
Data Aware Algorithms – Part 3
Memory-Aware DAG scheduling

Loris Marchal

October 18, 2023

2 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

3 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

4 / 49

Taming HPC platforms with runtime systems
▶ Write your application as function calls (tasks),

▶ Specify data input/output (dependencies)

▶ Provide function codes for specific cores/GPUs

▶ Let the system do the scheduling at runtime!

11 / 11

Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Cholesky_decomposition(A):
for(k=0; k<N; k++)

A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)

A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)

A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)

A[m][n]+=GEMM(A[m][k],A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Graph of tasks: Directed Acyclic Graph (DAG)

▶ Tasks linked with data dependency

▶ Wide literature on DAG scheduling

▶ What about memory and data movements (I/Os) ?

4 / 49

Taming HPC platforms with runtime systems
▶ Write your application as function calls (tasks),

▶ Specify data input/output (dependencies)

▶ Provide function codes for specific cores/GPUs

▶ Let the system do the scheduling at runtime!

11 / 11

Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Cholesky_decomposition(A):
for(k=0; k<N; k++)

A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)

A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)

A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)

A[m][n]+=GEMM(A[m][k],A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Graph of tasks: Directed Acyclic Graph (DAG)

▶ Tasks linked with data dependency

▶ Wide literature on DAG scheduling

▶ What about memory and data movements (I/Os) ?

5 / 49

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A

B

C

D

E

F

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 49

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A

B

C

D

E

F

duration

m
em

or
y

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 49

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 49

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

out of memory!

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 49

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

6 / 49

Going back to sequential processing

▶ Temporary data require memory

▶ Scheduling influences the peak memory

A

B

C

D

E

F

6 / 49

Going back to sequential processing

▶ Temporary data require memory

▶ Scheduling influences the peak memory

A B C D E F

6 / 49

Going back to sequential processing

▶ Temporary data require memory

▶ Scheduling influences the peak memory

A B C D E F

A BC D E F

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs
y

−

5 1z x

×

+

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

−

5 1z x

×

y

+

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs
5 1z x

×

y

+−

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 49

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

8 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

9 / 49

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

M
em

or
y

13

12 1527 3

45

8

32

9 / 49

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory
12

M
em

or
y

12 1527 3

45

8

32 13

9 / 49

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

27

12

M
em

or
y

3 8

1332

12 1527

45

9 / 49

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

32

M
em

or
y

12 1527 3

45

8

32 13

9 / 49

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

15

32

M
em

or
y

3 8

1332

12 1527

45

10 / 49

Outline

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

Reducing I/Os for Task Graphs

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order: ?

11 / 49

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order: non-increasing Pi − fi

12 / 49

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in
non-increasing order Pi − fi .

Proof:
▶ Consider an optimal traversal which does not respect the order:

▶ subtree j is processed right before subtree k
▶ Pk − fk ≥ Pj − fj

peak when j , then k peak when k, then j
during first subtree mem before + Pj mem before + Pk

during second subtree mem before + fj + Pk mem before + fk + Pj

▶ fk + Pj ≤ fj + Pk

▶ Transform the schedule step by step without increasing the memory.

12 / 49

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in
non-increasing order Pi − fi .

Proof:
▶ Consider an optimal traversal which does not respect the order:

▶ subtree j is processed right before subtree k
▶ Pk − fk ≥ Pj − fj

peak when j , then k peak when k, then j
during first subtree mem before + Pj mem before + Pk

during second subtree mem before + fj + Pk mem before + fk + Pj

▶ fk + Pj ≤ fj + Pk

▶ Transform the schedule step by step without increasing the memory.

13 / 49

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

ϵ

M M

.

M/b
M/bM/b M/b

ϵ ϵ ϵ

M M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

13 / 49

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

ϵ ϵ ϵ ϵ

M/b

M M M

.

M/b
M/bM/b

M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

13 / 49

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

ϵ ϵ ϵ ϵ

M/b

M M M

.

M/b
M/bM/b

M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

13 / 49

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

M/b
. . .
M/b

M/b

. . .

ϵϵϵϵ

M/b

. . .

MMM M

▶ Minimum peak memory:
Mmin = M + +2(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M + 2(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

13 / 49

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

M/b
. . .
M/b

M/b

. . .

ϵϵϵϵ

M/b

. . .

MMM M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

14 / 49

Liu’s optimal traversal – sketch

▶ Recursive algorithm: at each step, merge the optimal ordering of each
subtree (sequence)

▶ Sequence: divided into segments:
▶ H1: maximum over the whole sequence (hill)
▶ V1: minimum after H1 (valley)
▶ H2: maximum after H1

▶ V2: minimum after H2

▶ . . .
▶ The valleys Vi s are the boundaries of the segments

▶ Combine the sequences by non-increasing H − V

▶ Complex proof based on a partial order on the cost-sequences:
(H1,V1,H2,V2, . . . ,Hr ,Vr) ≺ (H ′

1,V
′
1,H

′
2,V

′
2, . . . ,H

′
r ′ ,V

′
r ′)

if for each 1 ≤ i ≤ r , there exists 1 ≤ j ≤ r ′ with Hi ≤ H ′
j and

Vi ≤ V ′
j .

15 / 49

Outline

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

Reducing I/Os for Task Graphs

16 / 49

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

16 / 49

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

16 / 49

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

SP2
SP1

16 / 49

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

SP1

SP2

SP2
SP1

17 / 49

First Step: Parallel-Chain Graphs

emin
i

umin
i vmin

i

s t

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma

There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en

2. Apply Liu’s algorithm on resulting trees

17 / 49

First Step: Parallel-Chain Graphs

emin
i

vmin
iumin

i

ts

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma

There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en

2. Apply Liu’s algorithm on resulting trees

17 / 49

First Step: Parallel-Chain Graphs

S T

umin
i vmin

i

ts

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma

There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en

2. Apply Liu’s algorithm on resulting trees

18 / 49

Algorithm for General Series-Parallel Graphs

▶ Follow recursive definition of the graph
▶ Simultaneously compute minimal cut and optimal schedule
▶ Replace subgraph by linear chain corresponding to the schedule

G1 G2

series composition: G1

G2

parallel composition:

Heuristic method for general graphs

▶ Transform graph into SP-graph by adding synchronisation points

▶ Compute optimal schedule on obtained SP-graph

19 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

20 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

21 / 49

Model for Parallel Tree Processing

▶ p identical processors

▶ Shared memory of size M

▶ Task i has execution times pi
▶ Parallel processing of nodes ⇒ larger memory

▶ Trade-off time vs. memory

27 3

45

8

1332

12 15

22 / 49

NP-Completeness in the Pebble Game Model

Background:

▶ Makespan minimization NP-complete for trees (P|trees|Cmax)

▶ Polynomial when unit-weight tasks (P|pi = 1, trees|Cmax)

▶ Pebble game polynomial on trees

Pebble game model:

▶ Unit execution time: pi = 1

▶ Unit memory costs

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at
most C steps is NP-complete.

23 / 49

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan Cmax,
M × Cmax ≥ 2(n − 1)

Proof: each edge stays in memory for at least 2 steps.

23 / 49

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan Cmax,
M × Cmax ≥ 2(n − 1)

Proof: each edge stays in memory for at least 2 steps.

24 / 49

Space-Time Tradeoff – Proof

root

a1

b1,1 b1,2

...

b1,m

a2

b2,1 b2,2

...

b2,m

. . . am

bm,1 bm,2

...

bm,m

▶ With m2 processors: C ∗
max = 3

▶ With 1 processor, sequentialize the ai subtrees: M
∗ = 2m

▶ By contradiction, approximating both objectives:
Cmax ≤ 3α and M ≤ 2mβ

▶ But M × Cmax ≥ 2(n − 1) = 2m2 + 2m

▶ 2m2 + 2m ≤ 6mαβ

▶ Contradiction for a sufficiently large value of m

25 / 49

Complexity – Summary

For task trees:

▶ Optimizing both makespan memory is NP-Complete
⇒ Same for minimizing makespan under memory budget

▶ No scheduling algorithm can be a constant factor approximation on
both memory and makespan

26 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

27 / 49

Processing DAGs with Limited Memory

▶ Schedule general graphs

▶ On a shared-memory platform
memory

First option: design good static scheduler:

▶ NP-complete, non-approximable

▶ Cannot react to unpredicted changes in the platform
or inaccuracies in task timings

Second option:

▶ Limit memory consumption of any dynamic scheduler
Target: runtime systems

▶ Without impacting too much parallelism

28 / 49

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

Reducing I/Os for Task Graphs

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

29 / 49

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

30 / 49

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

Reducing I/Os for Task Graphs

31 / 49

Computing the maximum memory peak

Topological cut: (S ,T) with:

▶ S include the source node, T include the target node

▶ No edge from T to S

▶ Weight of the cut = weight of all edges from S to T

A

B

C

D

E

F

1

2

3

4

5

1

5

Any topological cut corresponds to a possible state when all node in S are
completed or being processed.

Two equivalent questions (in this model):

▶ What is the maximum memory of any parallel execution?

▶ What is the topological cut with maximum weight?

32 / 49

Computing the maximum topological cut

Literature:

▶ Lots of studies of various cuts in non-directed graphs ([Diaz,2000] on
Graph Layout Problems)

▶ Minimum cut is polynomial on both directed/non-directed graphs

▶ Maximum cut NP-complete on both directed/non-directed graphs
([Karp 1972] for non-directed, [Lampis 2011] for directed ones)

▶ Not much for topological cuts

Theorem.

Computing the maximum topological cut of a DAG can be done in
polynomial time.

33 / 49

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

min
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j ≥ pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

33 / 49

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

min
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j ≥ pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

33 / 49

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

max
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j = pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

33 / 49

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

max
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j = pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

34 / 49

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

34 / 49

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

34 / 49

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

34 / 49

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

34 / 49

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

35 / 49

Summary

Predict the maximal memory of any dynamic scheduling
⇔

Compute the maximal topological cut

Two algorithms:

▶ Linear program + rounding

▶ Direct algorithm based on MaxFlow/MinCut

36 / 49

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

Reducing I/Os for Task Graphs

37 / 49

Coping with limiting memory

Problem:

▶ Limited available memory M

▶ Allow use of dynamic schedulers

▶ Avoid running out of memory

▶ Keep high level of parallelism (as much as possible)

Possible solution:

▶ Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

▶ Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

37 / 49

Coping with limiting memory

Problem:

▶ Limited available memory M

▶ Allow use of dynamic schedulers

▶ Avoid running out of memory

▶ Keep high level of parallelism (as much as possible)

Possible solution:

▶ Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

▶ Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

37 / 49

Coping with limiting memory

Problem:

▶ Limited available memory M

▶ Allow use of dynamic schedulers

▶ Avoid running out of memory

▶ Keep high level of parallelism (as much as possible)

Possible solution:

▶ Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

▶ Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

38 / 49

Problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V ,E) and a bound M, find a set of new edges E ′ such
that G ′ = (V ,E ∪ E ′) is a DAG, MaxMem(G ′) ≤ M and CritPath(G ′) is
minimized.

Theorem.

PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G which uses
at most a memory M.

39 / 49

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

Reducing I/Os for Task Graphs

40 / 49

Heuristic solutions for PartialSerialization
Framework:
(inspired by [Sb̂ırlea et al. 2014])

1. Compute a max. top. cut (S ,T)

2. If weight ≤ M : exit with success

3. Add edge (u, v) with u ∈ T , v ∈ S without
creating cycles (or fail)

4. Goto Step 1

S

s t

T

v

u

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule, always
succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize

41 / 49

Simulations – Pegasus workflows (LIGO 100 nodes)

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
o
rm

al
iz
ed

cr
it
ic
al

p
a
th

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

▶ Median ratio MaxTopCut / DFS ≈ 20

▶ MinLevels performs best, RespectOrder always succeeds

▶ Memory divided by 5 – critical path multiplied by 3

41 / 49

Simulations – Pegasus workflows (LIGO 100 nodes)

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
o
rm

al
iz
ed

cr
it
ic
al

p
a
th

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

▶ Median ratio MaxTopCut / DFS ≈ 20

▶ MinLevels performs best, RespectOrder always succeeds

▶ Memory divided by 5 – critical path multiplied by 3

42 / 49

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Reducing I/Os for Task Graphs

43 / 49

Platform model

▶ Memory too scarce to accomodate all (input) data

▶ Data initially on a large, slow storage

main memory

PCI express bus

CPU

GPU

GPU
memory

GPU
memory

GPUs provide large speed-ups for reduced energy, but:

▶ limited memory within GPU

▶ connected through bus with limited bandwidth

44 / 49

Dynamic view of a task graph

At any time step: consider only available tasks

▶ Independant tasks

▶ Sharing some input data

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

→ bipartite graph between data and tasks

44 / 49

Dynamic view of a task graph

At any time step: consider only available tasks

▶ Independant tasks

▶ Sharing some input data

→ bipartite graph between data and tasks

45 / 49

Dynamic scheduling of task graphs

▶ Tasks appear over time (task graph discovered at runtime)
▶ Two questions:

▶ Partition tasks among GPUs
▶ Order task on each GPUs

▶ When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

▶ When memory is full: evict data Eviction policy

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

Two sorted sets of tasks per GPU (FIFO):

1. TaskBuffer: tasks definitively allocated on a GPU
(data possibly being prefetched)

2. PlannedTasks: good candidate tasks for a GPU

45 / 49

Dynamic scheduling of task graphs

▶ Tasks appear over time (task graph discovered at runtime)
▶ Two questions:

▶ Partition tasks among GPUs
▶ Order task on each GPUs

▶ When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

▶ When memory is full: evict data Eviction policy

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

Two sorted sets of tasks per GPU (FIFO):

1. TaskBuffer: tasks definitively allocated on a GPU
(data possibly being prefetched)

2. PlannedTasks: good candidate tasks for a GPU

46 / 49

DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

How to fill PlannedTasksk when needed:

1. Concentrate on data, choose “best” data to load

2. Look for tasks that GPUk can do with D + its current data

3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

4. Break ties with task priorities (critical path)

5. Put all “enabled” tasks in PlannedTasksk
T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

46 / 49

DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks TaskBu↵er GPU

M
em

or
y

32

12 1527 3

45

8

13

How to fill PlannedTasksk when needed:

1. Concentrate on data, choose “best” data to load

2. Look for tasks that GPUk can do with D + its current data

3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

4. Break ties with task priorities (critical path)

5. Put all “enabled” tasks in PlannedTasksk
T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

47 / 49

Custom eviction policy

Existing cache management policies:

▶ With no information about future tasks/requests:
simple policies based on past usage, eg. Last Recently Used (LRU)

▶ With perfect information on future accesses:
Belady’s rule (1966): evict data with furthest access

In our system:

▶ No complete vision of the future /
▶ Window of allocated tasks and planned tasks ,

Eviction policy for DARTS:

1. Remove data used by fewest tasks in PlannedTasks

2. If needed, apply Belady’s rule on TaskBuffer

48 / 49

Performance on memory-limited GPUs

▶ Cholesky factorization on 2 GPUs

▶ Green vertical line: matrix uses all available memory

49 / 49

Summary and Perspectives

▶ DAGs: convenient way to model structured computations, can include
memory demand

▶ Polynomial algorithms to limit memory for simple graphs: trees, SP
(sequential scheduling)

▶ Parallel processing: trade-off memory vs. disk, NP-complete even for
trees, but workarounds exist!

▶ Other models exist:
▶ Memory demand for computation
▶ Output data shared by several successors

▶ Other problems:
▶ If memory too scarce, store data on disk, minimize I/Os
▶ Or delete data and recompute it later

(“offloading” in neural network training)

49 / 49

Summary and Perspectives

▶ DAGs: convenient way to model structured computations, can include
memory demand

▶ Polynomial algorithms to limit memory for simple graphs: trees, SP
(sequential scheduling)

▶ Parallel processing: trade-off memory vs. disk, NP-complete even for
trees, but workarounds exist!

▶ Other models exist:
▶ Memory demand for computation
▶ Output data shared by several successors

▶ Other problems:
▶ If memory too scarce, store data on disk, minimize I/Os
▶ Or delete data and recompute it later

(“offloading” in neural network training)

	Task Graph Scheduling vs. Limited Memory
	Minimizing Memory for Task Graphs
	Minimizing Memory for Task Trees
	Minimizing Memory for SP-Graphs

	Shared Memory of Parallel Processing
	Complexity and Space-Time Tradeoffs for Trees
	Processing DAGs with Limited Memory

	Reducing I/Os for Task Graphs

