
Goal: minimize number of WRITE

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

» Successful to design lower bounds on 1/0Os and optimal algorithms

» Basis for other studies: communication-avoiding algorithms

(recomputations may be allowed or forbidden)
14/ 43

Example: FFT graph

P

.<

k levels,n = 2% vertices at each level
Minimum number S of red pebbles ?

é/‘

How many 1/Os for this minimum number S ?

15 / 43

Data Aware Algorithms — Part 1

Algorithm Design and Data Movement: the Matrix Product Case

Example: matrix-matrix product

» Consider two square matrices A and B (size n x n)
» Compute generalized matrix product: C «+ C + AB
Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—1do
for j=0—n—1do
for k=0—n—1do
| Gij= Cij+ AikBu,

Assume simple two-level memory model:

» Slow but infinite disk storage
(where A and B are originally stored)

» Fast and limited memory (size M)
Objective: limit data movement between disk/memory

NB: also applies to other two-level systems (memory/cache, etc.)

17 / 43

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—1do
for j=0—n—1do
for k=0—n—-1do
L | Gij=GCij+ AikBkj

» Assume the memory cannot store half of a matrix: M < n?/2
» Question: How many data movement in this algorithm 7

18 / 43

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—1do
for j=0—n—1do
for k=0—n—-1do
L | Gij=GCij+ AikBkj

» Assume the memory cannot store half of a matrix: M < n?/2
» Question: How many data movement in this algorithm 7
Answer:
> all elements of B accessed during one iteration of the outer loop
At most half of B stays in memory
At least n2/2 elements must be read per outer loop

Same order of magnitude of computations: O(n®)

>

>

> At least n3/2 read for entire algorithms

>

» Very bad data reuse ® Question: How to do better ?

18 / 43

Blocked matrix-matrix product

» Divide each matrix into blocks of size b x b:
Af”k is the block of A at position (i, k)

» Perform “coarse-grain” matrix product on blocks

» Perform each block product with previous algorithms

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
fori=0,—n/b—1do

for j=0,— n/b—1do

L for k=0,— n/b—1 do

L Simple-Matrix-Multiply(n, C?;, A7, B)

19 / 43

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
fori=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1do
L L Simple-Matrix-Multiply(n, C? Af”k,BfJ)

ij?

Question: Number of data movements ?

20 / 43

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
fori=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1do
L Simple-Matrix-Multiply(n, C,-ljj, Af?’k, BfJ)
Question: Number of data movements ?

» lteration of inner loop: 3 blocks of size b x b= \/W3 =M/3
— fits in memory

» At most M + M/3 = O(M) data movements for each inner loop
(reading/writing)

» Number of inner iterations: (n/b)3 = O(n3/M3/?)

> Total number of data movements: O(n3/v/M)

20 / 43

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)

b+ \/M/3
fori=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1do
L Simple-Matrix-Multiply(n, C%, A? ., BY)
Question: Number of data movements ?

» Iteration of inner loop: 3 blocks of size b x b= +/M/ - M/3
— fits in memory
» At most M + M/3 = O(M) data movements for each inner loop
(reading/writing)
» Number of inner iterations: (n/b)3 = O(n3/M3/?)
> Total number of data movements: O(n3/v/M)
Question: Can we do (significantly) better ? 2 /43

1/0 lower bound for matrix multiplication

Theorem (Hong& Kung 1981, Toledo 1999).

Any conventional matrix multiplication algorithm will perform at least
Q(n3/v/M) 1/0 operations.

conventional: perform all n® elementary products
(aka: not Strassen or Coppersmith-Winograd)

21 /43

1/0 lower bound for matrix multiplication — proof 1/2

» Decompose the computation into phases of M 1/O operations
(except the last phase, which may contain < M operations
» (;;is live in a phase if some A; X By j is computed
» During a phase:
» At most 2M elements of A are available for computations: A,
(M from the memory, M from reads)
» Same for B (|B,| < 2M)
» At most 2M “live" C;;
(M in memory at the end, M written during the phase)

Goal: bound the number of elementary matrix products done in one phase

22 /43

1/0 lower bound for matrix multiplication — proof 2/2

Two cases for elements of Ap:
» Dense rows of A,

> 5;: set of rows of A with at least vV M elements in A, |S;H <2vM
Each element of B, multiplied by at most one element from each row
of S,

> At most 2v/M x 2M = 4M3/2 multiplications with elements from 5;

23 /43

1/0 lower bound for matrix multiplication — proof 2/2

Two cases for elements of Ap:
» Dense rows of A,
> 5;: set of rows of A with at least vV M elements in A, S;H <2vM
Each element of B, multiplied by at most one element from each row
of S,
> At most 2v/M x 2M = 4M3/2 multiplications with elements from 5;
» Sparse rows of A,

» Each “live" C;; = one row of A x one column of B
Number of elementary product for each C;; < size of the
corresponding row

> For sparse rows (¢ SP), at most 2M x /M products

Overall, at most 6M3/2 elementary products per phase.

23 /43

1/0 lower bound for matrix multiplication — proof 2/2

Two cases for elements of Ap:
» Dense rows of A,
> 5;: set of rows of A with at least vV M elements in A, S;H <2vM
Each element of B, multiplied by at most one element from each row
of S,
> At most 2v/M x 2M = 4M3/2 multiplications with elements from 5;
» Sparse rows of A,

» Each “live" C;; = one row of A x one column of B
Number of elementary product for each C;; < size of the
corresponding row

> For sparse rows (¢ SP), at most 2M x /M products

Overall, at most 6M3/2 elementary products per phase.
n’ n3

7J 1> — —

6M3/2 6M3/2

3
n
Total number of I/Os > —— — M
/Os 2 6v M

Total number of full phases > | 1

23 /43

Tight Lower Bound for Matrix Product
b+ /M/3

fori=0,—n/b—1do
for j=0,—n/b—1do
Lforkzo,%n/b—ldo

L Simple-Matrix-Multiply(n, C,-ljj, Af”k, B,‘(’J)
» 1/0s of blocked algorithm: 2v/3N3/v/M + N?
> Lower bound on 1/0s ~ N3/6v/M

> Many improvements needed to close the gap

» Presented here for C <~ C + AB, square matrices

New operation: Fused Multiply Add
» Perform ¢ < ¢+ a x b in a single step

» No temporary storage needed (3 inputs, 1 output)
24 /43

Step 1: Use Only FMAs (Fused Multiply Add)

Theorem.

Any algorithm for the matrix product can be transformed into using only

FMA without increasing the required memory or the number of |/Os.

Transformation:

>

>

If some c;j « is computed while ¢;; is not in memory, insert a read
before the multiplication

Replace the multiplication by a FMA

Remove the read that must occur before the addition
Cij < Cij+ Cijk, remove the addition

Transform occurrences of ¢; i into ¢;;

If ¢ijx and ¢;;j were both in memory in some time-interval, remove
operations with ¢; x in this interval

25 /43

Step 2: Concentrate on Read Operations

Theorem (lrony, Toledo, Tiskin, 2008).

Using N4 elements of A, Ng elements of B and N¢ elements of C, we can
perform at most /NaNgN¢ distinct FMAs.

Va
Vs
Vi
k

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of Z3 and V4, V5, V5 denotes the orthogonal
projections of V' on each coordinate planes, we have

V2 < [V - Vol - | Vs,

6/43

Step 3: Use Phases of R Reads (# M)

Theorem.

During a phase with R reads with memory M, the number of FMAs is
bounded by

1 3/2
Fuir < (g(M + R))
Number Fp+r of FMAs constrained by:

Fuvir <V NaNgNc
0 < Na, Ng, Nc
Nya+ Ng+Ne <M+ R

Using Lagrange multipliers, maximal value obtained when Ny = Ng = N¢

27 /43

Step 4: Choose R and add write operations

in one phase, nb of computations: Fpig < (3(M + R)>
Total volume of reads:

3 3
VreadZ\‘N JXRZ<N _1>XR
Fmir Fyv+r

Valid for all values of R, maximized when R = 2M:
Viead = 2N3/VM — 2M

Each element of C written at least once: Viyite > N2

Theorem.
The total volume of 1/Os is bounded by:
23
Vijo > ==+ N> —2M
1/0 \/M

8/43

Exercise: asymptotically optimal algorithm

Consider the following algorithm sketch:
> Partition C into blocks of size (VM — 1) x (VM — 1)
» Partition A into block-columns of size (vVVM — 1) x 1

> Partition B into block-rows of size 1 x (v/M — 1)
» For each block Cp of C:

» Load the corresponding blocks of A and B on after the other
» For each pair of blocks Ap, By, compute Cp < Cp + ApBp
» When all products for C, are performed, write back Cp

j o= (LI

1. Write a proper algorithm following these directions

2. Compute the number of read and write operations

29 /43

Generalization to other Linear Algebra Algorithms

Theorem (Ballard et al., 2011).

For any matrix computation expressed as “general computations”, the
number of 1/Os is at least G/(8v M) — M, where G is the total number of
elementary operations g.

General computation
For all (i,j) € S,
Chp o= g <g;J7k(A,'7kBkJ) for k € S;j, any other arguments)

» f;,j and gijx must be “non-trivial”
» For matrix multiplication:

» f; j: summation, g : product
> Sii=1[1,n], Sc =[1,n] x [1,n]

30 /43

Application to LU Factorization (1/2)

LU factorization (Gaussian elimination): U (done)
» Convert a matrix A into product L x U

» [is lower triangular with diagonal 1

L (done)

» U is upper triangular
» (L— D+ U) stored in place with A

LU Algorithm
Fork=1...n—1:
» Fori=k+1...n,
Aj k < aj k/akk (column/panel preparation)
» Fori=k+1...n,

Forj=k+1...n,
A,',j — AiJ = Ai,kAk,j (update)

31/43

Application to LU Factorization (2/2)

Can be expressed as follows: U (done)
Ui,j:Ai,j_ZLi,k'Uk,j fori <j
k<i]
S
Lij=(Aij =Y Lix-U)/ U fori>] >
k<j

Fits the generalized matrix computations:
C(i.J) = £ (81 k(A k), B(K.) for k € S, K)

with:

32/43

Application to LU Factorization (2/2)

Can be expressed as follows:

U (done)
Ui,j:Ai,j_ZLi,k' Uk,j fori <j
k<i
Lij=(Aij =Y Lix-U)/ U fori>]
k<j

Fits the generalized matrix computations:

C(i.J) = fis (815.4(AU, K), B(k.J)) for k € S5, K)

with:
» A=B=C
gij.x multiplies L; - Uy j
fi j performs the sum, subtracts from A;; (and divides by U;; is i > j)
1/O lower bound: O(G/vM)=0(n3/v/M)

>
>
>
» Some algorithms attain this bound 32/ 43

Data Aware Algorithms — Part 1

Analysis and Lower Bounds for Parallel Algorithms

Matrix Multiplication Lower Bound for P processors

memory

memory

Lemma.
Consider a conventional matrix multiplication performed on P processors
with distributed memory. A processor with memory M that perform W

. w
elementary products must send or receive at least N M elements.

34/43

Matrix Multiplication Lower Bound for P processors

memory

memory

Lemma.

Consider a conventional matrix multiplication performed on P processors
with distributed memory. A processor with memory M that perform W

' _w_
elementary products must send or receive at least N M elements.

Theorem.

Consider a conventional matrix multiplication on P processors, each with a
3
n

memory M. Some processor has a volume of |/O at least VBBV M

34/43

Matrix Multiplication Lower Bound for P processors

memory

memory

Lemma.

Consider a conventional matrix multiplication performed on P processors
with distributed memory. A processor with memory M that perform W

' _w_
elementary products must send or receive at least N M elements.

Theorem.

Consider a conventional matrix multiplication on P processors, each with a
n
memory M. Some processor has a volume of |/O at least VBBV M

NB: bound useful only when M < n?/(2P?/3)

34/43

Cannon’s 2D algorithm

» Processors organized on a square 2D grid of size VP x V/P

» A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; j, B; j, computes C; ;

» At each step, each proc. performs a A; , x By j block product

Starting position Starting position

Stagger left Stagger up
Ali,j] := Ali,j+1] Blijl := Bli+1,j]
Shift right Shift down
Alij] := Al j-1] B[i,j] := B[i-1,j]

35 /43

Cannon’s 2D algorithm

» Processors organized on a square 2D grid of size VP x V/P

» A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; j, B; j, computes C; ;

» At each step, each proc. performs a A; , x By j block product

» First reallign matrices:

» Shift A;; blocks to the left by staringposition
i (wraparound)

» Shift B;; blocks to the top by
J (wraparound)

Starting position

Stagger left Stagger up
» After computation A= Al Y= B
shift A blocks right
shift B blocks down Shift right shift down
Al = Alij-1] Bli,j] := Bli-1,j]

» Total I/O volume: ?
» Storage: 7

35 /43

Cannon’s 2D algorithm

>
>

Processors organized on a square 2D grid of size VP x VP
A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; j, B; j, computes C; ;
At each step, each proc. performs a A; , x By ; block product

First reallign matrices:

» Shift A;; blocks to the left by startingposition
i (wraparound)

» Shift B;; blocks to the top by
J (wraparound)

Starting position

Stagger left Stagger up

After computation A= A A

shift A blocks right

shift B blocks down shitright shift down
BIi,jl := B[i-1,j]

Total 1/0 volume: O(n*\/P) A= Al
Storage: O(n?/P) per processor

35 /43

Other 2D Algorithm: SUMMA

» SUMMA: Scalable Universal Matrix Multiplication Algorithm
» Same 2D grid distribution
> At each step k, column k of A and row k of B are broadcasted
(from processors owning the data)
» Each processor computes a local contribution (outer-product)
k J B(kJ)

M k
'\
< . - Brow
| ATV B_
A, P
A(Lk) 7
©2012 Scott B. Baden /CSE 260/ Fall 2012 Acol

» Smaller communications = smaller temporary storage

» Same 1/O volume: O(n2\/ﬁ)

36 /43

1/0O Lower Bound for 2D algorithms

Theorem.

Consider a conventional matrix multiplication on P processors each with
O(n?/P) storage, some processor has a 1/O volume at least ©(n?/v/P).

Proof: Previous result: O(n3/Pv/M) with M = n?/P.

» When balanced, total 1/0 volume: ©(n?v/P)
» Both Cannon'’s algorithm and SUMMA are optimal

Can we do better?

37 /43

1/0O Lower Bound for 2D algorithms

Theorem.

Consider a conventional matrix multiplication on P processors each with
O(n?/P) storage, some processor has a 1/O volume at least ©(n?/v/P).

Proof: Previous result: O(n3/Pv/M) with M = n?/P.

» When balanced, total 1/0 volume: ©(n?v/P)

» Both Cannon'’s algorithm and SUMMA are optimal
= among 2D algorithms! (memory limited to O(n?/P))

Can we do better?

37 /43

3D Algorithm

» Consider 3D grid of processor: g X g X g ST
(g =P'3)

» Processor /,j, k owns blocks A; x, By, C,.(;)

» Matrices are replicated (including C)

» Each processor computes its local contribution

» Then summation of the various Ci(j) for all k

» Memory needed: 7

» Total I/O volume: ?

38 /43

3D Algorithm

» Consider 3D grid of processor: g x g X g %
(g =P'3)

Processor i, j, k owns blocks A; x, By j, C,.(;)

Matrices are replicated (including C)

(

Then summation of the various C,.j) for all k
Memory needed: O(n?/q?) = O(n?/P?/3) per processor

>

>

» Each processor computes its local contribution
>

>

> Total /0 volume: O(n?/q? x ¢3) = O(n?q) = O(n*P1/3)

38 /43

3D Algorithm

» Consider 3D grid of processor: g x g X g %
(g =P'3)

Processor i, j, k owns blocks A; x, By j, C,.(;)

Matrices are replicated (including C)

(

Then summation of the various C,.j) for all k
Memory needed: O(n?/q?) = O(n?/P?/3) per processor

>

>

» Each processor computes its local contribution
>

>

> Total /0 volume: O(n?/q? x ¢3) = O(n?q) = O(n*P1/3)

Lower Bound:
> Previous theorem does not give useful bound (M = ©(n?P/3))

» More complex analysis shows that the |/O volume on some processor
is ©(n2/P?/3)

38 /43

2.5D Algorithm (1/2)

| 4

vy

3D algorithm requires large memory on each processor (Pl/3 copies
of each matrices)

What if we have space for only 1 < ¢ < P!/3 copies ?
Assume each processor has a memory M = O(cn?/P)

Arrange processors in \/P/c x y/P/c X ¢ grid:

c layers, each layer with P/c processors in square grid
AB,C
distributed by blocks of size n\/c/P x ny/c/P, replicated on each layer

(P/C)l/z

N\
@\Q/%
c|

NB: ¢ = 1 gets 2D, ¢ = P'/3 gives 3D 3943

2.5D Algorithm (2/2)

(P/C)I/Z
A
N
‘]
» Each layer responsible for a fraction 1/c of Cannon'’s alg.: Different

initial shifts of A and B
» Finally, sum C over layers

40 / 43

2.5D Algorithm (2/2)

(P/C)I/Z

0
‘]
» Each layer responsible for a fraction 1/c of Cannon'’s alg.: Different

initial shifts of A and B
» Finally, sum C over layers

» Total I/O volume: O(n?/\/P/c)
> Replication, initial shift, final sum: O(n?c)
» ¢ layers of fraction 1/c of Cannon's alg. with grid size \/P/c :

0 (r*v/P/c)

40 / 43

2.5D Algorithm (2/2)

(P/C)I/Z

0
‘]
» Each layer responsible for a fraction 1/c of Cannon'’s alg.: Different

initial shifts of A and B
» Finally, sum C over layers

» Total I/O volume: O(n?/\/P/c)
> Replication, initial shift, final sum: O(n?c)
» ¢ layers of fraction 1/c of Cannon's alg. with grid size \/P/c :
o) (n%/P/c)

» Reaches lower bound on 1/Os per processor:

n3 n3
o (i) =© (W) = 0/ VeP)

40 / 43

a
1l
o
=)}

Execution time normalized by 2D

Source Jim Demmel

Performance on Blue Gene P

Matrix multiplication on 16,384 nodes of BG/P
1.4 . : —
communication s
1.2 F idle 3
95% reduction in comm computation s
1F 4
08 3 - E
0.6 4
04 -
0.2 F 1
0 2 22 2 22
e & ~y Sy
/‘9{)9 /‘9{’9 370)9 '9,0)9
70] SO 190 Je-é‘

©2012 Scott B. Baden /CSE 260/ Fall 2012

Data Aware Algorithms — Part 1

Conclusion

Take-aways

» Data movements (I/Os and communication between processes) have
a large impact on the efficiency of algorithms

» Different algorithms with different computational complexity may
exhibit very different 1/O behaviors

» We can prove lower bound on the amount of 1/O or communications
for specific operations

» |/O (asymptotically) optimal algorithms for linear algebra operations
» Communication-avoiding algorithms for parallel processing

See you tomorrow!

43 /43

	Introduction and Motivation
	Pebble game models
	Black pebble game
	BPG: Complexity, variants
	Red-Blue Pebble Game

	Algorithm Design and Data Movement: the Matrix Product Case
	Simple Algorithm
	Blocked Algorithm
	I/O Lower Bound
	Tight Lower Bound for Matrix Product
	Asymptotically optimal algorithm
	Generalization

	Analysis and Lower Bounds for Parallel Algorithms
	Matrix Multiplication Lower Bound for P processors
	2D and 3D Algorithms for Matrix Multiplication
	2.5D Algorithm for Matrix Multiplication

	Conclusion

