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Properties of real caches

▶ Memory/cache divided into blocks (or lines or pages) of size B
▶ When requested data not in cache (cache miss),

corresponding block automatically loaded
▶ Limited associativity:

▶ each block of memory belongs to a cluster
(usually computed as address % M)

▶ at most c blocks of a cluster can be stored in cache at once
(c-way associative)

▶ Trade-off between hit rate and time for searching the cache
▶ If cache full, blocks have to be evicted:

Standard block replacement policy: Least Recently Used
(LRU)
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Ideal cache model

▶ Fully associative
c = ∞, blocks can be store everywhere in the cache

▶ Optimal replacement policy
Belady’s rule: evict block whose next access is furthest

▶ Tall cache: M/B ≫ B (M = Θ(B2))
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LRU vs. Optimal Replacement Policy

replacement policy cache size nb of cache misses

LRU kLRU TLRU(s)
OPT kOPT ≤ kLRU TOPT (s)

OPT: optimal (offline) replacement policy (Belady’s rule)

Theorem (Sleator and Tarjan, 1985).

For any sequence s:

TLRU(s) ≤
kLRU

kLRU − kOPT + 1
(TOPT(s) + kOPT)

If LRU cache initially contains all pages in OPT cache:
remove the additive term

Theorem (Bound on competitive ratio).

Assume there exists a and b such that TA(s) ≤ aTOPT(s) + b for
all s, then a ≥ kA/(kA − kOPT + 1).
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LRU competitive ratio – Proof

▶ Consider any subsequence t of s, such that TLRU(t) ≤ kLRU
(t should not include first request)

▶ Let pi be the block request right before t in s

▶ If LRU loads twice the same block in s,
then TLRU(t) ≥ kLRU + 1 (contradiction)

▶ Same if LRU loads pi during t

▶ Thus on t, LRU loads TLRU(t) different blocks, different from pi
▶ When starting t, OPT has pi in cache

▶ On t, OPT must load at least TLRU(t)− kOPT + 1

▶ Partition s into s0, s1, . . . , sn such that
TLRU(s0) ≤ kLRU and TLRU(si ) = kLRU for i > 1

▶ On s0, TOPT(s0) ≥ TLRU(s0)− kOPT

▶ In total for LRU: TLRU = TLRU(s0) + nkLRU
▶ In total for OPT: TOPT ≥ TLRU(s0)− kOPT + n(kLRU − kOPT +1)
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Bound on Competitive Ratio – Proof

Consider any online algorithm A:

▶ Let S init
A (resp. S init

OPT) the set of blocks initially in A’cache
(resp. OPT’s cache)

▶ Consider the block request sequence made of two steps:

S1: kA − kOPT + 1 (new) blocks not in S init
A ∪ S init

OPT

S2: kOPT − 1 blocks s.t. then next block is always in
(S init

OPT ∪ S1)\SA
NB: step 2 is possible since |S init

OPT ∪ S1| = kA + 1

▶ A loads one block for each request of both steps: kA loads

▶ OPT loads one block only in S1: kA − kOPT + 1 loads

NB: Repeat this process to create arbitrarily long sequences.
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Justification of the Ideal Cache Model

Theorem (Frigo et al, 1999).

If an algorithm makes T memory transfers with a cache of size
M/2 with optimal replacement, then it makes at most 2T
transfers with cache size M with LRU.

Definition (Regularity condition).

Let T (M) be the number of memory transfers for an algorithm
with cache of size M and an optimal replacement policy. The
regularity condition of the algorithm writes

T (M) = O(T (M/2))

Corollary

If an algorithm follows the regularity condition and makes T (M)
transfers with cache size M and an optimal replacement policy, it
makes Θ(T (M)) memory transfers with LRU.
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External Memory Model

▶ External Memory: storage (large)

▶ Internal Memory: for computations, size M

▶ Ideal cache model for transfers: blocks of size B

▶ Input size of the problem: N

▶ Main metric: number of blocks moved from/to the cache

Basic operation

Scanning N elements stored in a contiguous segment of memory
costs at most ⌈N/B⌉+ 1 memory transfers.
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Merge Sort in External Memory

Standard Merge Sort: Divide and Conquer

1. Recursively split the array (size N) in two, until reaching size 1

2. Merge two sorted arrays of size L into one of size 2L
requires 2L comparisons

In total: logN levels, N comparisons in each level

Adaptation for External Memory: Phase 1

▶ Partition the array in N/M chunks of size M

▶ Sort each chunks independently (→ runs)

▶ Block transfers: 2M/B per chunk, 2N/B in total

▶ Number of comparisons: M logM per chunk, N logM in total
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Two-Way Merge in External Memory

Phase 2:
Merge two runs R and S of size L → one run T of size 2L

1. Load first blocks R̂ (and Ŝ) of R (and S)

2. Allocate first block T̂ of T

3. While R and S both not exhausted

(a) Merge as much R̂ and Ŝ into T̂ as possible

(b) If R̂ (or Ŝ) gets empty, load new block of R (or S)

(c) If T̂ gets full, flush it into T

4. Transfer remaining items of R (or S) in T

▶ Internal memory usage: 3 blocks

▶ Block transfers: 2L/B reads + 2L/B writes = 4L/B

▶ Number of comparisons: 2L
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Total complexity of Two-Way Merge Sort

Analysis at each level:

▶ At level k : runs of size 2kM (nb: N/(2kM))

▶ Merge to reach levels k = 1 . . . log2N/M

▶ Block transfers at level k : 2k+1M/B × N/(2kM) = 2N/B

▶ Number of comparisons: N

Total complexity of phases 1+2:

▶ Block transfers: 2N/B(1 + log2N/M) = O(N/B log2N/M)

▶ Number of comparisons: N logM + N log2N/M = N logN

▶ Internal memory used ?
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Optimization: K -Way Merge Sort

▶ Consider K input runs at each merge step
▶ Efficient merging, e.g.: MinHeap data structure

insert, extract: O(logK )
▶ Complexity of merging K runs of length L: KL logK
▶ Block transfers: no change (2KL/B)

Total complexity of merging:

▶ Block transfers: logK N/M steps → 2N/B logK N/M
▶ Computations: N logK per step → N logK × logK N/M

= N log2N/M (id.)

Maximize K to reduce transfers:

▶ (K + 1)B = M (K input blocks + 1 output block)

▶ Block transfers: O

(
N

B
logM

B

N

M

)

▶ NB: logM/B N/M = logM/B N/B − 1

▶ Block transfers: O

(
N

B
logM

B

N

B

)
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B-Trees

▶ Problem: Search for a particular element in a huge dataset

▶ Solution: Search tree with large degree (≈ B)

Definition (B-tree with minimum degree d).

Search tree such that:

▶ Each node (except the root) has at least d children

▶ Each node has at most 2d − 1 children

▶ Node with k children has k − 1 keys separating the children

▶ All leaves have the same depth

Proposed by Bayer and McCreigh (1972)
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Search and Insertion in B-Trees

Usually, we require that d = O(B)

Lemma.

Searching in a B-Tree requires O(logd N) I/Os.

Recursive algorithm for insertion of new key:
1. If root node of current subtree is full (2d children), split it:

(a) Find median key, send it to the father f
(if any, otherwise it becomes the new root)

(b) Keys and subtrees < median key → new left subtree of f
(c) Keys and subtrees > median key → new right subtree f

2. If root node of current subtree = leaf, insert new key

3. Otherwise, find correct subtree s, insert recursively in s

498 Chapter 18 B-Trees

J K N O R S TD ECA U V Y Z

P XMG(a)

J K N O R S TD EBA U V Y Z

P XMG(b)

C

J K N OD EBA U V Y Z

P XMG(c)

C R SQ

T

J K N OD EBA U V Y Z

MG

(d)

C R SQL

P

XT

J K N OD EBA U V Y Z

MG

(e)

C

R SQL

P

XT

F

Q inserted

L inserted

F inserted

initial tree

B inserted

Figure 18.7 Inserting keys into a B-tree. The minimum degree t for this B-tree is 3, so a node can
hold at most 5 keys. Nodes that are modified by the insertion process are lightly shaded. (a) The
initial tree for this example. (b) The result of inserting B into the initial tree; this is a simple insertion
into a leaf node. (c) The result of inserting Q into the previous tree. The node RST U V splits into
two nodes containing RS and U V , the key T moves up to the root, and Q is inserted in the leftmost
of the two halves (the RS node). (d) The result of inserting L into the previous tree. The root
splits right away, since it is full, and the B-tree grows in height by one. Then L is inserted into the
leaf containing JK. (e) The result of inserting F into the previous tree. The node ABCDE splits
before F is inserted into the rightmost of the two halves (the DE node).

NB: height changes only when root is split → balanced tree
Number of transfers: O(height)
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Suppression in B-Trees

Suppression algorithm of k from a tree with at least d keys:

▶ If tree=leaf, straightforward
▶ If k = key of internal node:

▶ If subtree s immediately left of k has ≥ d keys,
remove maximum element k ′ of s, replace k by k ′

▶ Otherwise, try the same on right subtree (with minimum)
▶ Otherwise (both neighbor subtrees have d − 1 keys): remove k

and merge these neighbor subtrees

▶ If k is in a subtree s, suppress recursively in s
▶ If T has only d − 1 keys:

▶ Try to steal one key from a neighbor of T with at least d keys
▶ Otherwise merge T with one of its neighbors

Number of block transfers: O(height))
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Usage of B-Trees

Widely used in large database and filesystems
(SQL, ext4, Apple File System, NTFS)

Variants:

▶ B+ Trees: store data only on leaves
increase degree → reduce height
add pointer from leaf to next one to speedup sequential access

▶ B* Trees: better balance of internal node
(max size: 2b → 3b/2, nodes at least 2/3 full)
▶ When 2 siblings full: split into 3 nodes
▶ Pospone splitting: shift keys to neighbors if possible



19 / 26

Outline

Ideal Cache Model

External Memory Algorithms and Data Structures
External Memory Model
Merge Sort
Searching and B-Trees

Cache Oblivious Algorithms and Data Structures
Motivation
Divide and Conquer
Static Search Trees



20 / 26

Motivation for Cache-Oblivious Algorithms

I/O-optimal algorithms in the external memory model:
Depend on the memory parameters B and M: cache-aware

▶ Blocked-Matrix-Product: block size b =
√
M/3

▶ Merge-Sort: K = M/B − 1

▶ B-Trees: degree of a node in O(B)

Goal: design I/O-optimal algorithms that do not known M and B

▶ Self-tuning

▶ Optimal for any value of cache parameters
→ optimal for any level of the cache hierarchy!

Cache-Oblivious model:

▶ Ideal-cache model

▶ No explicit operations on blocks as in external memory algos.
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Main Tool: Divide and Conquer

Major tool:

▶ Split problem into smaller sizes

▶ At some point, size gets smaller than the cache size:
no I/O needed for next recursive calls

▶ Analyse I/O for these “leaves” of the recursion tree
and divide/merge operations

Example: Recursive matrix multiplication:

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)

▶ If N > 1, compute:
C1,1 = RecMatMult(A1,1,B1,1) + RecMatMult(A1,2,B2,1)
C1,2 = RecMatMult(A1,1,B1,2) + RecMatMult(A1,2,B2,2)
C2,1 = RecMatMult(A2,1,B1,1) + RecMatMult(A2,2,B2,1)
C2,2 = RecMatMult(A2,1,B1,2) + RecMatMult(A2,2,B2,2)

▶ Base case: multiply elements
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Recursive Matrix Multiply: Analysis

C1,1 = RecMatMult(A1,1,B1,1) + RecMatMult(A1,2,B2,1)
C1,2 = RecMatMult(A1,1,B1,2) + RecMatMult(A1,2,B2,2)
C2,1 = RecMatMult(A2,1,B1,1) + RecMatMult(A2,2,B2,1)
C2,2 = RecMatMult(A2,1,B1,2) + RecMatMult(A2,2,B2,2)

▶ 8 recursive calls on matrices of size N/2× N/2
▶ Number of I/O for size N × N: T (N) = 8T (N/2)
▶ Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

▶ No cost on merge, all I/O cost on leaves
▶ Height of the recursive call tree: h = log2(N/(

√
M/3))

▶ Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

▶ Same performance as blocked algorithm!
▶ What if we choose 3N2 = B as base case ?
▶ If I/Os not only on leaves:

use Master Theorem for divide-and-conquer recurrences
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Recursive Matrix Multiply: Analysis
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▶ 8 recursive calls on matrices of size N/2× N/2
▶ Number of I/O for size N × N: T (N) = 8T (N/2)
▶ Base case for the analysis: when 3 blocks fit in the cache (3N2 ≤ M)

no more I/O for smaller sizes, then
T (N) = O(N2/B) = O(M/B)

▶ No cost on merge, all I/O cost on leaves
▶ Height of the recursive call tree: h = log2(N/(

√
M/3))

▶ Total I/O cost:

T (N) = O(8hM/B) = O(N3/(B
√
M))

▶ Same performance as blocked algorithm!
▶ What if we choose 3N2 = B as base case ?
▶ If I/Os not only on leaves:

use Master Theorem for divide-and-conquer recurrences
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Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:
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Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:

y: 0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110

x:
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

111111
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Recursive Matrix Layout

NB: previous analysis need tall-cache assumption (M ≥ B2) ! If
not, use recursive layout, e.g. bit-interleaved layout:

Also known as the Z-Morton layout

Other recursive layouts:

▶ U-Morton, X-Morton, G-Morton

▶ Hilbert curve

Address computations may become expensive /
Possible mix of classic tiles/recursive layout
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Static Search Trees

Problem with B-trees: degree depends on B /
Binary search tree with recursive layout:

▶ Complete binary search tree with N nodes
(one node per element)

▶ Stored in memory using recursive “van Emde Boas” layout:
▶ Split the tree at the middle height
▶ Top subtree of size ∼

√
N → recursive layout

▶ ∼
√
N subtrees of size ∼

√
N → recursive layout

▶ If height h is not a power of 2, set subtree height to 2⌈log2 h⌉ = ⌈⌈h⌉⌉
▶ one subtree stored contiguously in memory

(any order among subtrees)

Static Cache-Oblivious Trees
Recursive memory layout ≡ van Emde Boas layout

Bk

A

B1

A B1 Bk· · ·

· · ·

h

⌈h/2⌉

⌊h/2⌋

· · ·

· · ·
· · · · · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·· · ·

· · · · · ·

Degree O(1) Searches use O(logB N) I/Os
Range reportings use
O
(
logB N + k

B

)
I/Os
Prokop 1999

Best possible (log2 e + o(1)) logB N Bender, Brodal, Fagerberg, Ge, He, Hu
Iacono, López-Ortiz 2003

12
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Static Search Trees – Analysis

Static Cache-Oblivious Trees
Recursive memory layout ≡ van Emde Boas layout

Bk

A

B1

A B1 Bk· · ·

· · ·

h

⌈h/2⌉

⌊h/2⌋

· · ·

· · ·
· · · · · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·· · ·

· · · · · ·

Degree O(1) Searches use O(logB N) I/Os
Range reportings use
O
(
logB N + k

B

)
I/Os
Prokop 1999

Best possible (log2 e + o(1)) logB N Bender, Brodal, Fagerberg, Ge, He, Hu
Iacono, López-Ortiz 2003

12

I/O complexity of search operation:

▶ For simplicity, assume N is a power of two

▶ For some height h, a subtree fits in one block (B ≈ 2h)

▶ Reading such a subtree requires at most 2 blocks

▶ Root-to-leaf path of length log2N

▶ I/O complexity: O(log2N/ log2 B) = O(logB N)

▶ Meets the lower bound ,
▶ Only static data-structure /
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Conclusion

▶ External memory: clean model to study blocked I/O

▶ To derive lower bounds and algorithms reaching these bounds

▶ Cache-oblivious: algorithms independent from architectural
parameters M and B

▶ Best tool: divide-and-conquer
▶ Base case of the analysis differs from algorithm base case:

▶ Sometimes N = Θ(M) (mergesort, matrix mult.,. . . )
▶ Sometimes N = Θ(B) (static search tree, . . . )

▶ New algorithmic solutions to force data locality

▶ Successful implementations
(e.g. data structures for databases)
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