Data Aware Algorithms - Part 2 Cache-Oblivious Algorithms

Loris Marchal

October 18, 2023

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures External Memory Model
Merge Sort
Searching and B-Trees

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees

Properties of real caches

- Memory/cache divided into blocks (or lines or pages) of size B
- When requested data not in cache (cache miss), corresponding block automatically loaded
- each block of memory belongs to a cluster (usually computed as address \% M) \rightarrow at most c blocks of a cluster can be stored in cache at once (c-way associative)
- Trade-off between hit rate and time for searching the cache
> If cache full, blocks have to be evicted:

Properties of real caches

- Memory/cache divided into blocks (or lines or pages) of size B
- When requested data not in cache (cache miss), corresponding block automatically loaded
- Limited associativity:
- each block of memory belongs to a cluster (usually computed as address \% M)
- at most c blocks of a cluster can be stored in cache at once (c-way associative)
- Trade-off between hit rate and time for searching the cache
- If cache full, blocks have to be evicted:

Standard block replacement policy: Least Recently Used (LRU)

Ideal cache model

- Fully associative
$c=\infty$, blocks can be store everywhere in the cache
- Optimal replacement policy

Belady's rule: evict block whose next access is furthest

- Tall cache: $M / B \gg B \quad\left(M=\Theta\left(B^{2}\right)\right)$

LRU vs. Optimal Replacement Policy

replacement policy	cache size	nb of cache misses
LRU	$k_{\text {LRU }}$	$T_{\text {LRU }}(s)$
OPT	$k_{\text {OPT }} \leq k_{\text {LRU }}$	$T_{O P T}(s)$
OPT: optimal (offline)	replacement policy (Belady's rule)	

Theorem (Sleator and Tarjan, 1985).
For any sequence s :

$$
T_{\mathrm{LRU}}(s) \leq \frac{k_{\mathrm{LRU}}}{k_{\mathrm{LRU}}-k_{\mathrm{OPT}}+1}\left(T_{\mathrm{OPT}}(s)+k_{\mathrm{OPT}}\right)
$$

If LRU cache initially contains all pages in OPT cache: remove the additive term

LRU vs. Optimal Replacement Policy

replacement policy	cache size	nb of cache misses
LRU	$k_{\text {LRU }}$	$T_{\text {LRU }}(s)$
OPT	$k_{\text {OPT }} \leq k_{\text {LRU }}$	$T_{O P T}(s)$
OPT: optimal (offline)	replacement policy (Belady's rule)	

Theorem (Sleator and Tarjan, 1985).
For any sequence s :

$$
T_{\mathrm{LRU}}(s) \leq \frac{k_{\mathrm{LRU}}}{k_{\mathrm{LRU}}-k_{\mathrm{OPT}}+1}\left(T_{\mathrm{OPT}}(s)+k_{\mathrm{OPT}}\right)
$$

If LRU cache initially contains all pages in OPT cache: remove the additive term

Assume there exists a and b such that $T_{A}(s) \leq a T_{\mathrm{OPT}}(s)+b$ for

LRU vs. Optimal Replacement Policy

replacement policy	cache size	nb of cache misses
LRU	$k_{\text {LRU }}$	$T_{\text {LRU }}(s)$
OPT	$k_{\text {OPT }} \leq k_{\text {LRU }}$	$T_{O P T}(s)$
OPT: optimal (offline)	replacement policy (Belady's rule)	

Theorem (Sleator and Tarjan, 1985).
For any sequence s :

$$
T_{\mathrm{LRU}}(s) \leq \frac{k_{\mathrm{LRU}}}{k_{\mathrm{LRU}}-k_{\mathrm{OPT}}+1}\left(T_{\mathrm{OPT}}(s)+k_{\mathrm{OPT}}\right)
$$

If LRU cache initially contains all pages in OPT cache: remove the additive term

Theorem (Bound on competitive ratio).
Assume there exists a and b such that $T_{A}(s) \leq a T_{\text {OPT }}(s)+b$ for all s, then $a \geq k_{A} /\left(k_{A}-k_{\text {OPT }}+1\right)$.

LRU competitive ratio - Proof

- Consider any subsequence t of s, such that $T_{\text {LRU }}(t) \leq k_{\text {LRU }}$ (t should not include first request)
- Let p_{i} be the block request right before t in s
- If LRU loads twice the same block in s, then $T_{\mathrm{LRU}}(t) \geq k_{\mathrm{LRU}}+1$ (contradiction)
- Same if LRU loads p_{i} during t
- Thus on t, LRU loads $T_{\text {LRU }}(t)$ different blocks, different from p_{i}
- When starting t, OPT has p_{i} in cache
- On t, OPT must load at least $T_{\text {LRU }}(t)-k_{\text {OPT }}+1$
- Partition s into $s_{0}, s_{1}, \ldots, s_{n}$ such that $T_{\mathrm{LRU}}\left(s_{0}\right) \leq k_{\mathrm{LRU}} \quad$ and $\quad T_{\mathrm{LRU}}\left(s_{i}\right)=k_{\mathrm{LRU}}$ for $i>1$
- On $s_{0}, T_{\text {OPT }}\left(s_{0}\right) \geq T_{\text {LRU }}\left(s_{0}\right)-k_{\text {OPT }}$
- In total for LRU: $T_{\text {LRU }}=T_{\text {LRU }}\left(s_{0}\right)+n k_{\mathrm{LRU}}$
- In total for OPT: $T_{\text {OPT }} \geq T_{\text {LRU }}\left(s_{0}\right)-k_{\text {OPT }}+n\left(k_{\text {LRU }}-k_{\mathrm{OPT}}+1\right)$

Bound on Competitive Ratio - Proof

Consider any online algorithm A:

- Let $S_{A}^{\text {init }}$ (resp. $\left.S_{\mathrm{OPT}}^{\text {init }}\right)$ the set of blocks initially in A'cache (resp. OPT's cache)
- Consider the block request sequence made of two steps:
$S_{1}: k_{A}-k_{\mathrm{OPT}}+1$ (new) blocks not in $S_{A}^{\text {init }} \cup S_{\mathrm{OPT}}^{\text {init }}$
S_{2} : $k_{\text {OPT }}-1$ blocks s.t. then next block is always in $\left(S_{\mathrm{OPT}}^{\text {init }} \cup S_{1}\right) \backslash S_{A}$

NB: step 2 is possible since $\left|S_{\mathrm{OPT}}^{\text {init }} \cup S_{1}\right|=k_{A}+1$

- A loads one block for each request of both steps: k_{A} loads
- OPT loads one block only in $S_{1}: k_{A}-k_{\text {OPT }}+1$ loads

NB: Repeat this process to create arbitrarily long sequences.

Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).
If an algorithm makes T memory transfers with a cache of size $\mathrm{M} / 2$ with optimal replacement, then it makes at most $2 T$ transfers with cache size M with LRU.

Definition (Regularity condition)
Let $T(M)$ be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

$$
T(M)=O(T(M / 2))
$$

Corollary
If an algorithm follows the regularity condition and makes $T(M)$
transfers with cache size M and an optimal replacement policy, it
\square

Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).
If an algorithm makes T memory transfers with a cache of size $M / 2$ with optimal replacement, then it makes at most $2 T$ transfers with cache size M with LRU.

Definition (Regularity condition).

Let $T(M)$ be the number of memory transfers for an algorithm with cache of size M and an optimal replacement policy. The regularity condition of the algorithm writes

$$
T(M)=O(T(M / 2))
$$

Corollary

If an algorithm follows the regularity condition and makes $T(M)$ transfers with cache size M and an optimal replacement policy, it makes $\Theta(T(M))$ memory transfers with $L R U$.

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Searching and B-Trees

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees

External Memory Model

- External Memory: storage (large)
- Internal Memory: for computations, size M
- Ideal cache model for transfers: blocks of size B
- Input size of the problem: N
- Main metric: number of blocks moved from/to the cache

Basic operation

Scanning N elements stored in a contiguous segment of memory costs at most $\lceil N / B\rceil+1$ memory transfers.

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1
2. Merge two sorted arrays of size L into one of size $2 L$ requires $2 L$ comparisons
In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N / M chunks of size M
- Sort each chunks independently (\rightarrow runs)
- Block transfers: $2 M / B$ per chunk, $2 N / B$ in total
- Number of comparisons: $M \log M$ per chunk, $N \log M$ in total

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1
2. Merge two sorted arrays of size L into one of size $2 L$ requires $2 L$ comparisons
In total: $\log N$ levels, N comparisons in each level

Adaptation for External Memory: Phase 1

- Partition the array in N / M chunks of size M
- Sort each chunks independently (\rightarrow runs)
- Block transfers: $2 M / B$ per chunk, $2 N / B$ in total
- Number of comparisons: $M \log M$ per chunk, $N \log M$ in total

Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size $L \rightarrow$ one run T of size $2 L$

1. Load first blocks \widehat{R} (and \widehat{S}) of R (and S)
2. Allocate first block \hat{T} of T
3. While R and S both not exhausted
(a) Merge as much \widehat{R} and \widehat{S} into \widehat{T} as possible
(b) If \widehat{R} (or \widehat{S}) gets empty, load new block of R (or S)
(c) If \widehat{T} gets full, flush it into T
4. Transfer remaining items of R (or S) in T

- Internal memory usage: 3 blocks
- Block transfers: $2 L / B$ reads $+2 L / B$ writes $=4 L / B$
- Number of comparisons: $2 L$

Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size $L \rightarrow$ one run T of size $2 L$

1. Load first blocks \widehat{R} (and \widehat{S}) of R (and S)
2. Allocate first block \widehat{T} of T
3. While R and S both not exhausted
(a) Merge as much \widehat{R} and \widehat{S} into \widehat{T} as possible
(b) If \widehat{R} (or \widehat{S}) gets empty, load new block of R (or S)
(c) If \widehat{T} gets full, flush it into T
4. Transfer remaining items of R (or S) in T

- Internal memory usage: 3 blocks
- Block transfers: $2 L / B$ reads $+2 L / B$ writes $=4 L / B$
- Number of comparisons: $2 L$

Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k : runs of size $2^{k} M$ (nb: $N /\left(2^{k} M\right)$)
- Merge to reach levels $k=1 \ldots \log _{2} N / M$
- Block transfers at level $k: 2^{k+1} M / B \times N /\left(2^{k} M\right)=2 N / B$
- Number of comparisons: N

Total complexity of phases $1+2$: - Block transfers: $2 N / B\left(1+\log _{2} N / M\right)=O\left(N / B \log _{2} N / M\right)$ - Number of comparisons: $N \log M+N \log _{2} N / M=N \log N$

Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k : runs of size $2^{k} M$ (nb: $N /\left(2^{k} M\right)$)
- Merge to reach levels $k=1 \ldots \log _{2} N / M$
- Block transfers at level $k: 2^{k+1} M / B \times N /\left(2^{k} M\right)=2 N / B$
- Number of comparisons: N

Total complexity of phases $1+2$:

- Block transfers: $2 N / B\left(1+\log _{2} N / M\right)=O\left(N / B \log _{2} N / M\right)$
- Number of comparisons: $N \log M+N \log _{2} N / M=N \log N$
- Internal memory used ?

Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k : runs of size $2^{k} M$ (nb: $N /\left(2^{k} M\right)$)
- Merge to reach levels $k=1 \ldots \log _{2} N / M$
- Block transfers at level $k: 2^{k+1} M / B \times N /\left(2^{k} M\right)=2 N / B$
- Number of comparisons: N

Total complexity of phases $1+2$:

- Block transfers: $2 N / B\left(1+\log _{2} N / M\right)=O\left(N / B \log _{2} N / M\right)$
- Number of comparisons: $N \log M+N \log _{2} N / M=N \log N$
- Internal memory used ?

Total complexity of Two-Way Merge Sort

Analysis at each level:

- At level k : runs of size $2^{k} M$ (nb: $N /\left(2^{k} M\right)$)
- Merge to reach levels $k=1 \ldots \log _{2} N / M$
- Block transfers at level $k: 2^{k+1} M / B \times N /\left(2^{k} M\right)=2 N / B$
- Number of comparisons: N

Total complexity of phases $1+2$:

- Block transfers: $2 N / B\left(1+\log _{2} N / M\right)=O\left(N / B \log _{2} N / M\right)$
- Number of comparisons: $N \log M+N \log _{2} N / M=N \log N$
- Internal memory used ? only 3 blocks $)^{-}$

Optimization: K-Way Merge Sort

- Consider K input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: $O(\log K)$
- Complexity of merging K runs of length $L: K L \log K$
- Block transfers: no change ($2 K L / B$)

Optimization: K-Way Merge Sort

- Consider K input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: $O(\log K)$
- Complexity of merging K runs of length $L: K L \log K$
- Block transfers: no change ($2 K L / B$)

Total complexity of merging:

- Block transfers: $\log _{K} N / M$ steps $\rightarrow 2 N / B \log _{K} N / M$
- Computations: $N \log K$ per step $\rightarrow N \log K \times \log _{K} N / M$ $=N \log _{2} N / M$ (id.)
- Block transfers: O

- Block transfers:

Optimization: K-Way Merge Sort

- Consider K input runs at each merge step
- Efficient merging, e.g.: MinHeap data structure insert, extract: $O(\log K)$
- Complexity of merging K runs of length $L: K L \log K$
- Block transfers: no change ($2 K L / B$)

Total complexity of merging:

- Block transfers: $\log _{K} N / M$ steps $\rightarrow 2 N / B \log _{K} N / M$
- Computations: $N \log K$ per step $\rightarrow N \log K \times \log _{K} N / M$ $=N \log _{2} N / M$ (id.)
Maximize K to reduce transfers:
- $(K+1) B=M$ (K input blocks +1 output block)
- Block transfers: $O\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{M}\right)$
- NB: $\log _{M / B} N / M=\log _{M / B} N / B-1$
- Block transfers: $O\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$

B-Trees

- Problem: Search for a particular element in a huge dataset
- Solution: Search tree with large degree $(\approx B)$

Definition (B-tree with minimum degree d).
Search tree such that:

- Each node (except the root) has at least d children
- Each node has at most $2 d-1$ children
- Node with k children has $k-1$ keys separating the children
- All leaves have the same depth

Proposed by Bayer and McCreigh (1972)

Search and Insertion in B-Trees

Usually, we require that $d=O(B)$
Lemma.
Searching in a B-Tree requires $O\left(\log _{d} N\right)$ I/Os.
Recursive algorithm for insertion of new key:

1. If root node of current subtree is full ($2 d$ children), split it:
(a) Find median key, send it to the father f
(if any, otherwise it becomes the new root)
(b) Keys and subtrees < median key \rightarrow new left subtree of f
(c) Keys and subtrees $>$ median key \rightarrow new right subtree f
2. If root node of current subtree $=$ leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split \rightarrow balanced tree

Search and Insertion in B-Trees

Usually, we require that $d=O(B)$

Lemma.

Searching in a B-Tree requires $O\left(\log _{d} N\right)$ I/Os.
Recursive algorithm for insertion of new key:

1. If root node of current subtree is full ($2 d$ children), split it:
(a) Find median key, send it to the father f (if any, otherwise it becomes the new root)
(b) Keys and subtrees $<$ median key \rightarrow new left subtree of f
(c) Keys and subtrees $>$ median key \rightarrow new right subtree f
2. If root node of current subtree $=$ leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split \rightarrow balanced tree

Search and Insertion in B-Trees

Usually, we require that $d=O(B)$

Lemma.

Searching in a B-Tree requires $O\left(\log _{d} N\right)$ I/Os.
Recursive algorithm for insertion of new key:

1. If root node of current subtree is full ($2 d$ children), split it:
(a) Find median key, send it to the father f (if any, otherwise it becomes the new root)
(b) Keys and subtrees $<$ median key \rightarrow new left subtree of f
(c) Keys and subtrees $>$ median key \rightarrow new right subtree f
2. If root node of current subtree $=$ leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s

NB: height changes only when root is split \rightarrow balanced tree Number of transfers: O (height)

Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

- If tree=leaf, straightforward
- If $k=$ key of internal node:
- If subtree s immediately left of k has $\geq d$ keys, remove maximum element k^{\prime} of s, replace k by k^{\prime}
- Otherwise, try the same on right subtree (with minimum)
- Otherwise (both neighbor subtrees have $d-1$ keys): remove k and merge these neighbor subtrees
- If k is in a subtree s, suppress recursively in s
- If T has only $d-1$ keys:
- Try to steal one key from a neighbor of T with at least d keys
- Otherwise merge T with one of its neighbors

Number of block transfers: O (height))

Usage of B-Trees

Widely used in large database and filesystems
(SQL, ext4, Apple File System, NTFS)

Variants:

- B+ Trees: store data only on leaves increase degree \rightarrow reduce height add pointer from leaf to next one to speedup sequential access
- B* Trees: better balance of internal node (max size: $2 b \rightarrow 3 b / 2$, nodes at least $2 / 3$ full)
- When 2 siblings full: split into 3 nodes
- Pospone splitting: shift keys to neighbors if possible

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures External Memory Model
 Merge Sort
 Searching and B-Trees

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees

Motivation for Cache-Oblivious Algorithms

I/O-optimal algorithms in the external memory model:
Depend on the memory parameters B and M : cache-aware

- Blocked-Matrix-Product: block size $b=\sqrt{M} / 3$
- Merge-Sort: $K=M / B-1$
- B-Trees: degree of a node in $O(B)$

Goal: design I/O-optimal algorithms that do not known M and B

- Self-tuning
- Optimal for any value of cache parameters \rightarrow optimal for any level of the cache hierarchy!

Cache-Oblivious model:

- Ideal-cache model
- No explicit operations on blocks as in external memory algos.

Main Tool: Divide and Conquer

Major tool:

- Split problem into smaller sizes
- At some point, size gets smaller than the cache size: no I/O needed for next recursive calls
- Analyse I/O for these "leaves" of the recursion tree and divide/merge operations

Example: Recursive matrix multiplication:

Main Tool: Divide and Conquer

Major tool:

- Split problem into smaller sizes
- At some point, size gets smaller than the cache size: no I/O needed for next recursive calls
- Analyse I/O for these "leaves" of the recursion tree and divide/merge operations

Example: Recursive matrix multiplication:

$$
A=\left(\begin{array}{c|c}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) B=\left(\begin{array}{l|l}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right) C=\left(\begin{array}{l|l}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)
$$

- If $N>1$, compute:

$$
\begin{aligned}
& C_{1,1}=\operatorname{RecMatMult}\left(A_{1,1}, B_{1,1}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{1,2}, B_{2,1}\right) \\
& C_{1,2}=\operatorname{Rec} \operatorname{MatMult}\left(A_{1,1}, B_{1,2}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{1,2}, B_{2,2}\right) \\
& C_{2,1}=\operatorname{Rec} \operatorname{MatMult}\left(A_{2,1}, B_{1,1}\right)+\operatorname{RecMatMult}\left(A_{2,2}, B_{2,1}\right) \\
& C_{2,2}=\operatorname{RecMatMult}\left(A_{2,1}, B_{1,2}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{2,2}, B_{2,2}\right)
\end{aligned}
$$

- Base case: multiply elements

Recursive Matrix Multiply: Analysis

$$
\begin{aligned}
& C_{1,1}=\operatorname{Rec} \text { MatMult }\left(A_{1,1}, B_{1,1}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{1,2}, B_{2,1}\right) \\
& C_{1,2}=\operatorname{RecMatMult}\left(A_{1,1}, B_{1,2}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{1,2}, B_{2,2}\right) \\
& C_{2,1}=\operatorname{RecMatMult}\left(A_{2,1}, B_{1,1}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{2,2}, B_{2,1}\right) \\
& C_{2,2}=\operatorname{Rec} \operatorname{MatMult}\left(A_{2,1}, B_{1,2}\right)+\operatorname{Rec} \operatorname{MatMult}\left(A_{2,2}, B_{2,2}\right)
\end{aligned}
$$

Recursive Matrix Multiply: Analysis

RecMatMultAdd $\left.\left(A_{1,1}, B_{1,1}, C_{1,1}\right) ; \operatorname{RecMatMultAdd}\left(A_{1,2}, B_{2,1}, C_{1,1}\right)\right)$
RecMatMultAdd ($A_{1,1}, B_{1,2}, C_{1,2}$); RecMatMultAdd ($\left.A_{1,2}, B_{2,2}, C_{1,2}\right)$)
RecMatMultAdd ($\left.\left.A_{2,1}, B_{1,1}, C_{2,1}\right) ; \operatorname{RecMatMultAdd}\left(A_{2,2}, B_{2,1}, C_{2,1}\right)\right)$
RecMatMultAdd ($A_{2,1}, B_{1,2}, C_{2,2}$); RecMatMultAdd $\left(A_{2,2}, B_{2,2}, C_{2,2}\right)$)
no more $1 / O$ for smaller sizes, then
\rightarrow No cost on merge, all I/O cost on leaves

Recursive Matrix Multiply: Analysis

RecMatMultAdd $\left.\left(A_{1,1}, B_{1,1}, C_{1,1}\right) ; \operatorname{RecMatMultAdd}\left(A_{1,2}, B_{2,1}, C_{1,1}\right)\right)$
$\left.\operatorname{RecMatMultAdd}\left(A_{1,1}, B_{1,2}, C_{1,2}\right) ; \operatorname{RecMatMultAdd}\left(A_{1,2}, B_{2,2}, C_{1,2}\right)\right)$
RecMatMultAdd ($\left.\left.A_{2,1}, B_{1,1}, C_{2,1}\right) ; \operatorname{RecMatMultAdd}\left(A_{2,2}, B_{2,1}, C_{2,1}\right)\right)$
RecMatMultAdd($A_{2,1}, B_{1,2}, C_{2,2}$); RecMatMultAdd($\left.A_{2,2}, B_{2,2}, C_{2,2}\right)$)

- 8 recursive calls on matrices of size $N / 2 \times N / 2$
- Number of I/O for size $N \times N: T(N)=8 T(N / 2)$
no more $1 / O$ for smaller sizes, then

$$
T(N)=O\left(N^{2} / B\right)=O(M / B)
$$

$>$ No cost on merge, all I/O cost on leaves

- Same performance as blocked algorithm!

Recursive Matrix Multiply: Analysis

RecMatMultAdd $\left.\left(A_{1,1}, B_{1,1}, C_{1,1}\right) ; \operatorname{RecMatMultAdd}\left(A_{1,2}, B_{2,1}, C_{1,1}\right)\right)$
$\left.\operatorname{RecMatMultAdd}\left(A_{1,1}, B_{1,2}, C_{1,2}\right) ; \operatorname{RecMatMultAdd}\left(A_{1,2}, B_{2,2}, C_{1,2}\right)\right)$
RecMatMultAdd ($\left.\left.A_{2,1}, B_{1,1}, C_{2,1}\right) ; \operatorname{RecMatMultAdd}\left(A_{2,2}, B_{2,1}, C_{2,1}\right)\right)$
RecMatMultAdd ($A_{2,1}, B_{1,2}, C_{2,2}$); RecMatMultAdd ($\left.A_{2,2}, B_{2,2}, C_{2,2}\right)$)

- 8 recursive calls on matrices of size $N / 2 \times N / 2$
- Number of I/O for size $N \times N: T(N)=8 T(N / 2)$
- Base case for the analysis: when 3 blocks fit in the cache $\left(3 N^{2} \leq M\right)$ no more I/O for smaller sizes, then

$$
T(N)=O\left(N^{2} / B\right)=O(M / B)
$$

- No cost on merge, all I/O cost on leaves
\square

- Same performance as blocked algorithm!

Recursive Matrix Multiply: Analysis

$\left.A_{1,1}, B_{1,2}, C_{1,2}\right)$;	RecMatMultAdd ($\left.A_{1,2}, B_{2,2}, C_{1,2}\right)$)
RecMatMultAdd ($\left.A_{2,1}, B_{1,1}, C_{2,1}\right)$;	(
$\left(A_{2,1}, B_{1,}\right.$	RecMatMultAdd ($A_{2,2}$

- 8 recursive calls on matrices of size $N / 2 \times N / 2$
- Number of I/O for size $N \times N: T(N)=8 T(N / 2)$
- Base case for the analysis: when 3 blocks fit in the cache $\left(3 N^{2} \leq M\right)$ no more I/O for smaller sizes, then

$$
T(N)=O\left(N^{2} / B\right)=O(M / B)
$$

- No cost on merge, all I/O cost on leaves
- Height of the recursive call tree: $h=\log _{2}(N /(\sqrt{M} / 3))$
- Total I/O cost:

$$
T(N)=O\left(8^{h} M / B\right)=O\left(N^{3} /(B \sqrt{M})\right)
$$

- Same performance as blocked algorithm!

Recursive Matrix Multiply: Analysis

$\left.A_{1,1}, B_{1,2}, C_{1,2}\right)$;	RecMatMultAdd ($\left.A_{1,2}, B_{2,2}, C_{1,2}\right)$)
RecMatMultAdd ($\left.A_{2,1}, B_{1,1}, C_{2,1}\right)$;	(
$\left(A_{2,1}, B_{1,}\right.$	RecMatMultAdd ($A_{2,2}$

- 8 recursive calls on matrices of size $N / 2 \times N / 2$
- Number of I/O for size $N \times N: T(N)=8 T(N / 2)$
- Base case for the analysis: when 3 blocks fit in the cache $\left(3 N^{2} \leq M\right)$ no more I/O for smaller sizes, then

$$
T(N)=O\left(N^{2} / B\right)=O(M / B)
$$

- No cost on merge, all I/O cost on leaves
- Height of the recursive call tree: $h=\log _{2}(N /(\sqrt{M} / 3))$
- Total I/O cost:

$$
T(N)=O\left(8^{h} M / B\right)=O\left(N^{3} /(B \sqrt{M})\right)
$$

- Same performance as blocked algorithm!
- What if we choose $3 N^{2}=B$ as base case ?

Recursive Matrix Multiply: Analysis

$\left.A_{1,1}, B_{1,2}, C_{1,2}\right)$;	RecMatMultAdd ($\left.A_{1,2}, B_{2,2}, C_{1,2}\right)$)
),	d
(A_{2},	RecMatMultAdd (A_{2}

- 8 recursive calls on matrices of size $N / 2 \times N / 2$
- Number of I/O for size $N \times N: T(N)=8 T(N / 2)$
- Base case for the analysis: when 3 blocks fit in the cache $\left(3 N^{2} \leq M\right)$ no more I/O for smaller sizes, then

$$
T(N)=O\left(N^{2} / B\right)=O(M / B)
$$

- No cost on merge, all I/O cost on leaves
- Height of the recursive call tree: $h=\log _{2}(N /(\sqrt{M} / 3))$
- Total I/O cost:

$$
T(N)=O\left(8^{h} M / B\right)=O\left(N^{3} /(B \sqrt{M})\right)
$$

- Same performance as blocked algorithm!
- What if we choose $3 N^{2}=B$ as base case ?
- If I/Os not only on leaves:
use Master Theorem for divide-and-conquer recurrences

$\underline{\text { Recursive Matrix Layout }}$

NB: previous analysis need tall-cache assumption $\left(M \geq B^{2}\right)$!
not, use recursive layout, e.g. bit-interleaved layout:

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption $\left(M \geq B^{2}\right)$! If not, use recursive layout, e.g. bit-interleaved layout:

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption $\left(M \geq B^{2}\right)$! If not, use recursive layout, e.g. bit-interleaved layout:

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption $\left(M \geq B^{2}\right)$! If not, use recursive layout, e.g. bit-interleaved layout:

Also known as the Z-Morton layout
Other recursive layouts:

- U-Morton, X-Morton, G-Morton
- Hilbert curve

Address computations may become expensive $;$
Possible mix of classic tiles/recursive layout

Static Search Trees

Problem with B-trees: degree depends on $B \geqslant$
Binary search tree with recursive layout:

- Complete binary search tree with N nodes (one node per element)
- Stored in memory using recursive "van Emde Boas" layout:
- Split the tree at the middle height
- Top subtree of size $\sim \sqrt{N} \rightarrow$ recursive layout
- $\sim \sqrt{N}$ subtrees of size $\sim \sqrt{N} \rightarrow$ recursive layout
- If height h is not a power of 2 , set subtree height to $2^{\left[\log _{2} h\right\rceil}=\llbracket h \rrbracket$
- one subtree stored contiguously in memory (any order among subtrees)

Static Search Trees - Analysis

I/O complexity of search operation:

- For simplicity, assume N is a power of two
- For some height h, a subtree fits in one block $\left(B \approx 2^{h}\right)$
- Reading such a subtree requires at most 2 blocks
- Root-to-leaf path of length $\log _{2} N$
- I/O complexity: $O\left(\log _{2} N / \log _{2} B\right)=O\left(\log _{B} N\right)$
- Meets the lower bound $)^{-}$
- Only static data-structure $)$

Conclusion

- External memory: clean model to study blocked I/O
- To derive lower bounds and algorithms reaching these bounds
- Cache-oblivious: algorithms independent from architectural parameters M and B
- Best tool: divide-and-conquer
- Base case of the analysis differs from algorithm base case:
- Sometimes $N=\Theta(M)$ (mergesort, matrix mult.,. . .)
- Sometimes $N=\Theta(B)$ (static search tree, ...)
- New algorithmic solutions to force data locality
- Successful implementations (e.g. data structures for databases)

