Data Aware Algorithms – Part 1

Loris Marchal

October 17, 2023

Data Aware Algorithms

Topics covered:

- Pebble game models
- ► I/Os lower bounds
- Communication-avoiding algorithms
- Cache oblivious algorithms
- Memory-aware scheduling

Contact: loris.marchal@ens-lyon.fr More material:

http://perso.ens-lyon.fr/loris.marchal/data-aware-algorithms-warsaw.html

High Performance Computing

Numerical simulations drive new discoveries

▶ Larger systems with better accuracy: more data and computation

Evolution of computing speed vs. data access speed (bandwidth)

Year source: https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Byte-per-flop ratio keeps decreasing \Rightarrow Data access critical for performance

Beyond the memory wall

- ▶ Time to move the data > Time to compute on the data
- Similar problem in microprocessor design: "memory wall"
- Traditional workaround: add a faster but smaller "cache" memory
- Now a hierarchy of caches !

Energy required for communications

Computing with bounded cache/memory

- Limited amount of fast cache
- Performance sensitive to data locality
- Optimize data reuse
- Avoid data movements (I/Os) between memory and cache(s) (time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem

Computing with bounded cache/memory

- Limited amount of fast cache
- Performance sensitive to data locality
- Optimize data reuse
- Avoid data movements (I/Os) between memory and cache(s) (time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem

Pebble game models

Algorithm Design and Data Movement: the Matrix Product Case

Analysis and Lower Bounds for Parallel Algorithms

Conclusion

Pebble game models

Algorithm Design and Data Movement: the Matrix Product Case

Analysis and Lower Bounds for Parallel Algorithms

Conclusion

- ► From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ▶ A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees - NP-hard on general DAGs

- ▶ From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ► A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

- ▶ From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ► A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- A pebble may be removed from a vertex at any time. (EVICT)
- ▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

- ▶ From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ► A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- ▶ A pebble may be removed from a vertex at any time. (EVICT)
- ▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees - NP-hard on general DAGs

- ▶ From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ► A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- ► A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

- ▶ From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ► A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- ► A pebble may be removed from a vertex at any time. (EVICT)
- ▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees - NP-hard on general DAGs

- ▶ From the 70s: limit usage of scarce registers
- Model expressions as Directed Acyclic Graphs

Rules of the game:

- ► A pebble may be placed on a source node at any time (LOAD)
- If all predecessors of v are pebbled, a pebble may be placed on v. (COMPUTE)
- ► A pebble may be removed from a vertex at any time. (EVICT)
- ▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

Pebble Game – Complexity, variants, space-time tradeoffs

Progressive pebble game:

Forbid pebbling twice the same vertex, NP-Hard

More general problem with re-computation:

PSpace-complete

Variant with pebble shifting:

► Rule 3 → If all predecessors of an unpebbled vertex v are pebbled, a pebble may be shifted from a predecessor to v.

Space-Time Tradoffs – Example

Every pebbling strategy for any program computing the multiplication of two $N \times N$ matrices uses a space S and time T respecting the following inequality: $(S+1)T > N^3/4$

Space-Time tradeoffs – FFT example

- ► Fast-Fourrier Transform
- Recursive graph based on the "exchange graph" with 2 inputs and 2 outputs

FFT graph with 8 input/output vertices (depth k = 3) $n = 2^k$ vertices at each level

Strategy minimizing the computation cost? the memory?

Space-Time tradeoffs – FFT example

Strategy 1:

- Pebble level by level
- Requires $2n = 2^{k+1}$ pebbles (or n+2 if done carefully)
- No recomputations (minimum number of steps)

Strategy 2:

- Pebble one tree up to one output, then start over (variant: pebble two outputs before re-starting)
- Uses k + 1 pebbles (minimum value since it contains binary tree of depth k)
- Large number of recomputations

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)
 Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ) Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ) Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ) Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Red/Blue pebble game [Hong & Kung, 1981] New rules:

- Limited number of red pebbles (=memory slots)
- Replace red pebble by blue pebble (WRITE)
- Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

- Successful to design lower bounds on I/Os and optimal algorithms
- Basis for other studies: communication-avoiding algorithms (recomputations may be allowed or forbidden)

Example: FFT graph

k levels, $n = 2^k$ vertices at each level Minimum number S of red pebbles ? How many I/Os for this minimum number S ? Pebble game models

Algorithm Design and Data Movement: the Matrix Product Case

Analysis and Lower Bounds for Parallel Algorithms

Conclusion

Example: matrix-matrix product

- Consider two square matrices A and B (size $n \times n$)
- Compute generalized matrix product: $C \leftarrow C + AB$

```
Simple-Matrix-Multiply(n, C, A, B)
for i = 0 \rightarrow n - 1 do
for j = 0 \rightarrow n - 1 do
for k = 0 \rightarrow n - 1 do
c_{i,j} = C_{i,j} + A_{i,k}B_{k,j}
```

Assume simple two-level memory model:

- Slow but infinite disk storage (where A and B are originally stored)
- ► Fast and limited memory (size *M*)

Objective: limit data movement between disk/memory

NB: also applies to other two-level systems (memory/cache, etc.)

Simple algorithm analysis

```
Simple-Matrix-Multiply(n, C, A, B)
for i = 0 \rightarrow n - 1 do
for j = 0 \rightarrow n - 1 do
for k = 0 \rightarrow n - 1 do
\[ c_{i,j} = C_{i,j} + A_{i,k}B_{k,j} \]
```

Assume the memory cannot store half of a matrix: M < n²/2
 Question: How many data movement in this algorithm ?

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)for $i = 0 \rightarrow n - 1$ do for $j = 0 \rightarrow n - 1$ do for $k = 0 \rightarrow n - 1$ do $c_{i,j} = C_{i,j} + A_{i,k}B_{k,j}$

• Assume the memory cannot store half of a matrix: $M < n^2/2$

Question: How many data movement in this algorithm ?

Answer:

- \blacktriangleright all elements of *B* accessed during one iteration of the outer loop
- At most half of B stays in memory
- At least $n^2/2$ elements must be read per outer loop
- At least $n^3/2$ read for entire algorithms
- Same order of magnitude of computations: $O(n^3)$
- ► Very bad data reuse ② Question: How to do better ?

Blocked matrix-matrix product

- Divide each matrix into blocks of size b × b: A^b_{i,k} is the block of A at position (i, k)
- Perform "coarse-grain" matrix product on blocks
- Perform each block product with previous algorithms

```
Blocked-Matrix-Multiply(n,A,B,C)

b \leftarrow \sqrt{M/3}

for i = 0, \rightarrow n/b - 1 do

for j = 0, \rightarrow n/b - 1 do

for k = 0, \rightarrow n/b - 1 do

Simple-Matrix-Multiply(n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b)
```

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C) $b \leftarrow \sqrt{M/3}$ for $i = 0, \rightarrow n/b - 1$ do for $j = 0, \rightarrow n/b - 1$ do for $k = 0, \rightarrow n/b - 1$ do Simple-Matrix-Multiply($n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b$) Question: Number of data movements ?

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C) $b \leftarrow \sqrt{M/3}$ for $i = 0, \rightarrow n/b - 1$ do for $j = 0, \rightarrow n/b - 1$ do for $k = 0, \rightarrow n/b - 1$ do Simple-Matrix-Multiply($n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b$)

Question: Number of data movements ?

- Iteration of inner loop: 3 blocks of size $b \times b = \sqrt{M/3}^3 = M/3$ \rightarrow fits in memory
- At most M + M/3 = O(M) data movements for each inner loop (reading/writing)
- Number of inner iterations: $(n/b)^3 = O(n^3/M^{3/2})$
- Total number of data movements: $O(n^3/\sqrt{M})$

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C) $b \leftarrow \sqrt{M/3}$ for $i = 0, \rightarrow n/b - 1$ do for $j = 0, \rightarrow n/b - 1$ do for $k = 0, \rightarrow n/b - 1$ do Simple-Matrix-Multiply($n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b$)

Question: Number of data movements ?

- Iteration of inner loop: 3 blocks of size $b \times b = \sqrt{M/3}^3 = M/3$ \rightarrow fits in memory
- At most M + M/3 = O(M) data movements for each inner loop (reading/writing)
- Number of inner iterations: $(n/b)^3 = O(n^3/M^{3/2})$
- Total number of data movements: $O(n^3/\sqrt{M})$

Question: Can we do (significantly) better ?

Theorem (Hong& Kung 1981, Toledo 1999).

Any conventional matrix multiplication algorithm will perform at least $\Omega(n^3/\sqrt{M})$ I/O operations.

conventional: perform all n^3 elementary products (aka: not Strassen or Coppersmith-Winograd)

- Decompose the computation into phases of *M* I/O operations (except the last phase, which may contain < *M* operations
- $C_{i,j}$ is live in a phase if some $A_{i,k} \times B_{k,j}$ is computed
- During a phase:
 - At most 2M elements of A are available for computations: A_p (M from the memory, M from reads)
 - Same for B ($|B_p| \leq 2M$)
 - At most 2*M* "live" $C_{i,j}$

(M in memory at the end, M written during the phase)

Goal: bound the number of elementary matrix products done in one phase

I/O lower bound for matrix multiplication – proof 2/2

Two cases for elements of A_p :

- **b** Dense rows of A_p
 - ► S_{ρ}^{1} : set of rows of A with at least \sqrt{M} elements in A_{ρ} , $|S_{\rho}^{1}| \leq 2\sqrt{M}$ Each element of B_{ρ} multiplied by at most one element from each row of S_{ρ}^{1}
 - At most $2\sqrt{M} \times 2M = 4M^{3/2}$ multiplications with elements from S_p^1

► Sparse rows of *A_p*

- ► Each "live" C_{i,j} = one row of A × one column of B Number of elementary product for each C_{i,j} ≤ size of the corresponding row
- For sparse rows ($\notin S_1^p$), at most $2M \times \sqrt{M}$ products

Overall, at most $6M^{3/2}$ elementary products per phase.

Total number of full phases
$$\geq \lfloor \frac{n^3}{6M^{3/2}} \rfloor - 1 \geq \frac{n^3}{6M^{3/2}} - 1$$

Total number of I/Os $\geq \frac{n^3}{6\sqrt{M}} - M$

I/O lower bound for matrix multiplication – proof 2/2

Two cases for elements of A_p :

- **b** Dense rows of A_p
 - ► S_p^1 : set of rows of A with at least \sqrt{M} elements in A_p , $|S_p^1| \le 2\sqrt{M}$ Each element of B_p multiplied by at most one element from each row of S_p^1
 - At most $2\sqrt{M} \times 2M = 4M^{3/2}$ multiplications with elements from S_p^1
- ► Sparse rows of *A_p*
 - ► Each "live" C_{i,j} = one row of A × one column of B Number of elementary product for each C_{i,j} ≤ size of the corresponding row
 - For sparse rows $(\notin S_1^p)$, at most $2M \times \sqrt{M}$ products

Overall, at most $6M^{3/2}$ elementary products per phase.

Total number of full phases $\geq \lfloor \frac{n^3}{6M^{3/2}} \rfloor - 1 \geq \frac{n^3}{6M^{3/2}} - 1$ Total number of I/Os $\geq \frac{n^3}{6\sqrt{M}} - M$

I/O lower bound for matrix multiplication – proof 2/2

Two cases for elements of A_p :

- **b** Dense rows of A_p
 - ► S_p^1 : set of rows of A with at least \sqrt{M} elements in A_p , $|S_p^1| \le 2\sqrt{M}$ Each element of B_p multiplied by at most one element from each row of S_p^1
 - At most $2\sqrt{M} \times 2M = 4M^{3/2}$ multiplications with elements from S_p^1
- ► Sparse rows of *A_p*
 - ► Each "live" C_{i,j} = one row of A × one column of B Number of elementary product for each C_{i,j} ≤ size of the corresponding row
 - For sparse rows ($\notin S_1^p$), at most $2M \times \sqrt{M}$ products

Overall, at most $6M^{3/2}$ elementary products per phase.

Total number of full phases
$$\geq \lfloor \frac{n^3}{6M^{3/2}} \rfloor - 1 \geq \frac{n^3}{6M^{3/2}} - 1$$

Total number of I/Os $\geq \frac{n^3}{6\sqrt{M}} - M$

Tight Lower Bound for Matrix Product

$$b \leftarrow \sqrt{M/3}$$
for $i = 0, \rightarrow n/b - 1$ do
for $j = 0, \rightarrow n/b - 1$ do
for $k = 0, \rightarrow n/b - 1$ do
for $k = 0, \rightarrow n/b - 1$ do
Simple-Matrix-Multiply $(n, C_{i,j}^b, A_{i,k}^b, B_{k,j}^b)$

- ▶ I/Os of blocked algorithm: $2\sqrt{3}N^3/\sqrt{M} + N^2$
- Lower bound on I/Os $\sim N^3/6\sqrt{M}$
- Many improvements needed to close the gap
- ▶ Presented here for $C \leftarrow C + AB$, square matrices

New operation: Fused Multiply Add

- ▶ Perform $c \leftarrow c + a \times b$ in a single step
- No temporary storage needed (3 inputs, 1 output)

Theorem.

Any algorithm for the matrix product can be transformed into using only FMA without increasing the required memory or the number of I/Os.

Transformation:

- ► If some c_{i,j,k} is computed while c_{i,j} is not in memory, insert a read before the multiplication
- Replace the multiplication by a FMA
- ▶ Remove the read that must occur before the addition $c_{i,j} \leftarrow c_{i,j} + c_{i,j,k}$, remove the addition
- ▶ Transform occurrences of $c_{i,j,k}$ into $c_{i,j}$
- If c_{i,j,k} and c_{i,j} were both in memory in some time-interval, remove operations with c_{i,j,k} in this interval

Step 2: Concentrate on Read Operations

Theorem (Irony, Toledo, Tiskin, 2008).

Using N_A elements of A, N_B elements of B and N_C elements of C, we can perform at most $\sqrt{N_A N_B N_C}$ distinct FMAs.

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of \mathbb{Z}^3 and V_1 , V_2 , V_3 denotes the orthogonal projections of V on each coordinate planes, we have

 $|V|^2 \le |V_1| \cdot |V_2| \cdot |V_3|,$

Step 3: Use Phases of R **Reads** (\neq M)

Theorem.

During a phase with R reads with memory M, the number of FMAs is bounded by

$$F_{M+R} \leq \left(rac{1}{3}(M+R)
ight)^{3/2}$$

Number F_{M+R} of FMAs constrained by:

$$\begin{cases} F_{M+R} \leq \sqrt{N_A N_B N_C} \\ 0 \leq N_A, N_B, N_C \\ N_A + N_B + N_C \leq M + R \end{cases}$$

Using Lagrange multipliers, maximal value obtained when $N_A = N_B = N_C$

Step 4: Choose *R* and add write operations

in one phase, nb of computations: $F_{M+R} \leq \left(\frac{1}{3}(M+R)\right)^{3/2}$

Total volume of reads:

$$V_{\mathsf{read}} \geq \left\lfloor rac{N^3}{F_{M+R}}
ight
floor imes R \geq \left(rac{N^3}{F_{M+R}} - 1
ight) imes R$$

Valid for all values of R, maximized when R = 2M:

$$V_{\mathsf{read}} \geq 2N^3/\sqrt{M} - 2M$$

Each element of C written at least once: $V_{\rm write} \ge N^2$

Theorem.

The total volume of I/Os is bounded by:

$$V_{I/O} \geq \frac{2N^3}{\sqrt{M}} + N^2 - 2M$$

Exercise: asymptotically optimal algorithm

Consider the following algorithm sketch:

- ▶ Partition *C* into blocks of size $(\sqrt{M} 1) \times (\sqrt{M} 1)$
- ▶ Partition A into block-columns of size $(\sqrt{M} 1) \times 1$
- Partition *B* into block-rows of size $1 \times (\sqrt{M} 1)$
- For each block C_b of C:
 - ▶ Load the corresponding blocks of A and B on after the other
 - ▶ For each pair of blocks A_b, B_b , compute $C_b \leftarrow C_b + A_b B_b$
 - When all products for C_b are performed, write back C_b

- 1. Write a proper algorithm following these directions
- 2. Compute the number of read and write operations

Generalization to other Linear Algebra Algorithms

Theorem (Ballard et al., 2011).

For any matrix computation expressed as "general computations", the number of I/Os is at least $G/(8\sqrt{M}) - M$, where G is the total number of elementary operations g.

General computation

For all
$$(i,j) \in S_c$$
,
 $C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}B_{k,j}) ext{ for } k \in S_{i,j}, ext{ any other arguments} \Big)$

- f_i, j and $g_{i,j,k}$ must be "non-trivial"
- For matrix multiplication:

Application to LU Factorization (1/2)

LU factorization (Gaussian elimination):

- Convert a matrix A into product $L \times U$
- ► L is lower triangular with diagonal 1
- ► U is upper triangular
- (L D + U) stored in place with A

LU Algorithm For $k = 1 \dots n - 1$:

Application to LU Factorization (2/2)

Can be expressed as follows:

$$U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j} \quad \text{for } i \le j$$
$$L_{i,j} = (A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}) / U_{j,j} \quad \text{for } i > j$$

U (done)

$$A_{kk} \qquad A_{kj}$$

(even b)
 $A_{ik} \qquad A_{ij}$

Fits the generalized matrix computations:

$$C(i,j) = f_{i,j} \Big(g_{i,j,k}(A(i,k), B(k,j)) \text{ for } k \in S_{i,j}, K \Big)$$

with:

Application to LU Factorization (2/2)

Can be expressed as follows:

$$U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j} \quad \text{for } i \le j$$
$$L_{i,j} = (A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}) / U_{j,j} \quad \text{for } i > j$$

U (done)

$$A_{kk} \qquad A_{kj}$$

(even b)
 $A_{ik} \qquad A_{ij}$

Fits the generalized matrix computations:

$$C(i,j) = f_{i,j} \Big(g_{i,j,k}(A(i,k), B(k,j)) \text{ for } k \in S_{i,j}, K \Big)$$

with:

- ► *A* = *B* = *C*
- $g_{i,j,k}$ multiplies $L_{i,k} \cdot U_{k,j}$
- ▶ $f_{i,j}$ performs the sum, subtracts from $A_{i,j}$ (and divides by $U_{j,j}$ is i > j)
- ► I/O lower bound: $O(G/\sqrt{M}) = O(n^3/\sqrt{M})$
- Some algorithms attain this bound

Pebble game models

Algorithm Design and Data Movement: the Matrix Product Case

Analysis and Lower Bounds for Parallel Algorithms

Conclusion

Matrix Multiplication Lower Bound for *P* processors

Lemma.

Consider a conventional matrix multiplication performed on *P* processors with distributed memory. A processor with memory *M* that perform *W* elementary products must send or receive at least $\frac{W}{2\sqrt{2}\sqrt{M}} - M$ elements.

Theorem.

Consider a conventional matrix multiplication on *P* processors, each with a memory *M*. Some processor has a volume of I/O at least $\frac{n^3}{2\sqrt{2}P\sqrt{M}} - M$.

NB: bound useful only when $M < n^2/(2P^{2/3})$

Matrix Multiplication Lower Bound for P processors

Lemma.

Consider a conventional matrix multiplication performed on *P* processors with distributed memory. A processor with memory *M* that perform *W* elementary products must send or receive at least $\frac{W}{2\sqrt{2}\sqrt{M}} - M$ elements.

Theorem.

Consider a conventional matrix multiplication on *P* processors, each with a memory *M*. Some processor has a volume of I/O at least $\frac{n^3}{2\sqrt{2}P\sqrt{M}} - M$.

NB: bound useful only when $M < n^2/(2P^{2/3})$

Matrix Multiplication Lower Bound for *P* processors

Lemma.

Consider a conventional matrix multiplication performed on *P* processors with distributed memory. A processor with memory *M* that perform *W* elementary products must send or receive at least $\frac{W}{2\sqrt{2}\sqrt{M}} - M$ elements.

Theorem.

Consider a conventional matrix multiplication on *P* processors, each with a memory *M*. Some processor has a volume of I/O at least $\frac{n^3}{2\sqrt{2}P\sqrt{M}} - M$.

NB: bound useful only when $M < n^2/(2P^{2/3})$

Cannon's 2D algorithm

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step, each proc. performs a $A_{i,k} \times B_{k,j}$ block product

Cannon's 2D algorithm

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step, each proc. performs a $A_{i,k} \times B_{k,j}$ block product

- Shift A_{i,j} blocks to the left by ^{starting position} i (wraparound)
- Shift B_{i,j} blocks to the top by j (wraparound)
- After computation, shift A blocks right shift B blocks down
- ► Total I/O volume: ?
- ► Storage: ?

Cannon's 2D algorithm

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step, each proc. performs a $A_{i,k} \times B_{k,j}$ block product

Other 2D Algorithm: SUMMA

- SUMMA: Scalable Universal Matrix Multiplication Algorithm
- Same 2D grid distribution
- At each step k, column k of A and row k of B are broadcasted (from processors owning the data)
- Each processor computes a local contribution (outer-product)

- ► Smaller communications ⇒ smaller temporary storage
- Same I/O volume: $O(n^2\sqrt{P})$

Theorem.

Consider a conventional matrix multiplication on P processors each with $O(n^2/P)$ storage, some processor has a I/O volume at least $\Theta(n^2/\sqrt{P})$.

Proof: Previous result: $O(n^3/P\sqrt{M})$ with $M = n^2/P$.

- When balanced, total I/O volume: $\Theta(n^2\sqrt{P})$
- Both Cannon's algorithm and SUMMA are optimal

Can we do better?

Theorem.

Consider a conventional matrix multiplication on P processors each with $O(n^2/P)$ storage, some processor has a I/O volume at least $\Theta(n^2/\sqrt{P})$.

Proof: Previous result: $O(n^3/P\sqrt{M})$ with $M = n^2/P$.

• When balanced, total I/O volume: $\Theta(n^2\sqrt{P})$

▶ Both Cannon's algorithm and SUMMA are optimal ⇒ among 2D algorithms! (memory limited to $O(n^2/P)$)

Can we do better?

3D Algorithm

- Consider 3D grid of processor: q × q × q (q = P^{1/3})
- ▶ Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,i}^{(k)}$ for all k
- ► Memory needed: ?
- ► Total I/O volume: ?

_ower Bound:

- Previous theorem does not give useful bound $(M = \Theta(n^2 P^{1/3}))$
- More complex analysis shows that the I/O volume on some processor is ⊖(n²/P^{2/3})

3D Algorithm

- Consider 3D grid of processor: q × q × q (q = P^{1/3})
- ▶ Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,i}^{(k)}$ for all k
- Memory needed: $O(n^2/q^2) = O(n^2/P^{2/3})$ per processor
- Total I/O volume: $O(n^2/q^2 \times q^3) = O(n^2q) = O(n^2P^{1/3})$

ower Bound:

- Previous theorem does not give useful bound $(M = \Theta(n^2 P^{1/3}))$
- More complex analysis shows that the I/O volume on some processor is ⊖(n²/P^{2/3})

3D Algorithm

- Consider 3D grid of processor: q × q × q (q = P^{1/3})
- ▶ Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,i}^{(k)}$ for all k
- Memory needed: $O(n^2/q^2) = O(n^2/P^{2/3})$ per processor
- Total I/O volume: $O(n^2/q^2 \times q^3) = O(n^2q) = O(n^2P^{1/3})$

Lower Bound:

- Previous theorem does not give useful bound $(M = \Theta(n^2 P^{1/3}))$
- More complex analysis shows that the I/O volume on some processor is ⊖(n²/P^{2/3})

2.5D Algorithm (1/2)

- 3D algorithm requires large memory on each processor (P^{1/3} copies of each matrices)
- What if we have space for only $1 < c < P^{1/3}$ copies ?
- Assume each processor has a memory $M = O(cn^2/P)$
- ► Arrange processors in √P/c × √P/c × c grid: c layers, each layer with P/c processors in square grid

► A, B, C

distributed by blocks of size $n\sqrt{c/P} \times n\sqrt{c/P}$, replicated on each layer

▶ NB:
$$c = 1$$
 gets 2D, $c = P^{1/3}$ gives 3D

2.5D Algorithm (2/2)

- Each layer responsible for a fraction 1/c of Cannon's alg.: Different initial shifts of A and B
- ► Finally, sum C over layers
- **•** Total I/O volume: $O(n^2/\sqrt{P/c})$
 - Replication, initial shift, final sum: O(n²c)
 - ► c layers of fraction 1/c of Cannon's alg. with grid size $\sqrt{P/c}$: $O\left(n^2\sqrt{P/c}\right)$
- Reaches lower bound on I/Os per processor:

$$O\left(\frac{n^3}{P\sqrt{M}}\right) = O\left(\frac{n^3}{P\sqrt{cn^2/P}}\right) = O(n^2/\sqrt{cP})$$

2.5D Algorithm (2/2)

- Each layer responsible for a fraction 1/c of Cannon's alg.: Different initial shifts of A and B
- ► Finally, sum C over layers
- Total I/O volume: $O(n^2/\sqrt{P/c})$
 - Replication, initial shift, final sum: $O(n^2c)$
 - c layers of fraction 1/c of Cannon's alg. with grid size $\sqrt{P/c}$: $O\left(n^2\sqrt{P/c}\right)$
- Reaches lower bound on I/Os per processor:

2.5D Algorithm (2/2)

- Each layer responsible for a fraction 1/c of Cannon's alg.: Different initial shifts of A and B
- ► Finally, sum C over layers
- Total I/O volume: $O(n^2/\sqrt{P/c})$
 - Replication, initial shift, final sum: $O(n^2c)$
 - c layers of fraction 1/c of Cannon's alg. with grid size $\sqrt{P/c}$: $O\left(n^2\sqrt{P/c}\right)$

Reaches lower bound on I/Os per processor:

$$O\left(\frac{n^3}{P\sqrt{M}}\right) = O\left(\frac{n^3}{P\sqrt{cn^2/P}}\right) = O(n^2/\sqrt{cP})$$

Performance on Blue Gene P

C=16

Matrix multiplication on 16,384 nodes of BG/P

©2012 Scott B. Baden /CSE 260/ Fall 2012

Pebble game models

Algorithm Design and Data Movement: the Matrix Product Case

Analysis and Lower Bounds for Parallel Algorithms

Conclusion

Take-aways

- Data movements (I/Os and communication between processes) have a large impact on the efficiency of algorithms
- Different algorithms with different computational complexity may exhibit very different I/O behaviors
- We can prove lower bound on the amount of I/O or communications for specific operations
- ▶ I/O (asymptotically) optimal algorithms for linear algebra operations
- Communication-avoiding algorithms for parallel processing

See you tomorrow!