Data Aware Algorithms — Part 2
Cache-Oblivious Algorithms

Loris Marchal

October 18, 2023

Qutline

Ideal Cache Model

2/26

Properties of real caches

Memory Controller

Shared L3 Cache'l |

» Memory/cache divided into blocks (or lines or pages) of size B
» When requested data not in cache (cache miss),
corresponding block automatically loaded

3/26

Properties of real caches

Direct Mapped 2-Way Associative
Cache Fil Cache Fill
Main
Cache i Memory Cache
Memo i [index Memory
Index 0| ! 0 Index 0, Way 0
Index1| 1 Index 0, Way 1
Index 2 | | 2 Index 1, Way 0
Index 3 3 Index 1, Way 1
4 .
S

Each bcation in main memory can be

cached by justane cache beaton.

» Memory/cache divided into blocks (or lines or pages) of size B
» When requested data not in cache (cache miss),
corresponding block automatically loaded
P> Limited associativity:
» each block of memory belongs to a cluster
(usually computed as address % M)
P at most ¢ blocks of a cluster can be stored in cache at once
(c-way associative)
» Trade-off between hit rate and time for searching the cache
» If cache full, blocks have to be evicted:
Standard block replacement policy: Least Recently Used
(LRU) 3/26

Ideal cache model

B
/ - \
[CPU —Ees#— bloc Slow
/2 Me:mor'y Memory
B

» Fully associative
¢ = 00, blocks can be store everywhere in the cache

» Optimal replacement policy
Belady's rule: evict block whose next access is furthest

» Tall cache: M/B > B (M =0©(B?)

4/26

LRU vs. Optimal Replacement Policy

replacement policy ‘ cache size ‘ nb of cache misses

LRU kLrU Tiru(S)
OPT kopT < kiru TopT(s)
OPT: optimal (offline) replacement policy (Belady's rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

kLru
T < T k
Lru(s) < P — 1 (TopT(s) + kopT)

5/ 26

LRU vs. Optimal Replacement Policy

replacement policy ‘ cache size ‘ nb of cache misses

LRU kLrU Tiru(S)
OPT kopT < kiru TopT(s)
OPT: optimal (offline) replacement policy (Belady's rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

kLru
Tiru(s) <
e = kiru — kopT +1

(TopT(s) + kopT)

If LRU cache initially contains all pages in OPT cache:
remove the additive term

5/ 26

LRU vs. Optimal Replacement Policy

replacement policy ‘ cache size ‘ nb of cache misses
LRU kLru Tiru(s)
OPT kopT < kLrU Topt(s)

OPT: optimal (offline) replacement policy (Belady's rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

kLru
T < T k
Lru(s) < P — 1 (TopT(s) + kopT)

If LRU cache initially contains all pages in OPT cache:
remove the additive term

Theorem (Bound on competitive ratio).

Assume there exists a and b such that Ta(s) < aTopt(s) + b for
all s, then a > ka/(ka — kopt +1).

5/ 26

LRU competitive ratio — Proof

» Consider any subsequence t of s, such that T\ ry(t) < ki ru
(t should not include first request)

v

Let p; be the block request right before t in s

\4

If LRU loads twice the same block in s,
then TLRU(t) > kry+1 (contradiction)

Same if LRU loads p; during t

Thus on t, LRU loads Ty ry(t) different blocks, different from p;
When starting t, OPT has p; in cache

On t, OPT must load at least T ry(t) — kopT + 1

vVvyyvyy

» Partition s into s, s1, ..., S, such that

TLRU(SO) < kiru and TLRU(SI) =k gy fori>1
» On s, TopT(S0) > TLru(S0) — kopPT
In total for LRU: T gy = TLRU(SO) + nk ru

» In total for OPT: Topt > TLRU(SO) — kopT + n(kLRU — kopT + 1)
6/26

\4

Bound on Competitive Ratio — Proof

Consider any online algorithm A:

> Let St (resp. SNL) the set of blocks initially in A'cache
(resp. OPT's cache)

» Consider the block request sequence made of two steps:
Si: ka — kopT + 1 (new) blocks not in Sinit U Sinit.
S»: kopT — 1 blocks s.t. then next block is always in
(SopT U S1)\5A
NB: step 2 is possible since |SS% U 51| = ka + 1

» A loads one block for each request of both steps: ka loads
OPT loads one block only in S1: ka — kopt + 1 loads

NB: Repeat this process to create arbitrarily long sequences.

v

7/26

Justification of the ldeal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M /2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

/26

Justification of the ldeal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M /2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Definition (Regularity condition).

Let T(M) be the number of memory transfers for an algorithm
with cache of size M and an optimal replacement policy. The
regularity condition of the algorithm writes

T(M) = O(T(M/2))

Corollary

If an algorithm follows the regularity condition and makes T (M)
transfers with cache size M and an optimal replacement policy, it
makes ©(T(M)) memory transfers with LRU.

/26

Qutline

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Searching and B-Trees

9/ 26

External Memory Model

B
t—
CPU —Fast—| Slow
M/ B m'é:lliﬁ Y Memor'y
B

External Memory: storage (large)

Internal Memory: for computations, size M

| 2
>
» Ideal cache model for transfers: blocks of size B
» Input size of the problem: N

>

Main metric: number of blocks moved from/to the cache

Basic operation

Scanning N elements stored in a contiguous segment of memory
costs at most [N/B] + 1 memory transfers.

10 / 26

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer
1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: log N levels, N comparisons in each level

11/ 26

Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer
1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: log N levels, N comparisons in each level

Adaptation for External Memory: Phase 1
» Partition the array in N/M chunks of size M
» Sort each chunks independently (— runs)
» Block transfers: 2M /B per chunk, 2N/B in total
» Number of comparisons: M log M per chunk, Nlog M in total

11/ 26

Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size L — one run T of size 2L

1. Load first blocks R (and §) of R (and §)
2. Allocate first block T of T
3. While R and S both not exhausted
(a) Merge as much R and S into T as possible

(b) If R (or S) gets empty, load new block of R (or S)
(c) If T gets full, flush it into T

4. Transfer remaining items of R (or S) in T

12 / 26

Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size L — one run T of size 2L
1. Load first blocks R (and §) of R (and §)
2. Allocate first block T of T
3. While R and S both not exhausted
(a) Merge as much R and S into T as possible

(b) If R (or S) gets empty, load new block of R (or S)
(c) If T gets full, flush it into T

4. Transfer remaining items of R (or S) in T

» Internal memory usage: 3 blocks
» Block transfers: 2L/B reads + 2L/B writes = 4L/B
» Number of comparisons: 2L

12 / 26

Total complexity of Two-Way Merge Sort

Analysis at each level:
> At level k: runs of size 2KM (nb: N/(25M))
» Merge to reach levels k =1...log, N/M
» Block transfers at level k: 2k*1M/B x N/(2kM) = 2N/B
» Number of comparisons: N

13/ 26

Total complexity of Two-Way Merge Sort

Analysis at each level:
> At level k: runs of size 2KM (nb: N/(25M))
» Merge to reach levels k =1...log, N/M
» Block transfers at level k: 2k*1M/B x N/(2kM) = 2N/B
» Number of comparisons: N

Total complexity of phases 1+2:
» Block transfers: 2N/B(1 + log, N/M) = O(N/Blog, N/ M)
» Number of comparisons: Nlog M + Nlog, N/M = Nlog N

13/ 26

Total complexity of Two-Way Merge Sort

Analysis at each level:
> At level k: runs of size 2KM (nb: N/(25M))
» Merge to reach levels k =1...log, N/M
» Block transfers at level k: 2k*1M/B x N/(2kM) = 2N/B
» Number of comparisons: N

Total complexity of phases 1+2:
» Block transfers: 2N/B(1 + log, N/M) = O(N/Blog, N/ M)
» Number of comparisons: Nlog M + Nlog, N/M = Nlog N

» Internal memory used ?

13/ 26

Total complexity of Two-Way Merge Sort

Analysis at each level:
> At level k: runs of size 2KM (nb: N/(25M))
» Merge to reach levels k =1...log, N/M
» Block transfers at level k: 2k*1M/B x N/(2kM) = 2N/B
» Number of comparisons: N

Total complexity of phases 1+2:
» Block transfers: 2N/B(1 + log, N/M) = O(N/Blog, N/ M)
» Number of comparisons: Nlog M + Nlog, N/M = Nlog N

» Internal memory used ? only 3 blocks @

13/ 26

Optimization: K-Way Merge Sort

» Consider K input runs at each merge step

> Efficient merging, e.g.: MinHeap data structure
insert, extract: O(log K)

» Complexity of merging K runs of length L: KLlog K
» Block transfers: no change (2KL/B)

14 / 26

Optimization: K-Way Merge Sort

» Consider K input runs at each merge step

> Efficient merging, e.g.: MinHeap data structure
insert, extract: O(log K)

» Complexity of merging K runs of length L: KLlog K
» Block transfers: no change (2KL/B)

Total complexity of merging:
» Block transfers: logx N/M steps — 2N/Blog, N/M

» Computations: Nlog K per step — Nlog K x log,c N/M
= Nlog, N/M (id.)

14 / 26

Optimization: K-Way Merge Sort

» Consider K input runs at each merge step

> Efficient merging, e.g.: MinHeap data structure
insert, extract: O(log K)

» Complexity of merging K runs of length L: KLlog K
» Block transfers: no change (2KL/B)
Total complexity of merging:
» Block transfers: logx N/M steps — 2N/Blog, N/M
» Computations: Nlog K per step — Nlog K x log,c N/M
= Nlog, N/M (id.)
Maximize K to reduce transfers:
» (K+1)B =M (K input blocks + 1 output block)

N N
» Block transfers: O (B log m)
B

M

N N

» Block transfers: O [= loguy —
(B g% B) 14/ 26

B-Trees

» Problem: Search for a particular element in a huge dataset

» Solution: Search tree with large degree (~ B)

Definition (B-tree with minimum degree d).
Search tree such that:
» Each node (except the root) has at least d children
» Each node has at most 2d — 1 children
» Node with k children has kK — 1 keys separating the children
» All leaves have the same depth

Proposed by Bayer and McCreigh (1972)

15 / 26

Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.
Searching in a B-Tree requires O(logy N) |/Os.

s S i s

16 / 26

Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.
Searching in a B-Tree requires O(logy N) 1/Os.

Recursive algorithm for insertion of new key:

1. If root node of current subtree is full (2d children), split it:

(a) Find median key, send it to the father £

(if any, otherwise it becomes the new root)
(b) Keys and subtrees < median key — new left subtree of f
(c) Keys and subtrees > median key — new right subtree f

2. If root node of current subtree = leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s

G M P X

[AcpEe]lvk][No][RsTUV]][Y Zz]

16 / 26

Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.
Searching in a B-Tree requires O(logy N) 1/Os.

Recursive algorithm for insertion of new key:

1. If root node of current subtree is full (2d children), split it:

(a) Find median key, send it to the father £

(if any, otherwise it becomes the new root)
(b) Keys and subtrees < median key — new left subtree of f
(c) Keys and subtrees > median key — new right subtree f

2. If root node of current subtree = leaf, insert new key
3. Otherwise, find correct subtree s, insert recursively in s

G M P X

[AcpEe]lvk][No][RsTUV]][Y Zz]

NB: height changes only when root is split — balanced tree
Number of transfers: O(height)

16 / 26

Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

» If tree=leaf, straightforward
> If k = key of internal node:
» |f subtree s immediately left of k has > d keys,
remove maximum element k' of s, replace k by k'’
» Otherwise, try the same on right subtree (with minimum)
» Otherwise (both neighbor subtrees have d — 1 keys): remove k
and merge these neighbor subtrees
> If k is in a subtree s, suppress recursively in s

» If T hasonly d —1 keys:
» Try to steal one key from a neighbor of T with at least d keys
» Otherwise merge T with one of its neighbors

Number of block transfers: O(height))

17/ 26

Usage of B-Trees

Widely used in large database and filesystems
(SQL, ext4, Apple File System, NTFS)

Variants:
> B Trees: store data only on leaves

increase degree — reduce height
add pointer from leaf to next one to speedup sequential access

» B* Trees: better balance of internal node
(max size: 2b — 3b/2, nodes at least 2/3 full)

» When 2 siblings full: split into 3 nodes
» Pospone splitting: shift keys to neighbors if possible

18 / 26

Qutline

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees

19 /26

Motivation for Cache-Oblivious Algorithms

|/O-optimal algorithms in the external memory model:
Depend on the memory parameters B and M: cache-aware

> Blocked-Matrix-Product: block size b = v/M/3
» Merge-Sort: K=M/B —1
» B-Trees: degree of a node in O(B)

Goal: design 1/O-optimal algorithms that do not known M and B
» Self-tuning

» Optimal for any value of cache parameters
— optimal for any level of the cache hierarchy!

Cache-Oblivious model:

» Ideal-cache model

» No explicit operations on blocks as in external memory algos.

20 / 26

Main Tool: Divide and Conquer

Major tool:

» Split problem into smaller sizes

> At some point, size gets smaller than the cache size:

no /0O needed for next recursive calls

» Analyse 1/O for these “leaves” of the recursion tree
and divide/merge operations

21/ 26

Main Tool: Divide and Conquer

Major tool:
» Split problem into smaller sizes

> At some point, size gets smaller than the cache size:
no /0O needed for next recursive calls

» Analyse 1/O for these “leaves” of the recursion tree
and divide/merge operations

Example: Recursive matrix multiplication:
A1l | A > Bi1 | Bi2 G| G2
R e I - B B Il ol B s
< Az | Az Byi | Bop G1| Gp
> If N> 1, compute:

C1,1 = Recl\/latl\/lult(ALl, 81,1) + RecMatMu/t(ALg, 32,1)
C172 = RecMatl\/Iult(ALl, 8172) + Recl\/latl\/lult(Aljg, 52,2)
() ()

) ()

C2,1 = RecMatMult A271, 31,1 + RecMatMult A2,2, 32’1
C272 = Recl\/latl\/lult(AgJ, 81,2 + RecMatMult A272, 82,2

P> Base case: multiply elements
21 /26

Recursive Matrix Multiply: Analysis

Cl,l = RecMatMult(Alyl, Bl,l) + RecMatMuIt(Alyg, 52’1)
Cip= Recl\/latMult(Al,l, 31’2) + RecMatMu/t(Al’g, 3272)
C2,1 = Recl\/latMult(Ag,l, Bl,l) =+ RecMatMuIt(AZg, 52’1)
Gpo = Recl\/latMult(Ag,l, 81,2) + ReCMatMu/t(Ag’z, 3272)

22 /26

Recursive Matrix Multiply: Analysis

RecMatMuItAdd(Al,l, Bly]_, Cl,l); RecMatMultAdd(Al’z, 32717 C]_yl))
ReCMatMu/tAdd(Al,l, Bl’g, C172); RecMatMultAdd(ALz, 3272, C1,2))
RecMatMuItAdd(Ag,l, Bly]_, C271); RecMatMultAdd(Azyz, 82,17 CZ,I))
RecMatl\/lultAdd(Az,l, 81’2, C272); Recl\/latMultAdd(Ag,z, 8272, CQ,Q))

22 /26

Recursive Matrix Multiply: Analysis

RecMatMuItAdd(Alyl, Bly]_, Cl,l); RecMatMultAdd(Al’g, 32,17 C]_yl))

RecMatMultAdd(Ay 1, By », C12); RecMatMultAdd(A; 2, Ba 2, C1.2))

RecMatMuItAdd(Agyl, Bly]_, C271); F\’ecl\ﬂa1.‘/\/’Ll/1.'/£\dd(/42727 82,17 CZ,I))

RecMatl\/IultAdd(AQ,l, 81’27 C272); Recl\/latMultAdd(Agg, 8272, CQ,Q))
» 8 recursive calls on matrices of size N/2 x N /2

» Number of 1/0 for size N x N: T(N)=8T(N/2)

22 /26

Recursive Matrix Multiply: Analysis

RecMatMuItAdd(Alyl, Bly]_, Cl,l); RecMatMultAdd(Al’g, 32,17 C]_yl))
RecMatMultAdd(Ay 1, By », C12); RecMatMultAdd(A; 2, Ba 2, C1.2))
RecMatMuItAdd(Agyl, Bly]_, C271); F\’ecl\ﬂa1.‘/\/’Ll/1.'/£\dd(/42727 82,17 CZ,I))
RecMatl\/IultAdd(AQ,l, 81’27 C272); Recl\/latMultAdd(Agg, 8272, CQ,Q))

» 8 recursive calls on matrices of size N/2 x N /2
» Number of 1/0 for size N x N: T(N)=8T(N/2)
» Base case for the analysis: when 3 blocks fit in the cache (3n2 < M)
no more 1/O for smaller sizes, then
T(N) = O(N?/B) = O(M/B)
» No cost on merge, all 1/O cost on leaves

22 /26

Recursive Matrix Multiply: Analysis

RecMatMuItAdd(ALl, Bly]_, Cl,l); RecMatMultAdd(Al’g, 32,17 C]_yl))
RecMatMultAdd(Ay 1, By », C12); RecMatMultAdd(A; 2, Ba 2, C1.2))
RecMatMuItAdd(Agyl, Bly]_, C271); RecMatMultAdd(Az’g, 82,17 Cg,l))
RecMatl\/lultAdd(AQ,l, 81,27 C272); Recl\/latMultAdd(Agg, 8272, CQ,Q))

» 8 recursive calls on matrices of size N/2 x N /2
» Number of 1/0 for size N x N: T(N)=8T(N/2)
» Base case for the analysis: when 3 blocks fit in the cache (3n2 < M)
no more 1/O for smaller sizes, then
T(N) = O(N?/B) = O(M/B)
» No cost on merge, all 1/O cost on leaves
> Height of the recursive call tree: h = log,(N/(v/M/3))
» Total 1/O cost:

T(N) = 0(8"M/B) = O(N3/(BVM))

» Same performance as blocked algorithm!

22 /26

Recursive Matrix Multiply: Analysis

RecMatMuItAdd(ALl, Bly]_, Cl,l); RecMatMultAdd(Al’g, 32,17 C]_yl))
RecMatMultAdd(Ay 1, By », C12); RecMatMultAdd(A; 2, Ba 2, C1.2))
RecMatMuItAdd(Agyl, Bly]_, C271); RecMatMultAdd(Az’g, 82,17 Cg,l))
RecMatl\/lultAdd(AQ,l, 81,27 C272); Recl\/latMultAdd(Agg, 8272, CQ,Q))

» 8 recursive calls on matrices of size N/2 x N /2
» Number of 1/0 for size N x N: T(N)=8T(N/2)
» Base case for the analysis: when 3 blocks fit in the cache (3n2 < M)
no more 1/O for smaller sizes, then
T(N) = O(N?/B) = O(M/B)
» No cost on merge, all 1/O cost on leaves
> Height of the recursive call tree: h = log,(N/(v/M/3))
» Total 1/O cost:

T(N) = O(8"M/B) = O(N®/(BVM))
» Same performance as blocked algorithm!

» What if we choose 3N2 = B as base case ?

22 /26

Recursive Matrix Multiply: Analysis

>

RecMatMuItAdd(ALl, Bly]_, Cl,l); RecMatMultAdd(Al’g, 32,17 C]_yl))
RecMatMultAdd(Ay 1, By », C12); RecMatMultAdd(A; 2, Ba 2, C1.2))
RecMatMuItAdd(Agyl, Bly]_, C271); RecMatMultAdd(Az’g, 82,17 Cg,l))
RecMatl\/lultAdd(AQ,l, 81,27 C272); Recl\/latMultAdd(Agg, 8272, CQ,Q))

8 recursive calls on matrices of size N/2 x N/2
Number of 1/0 for size N x N: T(N)=8T(N/2)

Base case for the analysis: when 3 blocks fit in the cache (3n2 < M)

no more 1/O for smaller sizes, then
T(N) = O(N?/B) = O(M/B)
No cost on merge, all 1/O cost on leaves
Height of the recursive call tree: h = log,(N/(v/M/3))
Total 1/O cost:

T(N) = 0(8"M/B) = O(N3/(BVM))

Same performance as blocked algorithm!

What if we choose 3N? = B as base case ?

If 1/Os not only on leaves:

use Master Theorem for divide-and-conquer recurrences

22 /26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M > B?) |

23 /26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M > B?) ! If
not, use recursive layout, e.g. bit-interleaved layout:

23 /26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M > B?) ! If

not, use recursive layout, e.g. bit-interleaved layout:

X

1
0 1 2 30 4 5 6 7
000 001 010 o 1 100 101 110 1
1
1
y:“30 000000 000001 ' 000100 000101:010000 010001 ' 010100 010101
1
1
0;1 000010 000011 {00010 000111 | 010010 010011 : 010110 010111
1
1
0120 001000 001001 | 001100 001101 ' 011000 011001 | 011100 011101
1
1
3 1
ou | 001010 001011 foo1110 ooritr Mo11010 011011 l011110 011111
1
e U
4 1
Lo | 100000 100001 1100100 100101 1110000 110001 110100 110101
1
1
5 1
Lo | 100010° 100011 100110 100111 1110010 110011 ;110110 110111
1
I
6 1
Wo | 1010000 101001 1101100 101101 1111000 111001 (111100 111101
1
1
7 1
101010 101011 ' 101110 101111 1 111010 111011 ' 111110 111111
1

111

23 /26

Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M > B?) ! If
not, use recursive layout, e.g. bit-interleaved layout:

Also known as the Z-Morton layout

Other recursive layouts:
» U-Morton, X-Morton, G-Morton
» Hilbert curve

Address computations may become expensive &

Possible mix of classic tiles/recursive layout

23 /26

Static Search Trees

Problem with B-trees: degree depends on B &
Binary search tree with recursive layout:

» Complete binary search tree with N nodes

(one node per element)
» Stored in memory using recursive “van Emde Boas” layout:

» Split the tree at the middle height

» Top subtree of size ~ v/N — recursive layout
» ~ /N subtrees of size ~ v/N — recursive layout
> If height h is not a power of 2, set subtree height to 2/1°& A1 = [[A]]
» one subtree stored contiguously in memory
(any order among subtrees)

A

/I

A A
\A A

AA AA

A A
ANAA AN AN

24 / 26

Static Search Trees — Analysis

[/O complexity of search operation:

>

vVvyVvyvVvyyvyy

For simplicity, assume N is a power of two

For some height h, a subtree fits in one block (B ~ 2")

Reading such a subtree requires at most 2 blocks

Root-to-leaf path of length log, N

[/O complexity: O(log, N/ log, B) = O(logg N)

Meets the lower bound ©

Only static data-structure ® 25/ 26

Conclusion

v

External memory: clean model to study blocked 1/0
To derive lower bounds and algorithms reaching these bounds

Cache-oblivious: algorithms independent from architectural
parameters M and B

Best tool: divide-and-conquer
Base case of the analysis differs from algorithm base case:

» Sometimes N = ©(M) (mergesort, matrix mult.,...)
» Sometimes N = ©(B) (static search tree, ...)

New algorithmic solutions to force data locality

Successful implementations
(e.g. data structures for databases)

26 / 26

	Ideal Cache Model
	External Memory Algorithms and Data Structures
	External Memory Model
	Merge Sort
	Searching and B-Trees

	Cache Oblivious Algorithms and Data Structures
	Motivation
	Divide and Conquer
	Static Search Trees

