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Taming HPC platforms with runtime systems

» Write your application as function calls (tasks),
» Specify data input/output (dependencies)

TRSM_10

TRSM2.0

» Provide function codes for specific cores/GPUs

» Let the system do the scheduling at runtime!

SYRK 3.0 SYRK 2.0

Cholesky_decomposition(A):
for(k=0; k<N; k++)
A k] [k]=POTRF (A [k] [k])
for (m=k+1; m<N; m++)
Alm] [k]=TRSM(A[K] [k], Alm][k])

for(n=k+1; n<N; n++) /
A[n] [n]=SYRK(A[n] [k], A[n][nl) LY
for (m=n+1; m<N; m++) ‘
A[m] [n] +=GEMM (A [m] [k],A[n] [k])
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Cholesky_decomposition(A):
for(k=0; k<N; k++)
A k] [k]=POTRF (A [k] [k])
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Alm] [k]=TRSM(A[K] [k], Alm][k])
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for (m=n+1; m<N; m++)
A[m] [n] +=GEMM (A [m] [k],A[n] [k])

Graph of tasks: Directed Acyclic Graph (DAG)
» Tasks linked with data dependency
» Wide literature on DAG scheduling

» What about memory and data movements (1/Os) ? 4/



Task graph scheduling and memory

» Consider a simple task graph
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Task graph scheduling and memory

» Consider a simple task graph

» Tasks have durations and memory demands

=1
=

» Peak memory: maximum memory usage

Processor 2:

Processor 1: A

time

» Trade-off between peak memory and makespan
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Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory
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Pebble game for register allocation (reminder)

» From the 70s: limit usage of scarce registers g

> Model expressions as Directed Acyclic Graphs é % é \@

BG-z)x(1+x+y)
Rules of the game:
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Pebble game for register allocation (reminder)

» From the 70s: limit usage of scarce registers G/

> Model expressions as Directed Acyclic Graphs é g é \@

X (1+x+y)
Rules of the game:

» A pebble may be placed on a source node at any time (LOAD)

> If all predecessors of v are pebbled, a pebble may be placed on v.
(COMPUTE)

» A pebble may be removed from a vertex at any time. (EVICT)

» Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs -



Memory-Aware DAG Scheduling

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
Minimizing Memory for SP-Graphs
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Generalized Pebble Game

» Sparse matrix factorization

» Task graph: tree (with dependencies
towards the root)

AR, Mol 4o
g Mgk
| ]

P> Large temporary data

Generalized pebble game [Liu 1986]: —
» Node have heterogeneous weights (memory

demand)
(19)

» Compute task = replace inputs by outputs in
memory é % é ©

> output memory # »_ input memory

Memory
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Qutline

Minimizing Memory for Task Graphs
Minimizing Memory for Task Trees
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Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

» For each subtree T;: peak memory P;, residual memory f;

» For a given processing order 1,..., n, the peak memory is:

max{ P1,
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Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

» For each subtree T;: peak memory P;, residual memory f;

» For a given processing order 1,..., n, the peak memory is:
max{P1, i+ Pa, A+hHh+Ps, ..., fi+Pa Y fitn +1}
i<n

» Optimal order: non-increasing P; — f;
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Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in

non-increasing order P; — f;.

Proof:

» Consider an optimal traversal which does not respect the order:
» subtree j is processed right before subtree k

> Pe—fi>Pi—1

peak when j, then k

during first subtree

mem_before + P;

during second subtree

mem_before + f; + Py

> fi+ P < fi+ Pk

» Transform the schedule step by step without increasing the memory.
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Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.
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Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a

k-approximation.

» Minimum peak memory:
Mmin =M+ + (bfl)E

» Minimum post-order peak

memory:

Mmin =M + (b—1)M/b

actual assembly trees

random trees

Non optimal traversals
Maximum increase compared to optimal
Average increased compared to optimal

4.2%
18%
1%

61%
22%
12%
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Liu’s optimal traversal — sketch

» Recursive algorithm: at each step, merge the optimal ordering of each
subtree (sequence)
» Sequence: divided into segments:

H;: maximum over the whole sequence (hill)
Vi: minimum after H; (valley)

Hy: maximum after H;

Vo minimum after Hp

VVVYVYYVYY

The valleys Vs are the boundaries of the segments

» Combine the sequences by non-increasing H — V

» Complex proof based on a partial order on the cost-sequences:
(Hi, Vi, Ho, Vo, ... H V) < (Hy, VI, HG, VG, HLL VL)
if for each 1 </ < r, there exists 1 < j < r' with H; < HJf and
Vi<V,

14 /49



Qutline

Minimizing Memory for Task Graphs

Minimizing Memory for SP-Graphs
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Series-Parallel Graphs: Motivation

NN A

» Not all scientific workflows are trees
» But most workflows exhibit some regularity
» Large class of workflows: Series-Parallel graphs
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Series-Parallel Graphs: Motivation
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First Step: Parallel-Chain Graphs

UF"in V/‘min
Edge using the minimum amount of memory, on each chain: eq,...,e,.
Lemma
There exists an schedule with minimal memory stopping on edges
€1,...,€n.
1. Split the graph on minimal cut ey, ..., e,

2. Apply Liu's algorithm on resulting trees
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Algorithm for General Series-Parallel Graphs

» Follow recursive definition of the graph

» Simultaneously compute minimal cut and optimal schedule

» Replace subgraph by linear chain corresponding to the schedule
parallel composition:

series composition: /@
\
—@O Gy
oo oo o ofe o oo /H—0+0—0—.\
Heuristic method for general graphs

» Transform graph into SP-graph by adding synchronisation points
» Compute optimal schedule on obtained SP-graph

8/49



Memory-Aware DAG Scheduling

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory
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Model for Parallel Tree Processing

p identical processors

Shared memory of size M

>

>

» Task /i has execution times p;

» Parallel processing of nodes = larger memory
>

Trade-off time vs. memory

i

21 /49



NP-Completeness in the Pebble Game Model

Background:
» Makespan minimization NP-complete for trees (P|trees|Cnax)
» Polynomial when unit-weight tasks (P|p; = 1, trees| Ciax)

» Pebble game polynomial on trees

Pebble game model:
P Unit execution time: p; =1

» Unit memory costs

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at
most C steps is NP-complete.

22 /49



Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an a-approximation for
makespan minimization and a S-approximation for memory peak
minimization when scheduling tree-shaped task graphs.
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Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an a-approximation for
makespan minimization and a S-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan Cyax,
M x Cpax > 2(n—1)

Proof: each edge stays in memory for at least 2 steps.
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Space-Time Tradeoff — Proof

v

v

root

b1 b bym b1 bap bom bm1 bm2 b

With m? processors: C*. =3
With 1 processor, sequentialize the a; subtrees: M* =2m

By contradiction, approximating both objectives:
Chax <3 and M <2mp

But M x Cnax >2(n—1) =2m? +2m
2m? 4+ 2m < 6maf

Contradiction for a sufficiently large value of m

24 / 49



Complexity — Summary

For task trees:

» Optimizing both makespan memory is NP-Complete
= Same for minimizing makespan under memory budget

» No scheduling algorithm can be a constant factor approximation on
both memory and makespan

25 /49



Memory-Aware DAG Scheduling

Shared Memory of Parallel Processing

Processing DAGs with Limited Memory
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Processing DAGs with Limited Memory

» Schedule general graphs

» On a shared-memory platform ‘

memory ‘

First option: design good static scheduler:
» NP-complete, non-approximable

» Cannot react to unpredicted changes in the platform
or inaccuracies in task timings

Second option:

» Limit memory consumption of any dynamic scheduler
Target: runtime systems

> Without impacting too much parallelism

27 / 49



Part 3: Memory-Aware DAG Scheduling

Shared Memory of Parallel Processing

Processing DAGs with Limited Memory

Model and maximum parallel memory

28 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

29 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

SO OF
B¢ MON

29 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

BOSmOF
o NON

29 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

BOSmOF
B¢ NON

29 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

29 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

NOeON
LN\ LB
QX@#@Y

29 / 49



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m; ;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

29 / 49



Part 3: Memory-Aware DAG Scheduling

Shared Memory of Parallel Processing

Processing DAGs with Limited Memory

Maximum parallel memory/maximal topological cut

30/ 49



Computing the maximum memory peak

Topological cut: (S, T) with:
» S include the source node, T include the target node
» No edge from T to S
» Weight of the cut = weight of all edges from S to T

Any topological cut corresponds to a possible state when all node in S are
completed or being processed.
Two equivalent questions (in this model):

» What is the maximum memory of any parallel execution?

» What is the topological cut with maximum weight? /40



Computing the maximum topological cut

Literature:

» Lots of studies of various cuts in non-directed graphs ([Diaz,2000] on
Graph Layout Problems)

» Minimum cut is polynomial on both directed/non-directed graphs

» Maximum cut NP-complete on both directed/non-directed graphs
([Karp 1972] for non-directed, [Lampis 2011] for directed ones)

» Not much for topological cuts

Theorem.

Computing the maximum topological cut of a DAG can be done in
polynomial time.

32 /49



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum cut:
min Z m; jd; j
(iJ)eE
V(i,j) € E, dij > pi—p;
v(i,j) € E, d,'JZO
ps=1, p+=0
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Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum cut:
maxXx Z m;Jd;J
(iJ)eE
V(i,j) € E, dij=pi—p
v(i,j) € E, C/,'JZO
ps=1, p+=0

» Integer solution < topological cut

v

Then change the optimization direction (min — max)

» Draw w uniformly in ]0, 1], define the cut such that
Sw={ilpi>w}, Tu={i|pi<w}

» Expected cost of this cut = M* (opt. rational solution)

v

All cuts with random w have the same cost M* 33 /49



Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

» |dea: use an optimal algorithm for Max-Flow

Algorithm sketch

Build a large flow F on the graph G
Consider G with edge weights /- ; — rn.,-J
Compute a maximum flow maxdiff in G

F — maxdiff is a minimum flow in G

o s~ WD

Residual graph — maximum topological cut mijl MinFlow; j

Complexity: same as maximum flow, e.g., O(|V|?|E|)
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Summary

Predict the maximal memory of any dynamic scheduling
=4
Compute the maximal topological cut

Two algorithms:
» Linear program + rounding
» Direct algorithm based on MaxFlow/MinCut
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Part 3: Memory-Aware DAG Scheduling

Shared Memory of Parallel Processing

Processing DAGs with Limited Memory

Efficient scheduling with bounded memory

36 /49



Coping with limiting memory

Problem:
» Limited available memory M
> Allow use of dynamic schedulers
» Avoid running out of memory
» Keep high level of parallelism (as much as possible)
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Possible solution:

> Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

» Minimize the obtained critical path
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Problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V, E) and a bound M, find a set of new edges E’ such
that G’ = (V,EUE’) is a DAG, MaxMem(G') < M and CritPath(G') is
minimized.

Theorem.
PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule o of G which uses
at most a memory M.
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Part 3: Memory-Aware DAG Scheduling

Shared Memory of Parallel Processing

Processing DAGs with Limited Memory

Heuristics and simulations
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Heuristic solutions for PARTIALSERIALIZATION

Framework:

(inspired by [Sbirlea et al. 2014]) ,,’ 5 ‘
1. Compute a max. top. cut (S, T) , v
2. If weight < M : exit with success &»é‘io
3. Add edge (u, v) with u € T, v € S without N

creating cycles (or fail) S %@ T

4. Goto Step 1

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule, always
succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize
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Simulations — Pegasus workflows (LIGO 100 nodes)

i ---------I

15

lower is
better

Normalized critical path

" g 0 " 4 g g 0 g
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 : 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut

Heuristic E3 MINLEVELS E RESPECTORDER -] MAXMINS1ZE £ MAXS1ZE

» Median ratio MaxTopCut / DFS ~ 20
» MinLevels performs best, RespectOrder always succeeds
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Simulations — Pegasus workflows (LIGO 100 nodes)

i ---------I

15

lower is
better

Normalized critical path

" g 0 " 4 g g 0 g
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 : 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut

Heuristic E3 MINLEVELS E RESPECTORDER -] MAXMINS1ZE £ MAXS1ZE

» Median ratio MaxTopCut / DFS ~ 20
» MinLevels performs best, RespectOrder always succeeds
» Memory divided by 5 — critical path multiplied by 3
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Memory-Aware DAG Scheduling

Reducing |/Os for Task Graphs
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Platform model

» Memory too scarce to accomodate all (input) data

» Data initially on a large, slow storage

GPU
memory

fokodc]
&8
aSEa
e
&8

SESEHE

GPU
memory

PCl express bus

main memory

CPU

GPUs provide large speed-ups for reduced energy, but:

» Jimited memory within GPU
» connected through bus with limited bandwidth
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Dynamic view of a task graph

At any time step: consider only available tasks
» Independant tasks
» Sharing some input data

T’K/SM,JJ\‘ /msx;,z,,

SYRK_3_1 GEMM_3_2_1 SYRK_2_1

}m
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Dynamic view of a task graph

At any time step: consider only available tasks
» Independant tasks
» Sharing some input data

TRLLD
e TRSM 50 - SYRK_1.0 \ msM20

— bipartite graph between data and tasks
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Dynamic scheduling of task graphs

» Tasks appear over time (task graph discovered at runtime)

» Two questions:

» Partition tasks among GPUs

» Order task on each GPUs

» When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

» When memory is full: evict data Eviction policy

PlannedTasks

/

TaskBuffer
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Dynamic scheduling of task graphs

» Tasks appear over time (task graph discovered at runtime)

» Two questions:

» Partition tasks among GPUs

» Order task on each GPUs

» When task input data not on GPU: load it from main memory
(possibly before the execution: prefetching)

» When memory is full: evict data Eviction policy

PlannedTasks

4

TaskBuffer

Two sorted sets of tasks per GPU (FIFO):
1. TaskBuffer: tasks definitively allocated on a GPU

(data possibly being prefetched)

2. PlannedTasks: good candidate tasks for a GPU
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DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks

TaskBuffer

How to fill PlannedTasks, when needed:

1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPU can do with D + its current data

3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

N

. Break ties with task priorities (critical path)

5. Put all “enabled” tasks in PlannedTasksy

eVl
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DARTS (Data-Aware Reactive Task Scheduling)

PlannedTasks > TaskBuffer

How to fill PlannedTasks, when needed:
1. Concentrate on data, choose “best” data to load
2. Look for tasks that GPU can do with D + its current data
3. Choose data with largest ratio:

computation time of tasks enabled with D

time needed to transfer data D

4. Break ties with task priorities (critical path)
5. Put all “enabled” tasks in PlannedTasksy

Y
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Custom eviction policy

Existing cache management policies:

» With no information about future tasks/requests:
simple policies based on past usage, eg. Last Recently Used (LRU)

> With perfect information on future accesses:
Belady's rule (1966): evict data with furthest access

In our system:
» No complete vision of the future @
» Window of allocated tasks and planned tasks ©

Eviction policy for DARTS:
1. Remove data used by fewest tasks in PlannedTasks

2. If needed, apply Belady's rule on TaskBuffer
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Performance on memory-limited GPUs

25000 4

20000 4

Performance (GFlop/s)

5000 1

15000 4

10000 4

starPU with DARTS

starPU
ParSec

natural task order

20000 40000 60000 80000 100000 120000
matrix size

» Cholesky factorization on 2 GPUs

» Green vertical line: matrix uses all available memory

48 / 49



Summary and Perspectives

> DAGs: convenient way to model structured computations, can include
memory demand

» Polynomial algorithms to limit memory for simple graphs: trees, SP
(sequential scheduling)

» Parallel processing: trade-off memory vs. disk, NP-complete even for
trees, but workarounds exist!
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Summary and Perspectives

> DAGs: convenient way to model structured computations, can include
memory demand

» Polynomial algorithms to limit memory for simple graphs: trees, SP
(sequential scheduling)

» Parallel processing: trade-off memory vs. disk, NP-complete even for
trees, but workarounds exist!

» Other models exist:

» Memory demand for computation
» Output data shared by several successors

» Other problems:
> |If memory too scarce, store data on disk, minimize 1/Os
» Or delete data and recompute it later

(“offloading” in neural network training)
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