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High Performance Computing

▶ Numerical simulations drive new discoveries

▶ Larger systems with better accuracy: more data and computation
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Data access problem

Evolution of computing speed vs. data access speed (bandwidth)

CHAPTER 20. OPTICAL INTERCONNECTION NETWORKS FOR 
HIGH PERFORMANCE SYSTEMS 6 

 
20.2.2 HPC - Towards Exascale 

The next grand challenge for HPC is to reach EFLOPs (1018 operations per 
second), the exascale computer [21, 22]. To achieve this in a relatively 
economical and manufacturably viable manner the main goal is to design a 
machine that consumes approximately 20 MW or 50 GFLOPs/watt. This goal 
has been recently made more achievable with major shifts in design which 
place the memory closer to the GPU [23, 24]. Power efficiency has improved in 
the most recent machines by 2.5x through the introduction of the new 
architectures of the Nvidia Tesla P100/ Volta V100 and the Zettascaler 2.0 and 
2.2. These new architectures including innovative data movement solutions 
have vastly improved the GFlops/Watt metric [23]. 
 

 

Figure 20.4: Evolution of the average top 10 supercomputers normalized to year 
2010  

 

source: https://doi.org/10.1016/B978-0-12-816502-7.00020-8

Byte-per-flop ratio keeps decreasing ⇒ Data access critical for
performance

https://doi.org/10.1016/B978-0-12-816502-7.00020-8
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Beyond the memory wall

▶ Time to move the data > Time to compute on the data

▶ Similar problem in microprocessor design: “memory wall”

▶ Traditional workaround:
add a faster but smaller “cache” memory

▶ Now a hierarchy of caches !



6 / 43

Energy required for communicationsWhy/Minimize/Communica)on?/(3/3)/

1/

10/

100/

1000/

10000/

P
ic
o
Jo
u
le
s*

now*

2018*

Source:/John/Shalf,/LBL/



7 / 43

Computing with bounded cache/memory

▶ Limited amount of fast cache

▶ Performance sensitive to data locality

▶ Optimize data reuse

▶ Avoid data movements (I/Os) between memory and cache(s)
(time-consuming and energy-consuming)

In this talk: some algorithmic approaches to this problem
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Pebble game for register allocation

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs
y

−

5 1z x

×

+

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs
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Pebble Game – Complexity, variants, space-time tradeoffs

Progressive pebble game:

▶ Forbid pebbling twice the same vertex, NP-Hard

More general problem with re-computation:

▶ PSpace-complete

Variant with pebble shifting:

▶ Rule 3 → If all predecessors of an unpebbled vertex v are pebbled, a
pebble may be shifted from a predecessor to v .

Space-Time Tradoffs – Example

Every pebbling strategy for any program computing the multiplication of
two N × N matrices uses a space S and time T respecting the following
inequality:

(S + 1)T ≥ N3/4
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Space-Time tradeoffs – FFT example

▶ Fast-Fourrier Transform

▶ Recursive graph based on the “exchange graph” with 2 inputs and 2
outputs c⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

FFT graph with 8 input/output vertices (depth k = 3)
n = 2k vertices at each level

▶ Strategy minimizing the computation cost? the memory?
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input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

Strategy 1:

▶ Pebble level by level

▶ Requires 2n = 2k+1 pebbles (or n + 2 if done carefully)

▶ No recomputations (minimum number of steps)

Strategy 2:

▶ Pebble one tree up to one output, then start over
(variant: pebble two outputs before re-starting)

▶ Uses k + 1 pebbles
(minimum value since it contains binary tree of depth k)

▶ Large number of recomputations
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When memory too limited: minimize I/Os

Red/Blue pebble game [Hong & Kung, 1981]
New rules:

▶ Limited number of red pebbles (=memory
slots)

▶ Replace red pebble by blue pebble (WRITE)

▶ Replace blue pebble by red pebble (READ)

Goal: minimize number of WRITE

+−

5 1z x

×

y

Model applies to any two-memory system:
(fast, bounded) memory vs. (slow, large) disk

▶ Successful to design lower bounds on I/Os and optimal algorithms

▶ Basis for other studies: communication-avoiding algorithms
(recomputations may be allowed or forbidden)
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Example: FFT graph
c⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

k levels,n = 2k vertices at each level

Minimum number S of red pebbles ?
How many I/Os for this minimum number S ?
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Example: matrix-matrix product

▶ Consider two square matrices A and B (size n × n)

▶ Compute generalized matrix product: C ← C + AB

Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

Assume simple two-level memory model:

▶ Slow but infinite disk storage
(where A and B are originally stored)

▶ Fast and limited memory (size M)

Objective: limit data movement between disk/memory

NB: also applies to other two-level systems (memory/cache, etc.)
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Simple algorithm analysis

Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

▶ Assume the memory cannot store half of a matrix: M < n2/2

▶ Question: How many data movement in this algorithm ?

Answer:

▶ all elements of B accessed during one iteration of the outer loop

▶ At most half of B stays in memory

▶ At least n2/2 elements must be read per outer loop

▶ At least n3/2 read for entire algorithms

▶ Same order of magnitude of computations: O(n3)

▶ Very bad data reuse / Question: How to do better ?
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Blocked matrix-matrix product

▶ Divide each matrix into blocks of size b × b:
Ab
i ,k is the block of A at position (i , k)

▶ Perform “coarse-grain” matrix product on blocks

▶ Perform each block product with previous algorithms

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)
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Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Question: Number of data movements ?

▶ Iteration of inner loop: 3 blocks of size b × b =
√

M/3
3
= M/3

→ fits in memory

▶ At most M +M/3 = O(M) data movements for each inner loop
(reading/writing)

▶ Number of inner iterations: (n/b)3 = O(n3/M3/2)

▶ Total number of data movements: O(n3/
√
M)

Question: Can we do (significantly) better ?
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I/O lower bound for matrix multiplication

Theorem (Hong& Kung 1981, Toledo 1999).

Any conventional matrix multiplication algorithm will perform at least
Ω(n3/

√
M) I/O operations.

conventional: perform all n3 elementary products
(aka: not Strassen or Coppersmith-Winograd)
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I/O lower bound for matrix multiplication – proof 1/2

▶ Decompose the computation into phases of M I/O operations
(except the last phase, which may contain < M operations

▶ Ci ,j is live in a phase if some Ai ,k × Bk,j is computed
▶ During a phase:

▶ At most 2M elements of A are available for computations: Ap

(M from the memory, M from reads)
▶ Same for B (|Bp| ≤ 2M)
▶ At most 2M “live” Ci,j

(M in memory at the end, M written during the phase)

Goal: bound the number of elementary matrix products done in one phase
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I/O lower bound for matrix multiplication – proof 2/2

Two cases for elements of Ap:
▶ Dense rows of Ap

▶ S1
p : set of rows of A with at least

√
M elements in Ap, |S1

p | ≤ 2
√
M

Each element of Bp multiplied by at most one element from each row
of S1

p

▶ At most 2
√
M × 2M = 4M3/2 multiplications with elements from S1

p

▶ Sparse rows of Ap

▶ Each “live” Ci,j = one row of A × one column of B
Number of elementary product for each Ci,j ≤ size of the
corresponding row

▶ For sparse rows (/∈ Sp
1 ), at most 2M ×

√
M products

Overall, at most 6M3/2 elementary products per phase.

Total number of full phases ≥ ⌊ n3

6M3/2
⌋ − 1 ≥ n3

6M3/2
− 1

Total number of I/Os ≥ n3

6
√
M
−M
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M × 2M = 4M3/2 multiplications with elements from S1

p

▶ Sparse rows of Ap

▶ Each “live” Ci,j = one row of A × one column of B
Number of elementary product for each Ci,j ≤ size of the
corresponding row

▶ For sparse rows (/∈ Sp
1 ), at most 2M ×

√
M products

Overall, at most 6M3/2 elementary products per phase.

Total number of full phases ≥ ⌊ n3

6M3/2
⌋ − 1 ≥ n3

6M3/2
− 1

Total number of I/Os ≥ n3

6
√
M
−M
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Tight Lower Bound for Matrix Product

b ←
√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

▶ I/Os of blocked algorithm: 2
√
3N3/

√
M + N2

▶ Lower bound on I/Os ∼ N3/6
√
M

▶ Many improvements needed to close the gap

▶ Presented here for C ← C + AB, square matrices

New operation: Fused Multiply Add

▶ Perform c ← c + a× b in a single step

▶ No temporary storage needed (3 inputs, 1 output)



25 / 43

Step 1: Use Only FMAs (Fused Multiply Add)

Theorem.

Any algorithm for the matrix product can be transformed into using only
FMA without increasing the required memory or the number of I/Os.

Transformation:

▶ If some ci ,j ,k is computed while ci ,j is not in memory, insert a read
before the multiplication

▶ Replace the multiplication by a FMA

▶ Remove the read that must occur before the addition
ci ,j ← ci ,j + ci ,j ,k , remove the addition

▶ Transform occurrences of ci ,j ,k into ci ,j
▶ If ci ,j ,k and ci ,j were both in memory in some time-interval, remove

operations with ci ,j ,k in this interval
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Step 2: Concentrate on Read Operations

Theorem (Irony, Toledo, Tiskin, 2008).

Using NA elements of A, NB elements of B and NC elements of C , we can
perform at most

√
NANBNC distinct FMAs.

V2
V

V3

k

i

j

V1

V1

V2

V

Theorem (Discrete Loomis-Whitney Inequality).

Let V be a finite subset of Z3 and V1,V2,V3 denotes the orthogonal
projections of V on each coordinate planes, we have

|V |2 ≤ |V1| · |V2| · |V3|,
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Step 3: Use Phases of R Reads (̸= M)

Theorem.

During a phase with R reads with memory M, the number of FMAs is
bounded by

FM+R ≤
(
1

3
(M + R)

)3/2

Number FM+R of FMAs constrained by:
FM+R ≤

√
NANBNC

0 ≤ NA,NB ,NC

NA + NB + NC ≤ M + R

Using Lagrange multipliers, maximal value obtained when NA = NB = NC
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Step 4: Choose R and add write operations

in one phase, nb of computations: FM+R ≤
(
1

3
(M + R)

)3/2

Total volume of reads:

Vread ≥
⌊

N3

FM+R

⌋
× R ≥

(
N3

FM+R
− 1

)
× R

Valid for all values of R, maximized when R = 2M:

Vread ≥ 2N3/
√
M − 2M

Each element of C written at least once: Vwrite ≥ N2

Theorem.

The total volume of I/Os is bounded by:

VI/O ≥
2N3

√
M

+ N2 − 2M
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Exercise: asymptotically optimal algorithm

Consider the following algorithm sketch:

▶ Partition C into blocks of size (
√
M − 1)× (

√
M − 1)

▶ Partition A into block-columns of size (
√
M − 1)× 1

▶ Partition B into block-rows of size 1× (
√
M − 1)

▶ For each block Cb of C :
▶ Load the corresponding blocks of A and B on after the other
▶ For each pair of blocks Ab,Bb, compute Cb ← Cb + AbBb

▶ When all products for Cb are performed, write back Cb

1:8 • Tyler Michael Smith, Bradley Lowery, Julien Langou, and Robert A. van de Geijn

Algorithm C

Algorithm B

Algorithm A

+=

+=

+=

Data in cache.

Data in main memory.

Fig. 1. Three algorithms for matrix multiplication that a!ain the lower bound for a single level of cache.

!e read cost of this algorithm, illustrated in Figure 1, is essentially equal to the I/O lower bound, but it
requires many writes to slow memory and so cannot be considered I/O optimal. On the other hand, processors
o"en have full-duplex memory bandwidth (meaning that the bandwidth available for reads is separate from the
bandwidth available for writes), so the write cost may not be visible if it is less than or equal to than the read
cost and if the reads and writes can be overlapped. Since that is the case for this algorithm, it may execute just
as e#ciently as the algorithm presented in Section 4.2. !us, we can say that this algorithm is read-optimal and
write-hidden. !is becomes important when we later discuss practical implementations.

Algorithm A. We now present an algorithm that is in some sense the mirror image to Algorithm B, keeping a
square block of A in fast memory instead instead of a square block of B. Partition:

C →
!""
#

C0
...

CM−1

$%%
&
, A →

!""
#

A0,0 · · · A0,K−1
...

...

AM−1,0 · · · AK−1,N−1

$%%
&
, B →

!""
#

B0
...

BK−1

$%%
&
,

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1. Write a proper algorithm following these directions

2. Compute the number of read and write operations



30 / 43

Generalization to other Linear Algebra Algorithms

Theorem (Ballard et al., 2011).

For any matrix computation expressed as “general computations”, the
number of I/Os is at least G/(8

√
M)−M, where G is the total number of

elementary operations g .

General computation

For all (i , j) ∈ Sc ,

Ci ,j ← fi ,j

(
gi ,j ,k(Ai ,kBk,j) for k ∈ Si ,j , any other arguments

)
▶ fi , j and gi ,j ,k must be “non-trivial”
▶ For matrix multiplication:

▶ fi,j : summation, gi,j,k : product
▶ Si,j = [1, n], SC = [1, n]× [1, n]
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Application to LU Factorization (1/2)

LU factorization (Gaussian elimination):

▶ Convert a matrix A into product L× U

▶ L is lower triangular with diagonal 1

▶ U is upper triangular

▶ (L− D + U) stored in place with A

schemes: Cholesky, QR, and LU. No algorithmic variants for a
particular method were considered.

4. ORIGINAL CONTRIBUTION
The unique contribution of this survey is in implementing all the
algorithms, being compared using the same framework, the same
data layout, and the same set of parallel layout translation routines,
as well as the same runtime scheduling system. This allows for
gaining a level of insight into the trade-offs of the different methods
that one could not reach by comparing published data for different
implementations in different environments.

5. ALGORITHMS
5.1 Partial Pivoting
The LAPACK block LU factorization is the main point of refer-
ence here, and LAPACK naming convention is followed. The LU
factorization of a matrix A has the form

PA = LU,

where L is a unit lower triangular matrix, U is an upper triangular
matrix and P is a permutation matrix. The LAPACK algorithm
proceeds in the following steps: Initially, a set of NB columns (the
panel) is factored and a pivoting pattern is produced (implemented
by the DGETF2 routine). Then the elementary transformations,
resulting from the panel factorization, are applied in a block fash-
ion to the remaining part of the matrix (the trailing submatrix).
This involves swapping of up to NB rows of the trailing submatrix
(DLASWP), according to the pivoting pattern, application of a tri-
angular solve with multiple right-hand-sides to the top NB rows of
the trailing submatrix (DTRSM), and finally application of matrix
multiplication of the form Ai j  Ai j�Aik⇥Ak j (DGEMM), where
Aik is the panel without the top NB rows, Ak j is the top NB rows of
the trailing submatrix and Ai j is the trailing submatrix without the
top NB rows. Then the procedure is applied repeatedly, descending
down the diagonal of the matrix (Figure 1). The block algorithm is
described in detail in section 2.6.3 of the book by Demmel [13]

U (done)

L
 (

d
o

n
e

)

Aij

Akj

Aik

Figure 1: The block LU factorization (Level 3 BLAS algorithm
of LAPACK).

5.2 Incremental Pivoting
The worst performance-limiting aspect of Gaussian elimination with
partial pivoting is the panel factorization operation. First, it is an
inefficient operation, usually based on a sequence of calls to Level 2
BLAS. Second, it introduces synchronization, by locking the entire
panel of the matrix at a time. Therefore, it is desirable to split
the panel factorization into a number of smaller, finer-granularity

operations, which is the basic premise of the incremental pivoting
implementation, also known in literature as the tile LU factorization.

In this algorithm, instead of factoring the panel one column at a
time, the panel is factored one tile at a time. The operation proceeds
as follows: First the diagonal tile is factored, using the standard LU
factorization procedure. Then the factored tile is combined with the
tile directly below it, and factored. Then the re-factored diagonal tile
is combined with the next tile, and factored again. The algorithm
descends down the panel until the bottom of the matrix is reached.
At each step, the standard partial pivoting procedure is applied to
the tiles being factored. Also, at each step, all the tiles to the right of
the panel are updated with the elementary transformations resulting
from the panel operations. This way of pivoting is basically the
idea of pairwise pivoting applied at the level of tiles, rather than
individual elements (Figure 2). The main benefit comes from the
fact that updates of the trailing submatrix can proceed alongside
panel factorizations, leading to a very efficient parallel execution,
where multiple steps of the algorithm are smoothly pipelined.

Figure 2: Incremental LU factorization.

5.3 Tournament Pivoting
The panel factorization is one of the most important tasks, because
it creates parallelism for the update of the trailing submatrices.
Hence, its ineffective execution suffices to reduce considerably
the performance of the overall algorithm. Classic approaches that
implement partial pivoting algorithm spend more time to perform
communication during the panel factorization and hence are not
optimal. This is because pivoting forces the algorithm to factor
the panel column by column, and then this leads to an algorithm
which communicates asymptotically more than the established lower
bounds [11].

The basic idea of communication avoiding algorithms, initially intro-
duced for distributed memories [11, 23], and later adapted to shared
memories [14], is to replace the search for maximum, performed
at each column, by a single reduction of the maximums altogether.
This is done thanks to a new pivoting strategy referred to as tour-
nament pivoting (TSLU), which performs redundant computations
and is shown to be stable in practice. TSLU reduces the bottleneck
introduced by the pivoting operation through a block reduction op-
eration to factor the panel. It factors the panel in two steps. The
first one identifies rows, which can be used as good pivots for the
factorization of the whole panel, with a tournament selection. The
second one swaps the selected pivot to the top of the panel, and then
factors the entire panel without pivoting in a tiled Cholesky-like
operation. With this strategy, the panel is efficiently parallelized and
the communication is provably minimized.

Akk

LU Algorithm

For k = 1 . . . n − 1:

▶ For i = k + 1 . . . n,
Ai ,k ← ai ,k/ak,k (column/panel preparation)

▶ For i = k + 1 . . . n,
For j = k + 1 . . . n,
Ai ,j ← Ai ,j − Ai ,kAk,j (update)
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Application to LU Factorization (2/2)

Can be expressed as follows:

Ui ,j = Ai ,j −
∑
k<i

Li ,k · Uk,j for i ≤ j

Li ,j = (Ai ,j −
∑
k<j

Li ,k · Uk,j)/Uj ,j for i > j

schemes: Cholesky, QR, and LU. No algorithmic variants for a
particular method were considered.

4. ORIGINAL CONTRIBUTION
The unique contribution of this survey is in implementing all the
algorithms, being compared using the same framework, the same
data layout, and the same set of parallel layout translation routines,
as well as the same runtime scheduling system. This allows for
gaining a level of insight into the trade-offs of the different methods
that one could not reach by comparing published data for different
implementations in different environments.

5. ALGORITHMS
5.1 Partial Pivoting
The LAPACK block LU factorization is the main point of refer-
ence here, and LAPACK naming convention is followed. The LU
factorization of a matrix A has the form

PA = LU,
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5.3 Tournament Pivoting
The panel factorization is one of the most important tasks, because
it creates parallelism for the update of the trailing submatrices.
Hence, its ineffective execution suffices to reduce considerably
the performance of the overall algorithm. Classic approaches that
implement partial pivoting algorithm spend more time to perform
communication during the panel factorization and hence are not
optimal. This is because pivoting forces the algorithm to factor
the panel column by column, and then this leads to an algorithm
which communicates asymptotically more than the established lower
bounds [11].

The basic idea of communication avoiding algorithms, initially intro-
duced for distributed memories [11, 23], and later adapted to shared
memories [14], is to replace the search for maximum, performed
at each column, by a single reduction of the maximums altogether.
This is done thanks to a new pivoting strategy referred to as tour-
nament pivoting (TSLU), which performs redundant computations
and is shown to be stable in practice. TSLU reduces the bottleneck
introduced by the pivoting operation through a block reduction op-
eration to factor the panel. It factors the panel in two steps. The
first one identifies rows, which can be used as good pivots for the
factorization of the whole panel, with a tournament selection. The
second one swaps the selected pivot to the top of the panel, and then
factors the entire panel without pivoting in a tiled Cholesky-like
operation. With this strategy, the panel is efficiently parallelized and
the communication is provably minimized.

Akk

Fits the generalized matrix computations:

C (i , j) = fi ,j

(
gi ,j ,k(A(i , k),B(k , j)) for k ∈ Si ,j ,K

)
with:

▶ A = B = C
▶ gi ,j ,k multiplies Li ,k · Uk,j

▶ fi ,j performs the sum, subtracts from Ai ,j (and divides by Uj ,j is i > j)

▶ I/O lower bound: O(G/
√
M)=O(n3/

√
M)

▶ Some algorithms attain this bound
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5.3 Tournament Pivoting
The panel factorization is one of the most important tasks, because
it creates parallelism for the update of the trailing submatrices.
Hence, its ineffective execution suffices to reduce considerably
the performance of the overall algorithm. Classic approaches that
implement partial pivoting algorithm spend more time to perform
communication during the panel factorization and hence are not
optimal. This is because pivoting forces the algorithm to factor
the panel column by column, and then this leads to an algorithm
which communicates asymptotically more than the established lower
bounds [11].

The basic idea of communication avoiding algorithms, initially intro-
duced for distributed memories [11, 23], and later adapted to shared
memories [14], is to replace the search for maximum, performed
at each column, by a single reduction of the maximums altogether.
This is done thanks to a new pivoting strategy referred to as tour-
nament pivoting (TSLU), which performs redundant computations
and is shown to be stable in practice. TSLU reduces the bottleneck
introduced by the pivoting operation through a block reduction op-
eration to factor the panel. It factors the panel in two steps. The
first one identifies rows, which can be used as good pivots for the
factorization of the whole panel, with a tournament selection. The
second one swaps the selected pivot to the top of the panel, and then
factors the entire panel without pivoting in a tiled Cholesky-like
operation. With this strategy, the panel is efficiently parallelized and
the communication is provably minimized.
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Fits the generalized matrix computations:

C (i , j) = fi ,j
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with:
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√
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√
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Matrix Multiplication Lower Bound for P processors

memory memory memory memory

disk

Lemma.

Consider a conventional matrix multiplication performed on P processors
with distributed memory. A processor with memory M that perform W
elementary products must send or receive at least W

2
√
2
√
M
−M elements.

Theorem.

Consider a conventional matrix multiplication on P processors, each with a
memory M. Some processor has a volume of I/O at least n3

2
√
2P

√
M
−M.

NB: bound useful only when M < n2/(2P2/3)
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Cannon’s 2D algorithm

▶ Processors organized on a square 2D grid of size
√
P ×
√
P

▶ A,B,C matrices distributed by blocks of size N/
√
P × N/

√
P

Processor Pi ,j initially holds matrices Ai ,j , Bi ,j , computes Ci ,j

▶ At each step, each proc. performs a Ai ,k × Bk,j block product

▶ First reallign matrices:
▶ Shift Ai,j blocks to the left by

i (wraparound)
▶ Shift Bi,j blocks to the top by

j (wraparound)

▶ After computation,
shift A blocks right
shift B blocks down

▶ Total I/O volume: ?

▶ Storage: ?
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Cannon’s 2D algorithm

▶ Processors organized on a square 2D grid of size
√
P ×
√
P

▶ A,B,C matrices distributed by blocks of size N/
√
P × N/

√
P

Processor Pi ,j initially holds matrices Ai ,j , Bi ,j , computes Ci ,j

▶ At each step, each proc. performs a Ai ,k × Bk,j block product

▶ First reallign matrices:
▶ Shift Ai,j blocks to the left by

i (wraparound)
▶ Shift Bi,j blocks to the top by

j (wraparound)

▶ After computation,
shift A blocks right
shift B blocks down

▶ Total I/O volume: O(n2
√
P)

▶ Storage: O(n2/P) per processor



36 / 43

Other 2D Algorithm: SUMMA

▶ SUMMA: Scalable Universal Matrix Multiplication Algorithm

▶ Same 2D grid distribution

▶ At each step k, column k of A and row k of B are broadcasted
(from processors owning the data)

▶ Each processor computes a local contribution (outer-product)

Parallel algorithm 
•  Processors organized into rows and columns, process rank an ordered pair 
•  Processor geometry P = px × py  
•  Blocked (serial) matrix multiply, panel size = b << N/max(px,py) 
      for k := 0 to n-1 by b  

     Owner of A[:,k:k+b-1]   Bcasts to ACol    // Along processor rows"
           Owner of B[k:k+b-1,:]   Bcasts BRow       // Along processor columns"
           C += Serial Matrix Multiply(ACol,BRow ) 
•  Each row and column of processors independently participate in a panel 

broadcast  
•  Owner of the panel (Broadcast root) changes with k, shifts across matrix 
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*"  ="
I"

J"

A(I,k)"

k"
k"

B(k,J)"

C(I,J) 

Acol 

Brow 

▶ Smaller communications ⇒ smaller temporary storage

▶ Same I/O volume: O(n2
√
P)
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I/O Lower Bound for 2D algorithms

Theorem.

Consider a conventional matrix multiplication on P processors each with
O(n2/P) storage, some processor has a I/O volume at least Θ(n2/

√
P).

Proof: Previous result: O(n3/P
√
M) with M = n2/P.

▶ When balanced, total I/O volume: Θ(n2
√
P)

▶ Both Cannon’s algorithm and SUMMA are optimal

⇒ among 2D algorithms! (memory limited to O(n2/P))

Can we do better?
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3D Algorithm

▶ Consider 3D grid of processor: q × q × q
(q = P1/3)

▶ Processor i , j , k owns blocks Ai ,k ,Bk,j ,C
(k)
i ,j

▶ Matrices are replicated (including C )

▶ Each processor computes its local contribution

▶ Then summation of the various C
(k)
i ,j for all k

▶ Memory needed: ?

▶ Total I/O volume: ?

Lower Bound:

▶ Previous theorem does not give useful bound (M = Θ(n2P1/3))

▶ More complex analysis shows that the I/O volume on some processor
is Θ(n2/P2/3)
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2.5D Algorithm (1/2)

▶ 3D algorithm requires large memory on each processor (P1/3 copies
of each matrices)

▶ What if we have space for only 1 < c < P1/3 copies ?

▶ Assume each processor has a memory M = O(cn2/P)

▶ Arrange processors in
√

P/c ×
√
P/c × c grid:

c layers, each layer with P/c processors in square grid

▶ A,B,C
distributed by blocks of size n

√
c/P×n

√
c/P, replicated on each layer

2.5D Algorithm  
•  Assume can fit cn2/P data per processor, c>1 
•  Processors form (P/c)1/2  x  (P/c)1/2  x  c  grid 
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c 

(P/c)1/2 

Initially P(i,j,0) owns A(i,j) &B(i,j) 
    each of size n(c/P)1/2 x n(c/P)1/2 

(1)  P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k) 
(2)  Processors at level k perform 1/c-th of SUMMA, 
         i.e. 1/c-th of  Σm A(i,m)*B(m,j) 
(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so that   
       P(i,j,0) owns C(i,j) 

▶ NB: c = 1 gets 2D, c = P1/3 gives 3D
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2.5D Algorithm (2/2)

2.5D Algorithm  
•  Assume can fit cn2/P data per processor, c>1 
•  Processors form (P/c)1/2  x  (P/c)1/2  x  c  grid 
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(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so that   
       P(i,j,0) owns C(i,j) 

▶ Each layer responsible for a fraction 1/c of Cannon’s alg.: Different
initial shifts of A and B

▶ Finally, sum C over layers
▶ Total I/O volume: O(n2/

√
P/c)

▶ Replication, initial shift, final sum: O(n2c)
▶ c layers of fraction 1/c of Cannon’s alg. with grid size

√
P/c :

O
(
n2
√

P/c
)

▶ Reaches lower bound on I/Os per processor:

O

(
n3

P
√
M

)
= O

(
n3

P
√

cn2/P

)
= O(n2/

√
cP)
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Performance  on Blue Gene P 
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Take-aways

▶ Data movements (I/Os and communication between processes) have
a large impact on the efficiency of algorithms

▶ Different algorithms with different computational complexity may
exhibit very different I/O behaviors

▶ We can prove lower bound on the amount of I/O or communications
for specific operations

▶ I/O (asymptotically) optimal algorithms for linear algebra operations

▶ Communication-avoiding algorithms for parallel processing

See you tomorrow!
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