Cours ENSL:
Big Data — Streaming, Sketching, Compression

Olivier Beaumont, Inria Bordeaux Sud-Ouest
Olivier.Beaumont@inria.fr

Introduction

Positioning: Memory Aware Complexity of Algorithms

w.r.t. traditional courses on algorithms

e Exact algorithms for polynomial problems

e Approximation algorithms for NP-Complete problems

e Potentially exponential algorithms for difficult problems (going through an
ILP for example)

e Here, we will consider extreme contexts

e not enough space to transmit input data (sketching) or
e not enough space to store the data stream (streaming)
e not enough time to use an algorithm other than a linear complexity one

Compared to the more "classical” context of algorithms:

e we aim at solving simple problems and
e we are looking for approximate solutions only because we have very strong
time or space constraints.

Disclaimer: it is not my research topic, but | like to look at the
sketching/streaming papers and | am happy to teach it to you!

Application Context 1: Internet of Things (loT)

e Connected objects, which take measurements
e The goal is to aggregate data.

e Processing can be done either locally, or on their way (fog computing), or
in a data center (cloud computing).
e \We must be very energy efficient

e because objects are often embedded without power supply.

e Energy cost: Communication is the main source of energy consumption,
followed by memory movements (from storage), followed by computations
(which are inexpensive)

e A good solution is to do as many local computations as possible!

e but it is known to be difficult (distributed algorithms)
e especially when the complexity is not linear (e.g. think about quadratic
complexity)

e Solution:

e compress information locally (and on the fly)
e only send the summaries; summaries must contain enough information!

Application Context 2: Datacenters

e Aggregate construction

e except the network (we can have several levels + infiniband), everything is
"linear”

e the distance between certain nodes/data is very large but a strong
proximity with certain data stored on disk

e with 1,000 nodes with 1TB of disk and a link at 400 MB/s, we have 1 PB
and 400 GB/s (higher than with a HPC system)

e provided the data is loaded locally !

e for 25 TF/s (10°25GFs seti@home) in total, ratio 60 (HPC system 40 000)

e in practice, dedicated to linear algorithms and very inefficient for other
classes.

e In both contexts, there is a strong need to have data driven algorithms
(where placement is imposed by data) whose complexity is linear

Outline of the lectures

e Keywords:

e Compression, Hashing, Randomized Approximation Algorithms

1. Lecture 1: Two basic theoretical problems

e Lecture 2: with known lower and upper + randomized and deterministic
bounds

2. Lecture 3: Big Data example: Plagiarism detection
e randomized algorithm + Locality Sensitive Hashing
3. Lecture 4: Randomized Linear Algebra

e compression beyond Singular Value Decompositions for very large matrices

e Shared Problems

e Not enough space to store input data

e Not enough space/time to implement something else than low (linear)
complexity algorithms

e Need for very cheap (online) but dedicated compression algorithm

Sketching — Streaming

Sketching - Streaming — Context

e large volume of data generated in a distributed way
e to be processed locally and compressed before transmission.
e Types of compression?

e |ossless compression

e compression with losses

e compression with losses, but tightly controlled loss for a specific function
(sketching)

e + we are going to do online (on the fly) compression (streaming)

On-the-fly compression dedicated to a function f

e Let X be a stream of numbers (temperatures from a sensor)
e Easy problems?

e examples: min, max, Y, mean value median?
e Constraint: compress data and linearize computations

e How?

e The solution is often to switch to randomized approximation algorithms.

Compression associated to a specific function f

e More formally, given f and a stream X,

e we want to compress the data X but still be able to compute ~ 7(X) .
e Sketching: we are looking for Cr and g such that

e the storage space Cr(X) is small (compression)

e from f(X), we can recover f(X), ie g(Cr(X)) =~ f(X)
e Streaming: additional difficulty, the update is performed on the fly.

e we cannot compute Cr({X,y}) from {X,y}

e because we cannot store {X,y}

e so we need another function h such that . h(Cr(X),{y}) = Gc({X,y})

e and one last difficulty:

e very often, it is impossible to do in deterministic and exact / deterministic
and approximate

e but only with a randomized and approximation algorithm.
e How to write this 7
e We are looking for an estimator Z such that for given o and €
o Pr(|Z — f(X)| > ef(X)) < a. How to read this?
e the probability of making a mistake by a ratio greater than e (as small as you
want)
e is smaller than « (as small as you want)

Count the number of visits

Example: count the number of visits / packets

e Context
e a sensor/router sees packets / visits passing through,....
e you just want to maintain elementary statistics (number of visits, number of
visits over the last 1 hour, standard deviations)
e Here, we simply want to count the number of visits

e What storage is necessary if we have n visits? log n bits. Why ?
Pigeonhole principle. If we have strictly less than log n bits, then we have
two events (among the n) that will be coded in the same way.

e What happens if we only allow an approximate answer (say, to a factor of
p <2)?7 you need at least loglog n bits. Why 7 sketch of the proof: if we
use t < loglog n bits, then we will be able to distinguish less than log n
different groups and you can estimate how many groups are needed to
count {0},{0,1},{0,1,2},{0,1,...,7}.

e We will look for a randomized and approximated solution

e Let usset o and ¢

e we are looking for an algorithm that computes 7, an approximation of n
e that only uses K loglog n bits storage

e and such that Pr(|fi—n| > en) < «

e K must be a constant...not necessarily a small constant for now!

10

Crash Course in probabilities

Z random variable with positive values

E(Z) is the expectation of Z
definitions and properties ?
o E(Z) JAP(Z = N)dA or E(Z) = ¥, jP(Z = j)
o E(Z)=[P(Z>\d\or E(Z) =Y, P(Z >)
° E(aX + bY) =aE(X) + bE(Y)
e total probabilities (with conditioning) E(Z) = >_; E(ZIY = j)P(Y =)
e To measure the distance from Z to E(Z), we use the variance V(Z)
Definition?
V(Z) = E(Z - E(2))?) = E(2%) - E(2)?
Properties:
V(aZ) = a?V(2)
In general, V(X + Y) # V(X) + V(Y) (but it is true if X and Y are
independent random variables)
e How to measure the difference between Z to E(Z)?
1. Markov: Pr(Z > X) < E(Z)/X
2. Chebyshev: Pr(1Z — E(Z)| > AE(2)) < 5225
3. Chernoff: If Z1,...,Z, are Independent Bernouilli rv with p; € [0.1] and
Z =57, then
Pr(|Z — E(Z)] > AE(Z)) < 2exp(=XE@)).
= = 3

11

Morris Algorithm: Counting the number of events

e Step 1: Find an estimator Z

e Z must be small (of order of loglog n)
e we need to define an additional function g
e such that E(g(Z2))=n

e Morris algorithm
e Z—0

e At each event, Z — Z + 1 with probability 1/2Z
e When queried, return g(Z) = 2% — 1

e What is the space complexity to implement Morris' algorithm?

e What is the time complexity in the worst case? What is the expected
complexity of a step?

e Prove the correctness: E(2%" — 1) = n (note Z, the random variable that
denotes Z after n events) Hint: by induction, assuming that
E(2%") = n+ 1 and showing that E(2%1) = n+2

e How to find a probabilistic guarantee of the type
Pr(|f(Z.) = /i — n| > en) < a? Hint Prove E(2%") =3/2n* +3/2n + 1.

e Conclusion? Is this unexpected ?

12

From Morris to Morris+ and Morris+++

2nd step: How to get a useful bound?

e Objective: to reduce the variance (the expectation is already what we
want). How to do it?

e Classic idea: do the same experience many times and average them

e Morris algorithm +
e Morris is used to compute independent Z,(,l), Z,(,Z), e Z,(,K)
K o280
e On demand, compute Y, = # — 1.
e Questions:

e Which space complexity to implement Morris+'s algorithm?

e What time complexity?

e Establish the correctness: E(2¥» —1) =n

e What is the new guarantee obtained with Chebyshev? How many counters
should be maintained?

e How can we do even better?

e Morris++ = Morris+(1/3) and median

e proof with Chernoff: If Z3,...,Z, are Independent Bernouilli rv with
pi € [0.1] and Z = > Z;, then

Pr(|Z — E(Z)| > AE(Z)) < 2exp(7A23E(Z)).

13

How to count the number of unique
visitors

2nd example: how to count the number of unique visitors

Context

e It is assumed that visitors are identified by their address (ix € [1, n])
e We observe a flow of m visits i, ..., im with ix € [1, n]

e How many different visitors ?

e Deterministic and trivial algorithms:
e if nis small, if nis big... and in front of what?
e solution in n:n bit array
e solution in mlog n: we keep the whole stream!

e We will see a bit later

e that we cannot do better with exact and deterministic algorithms
e that we cannot do better with approximated and deterministic algorithms

e How to do if you cannot store n bits
e but only O(Iogk n) for a certain k?
e we will see that it is again possible by using both randomization and
approximation.
e and that no deterministic exact or deterministic approximation can do it
with this space constraint.

14

Idealized algorithm (1) — Flajolet Martin

We will start with an idealized algorithm (which cannot be implemented in
practice).

e Let us choose a random h function from [1, n] to [0, 1]
e Why idealized?
e Problem 1: to store such a random function, you must define the images for
in each of the n points... at least Q(n) bits
e Problem 2: and in addition we would have to store real values!
e We will come back to these two problems in a moment....
e Let us assume for now that storing such a function costs ©(1)

e How do you keep track of the number of unique visitors?

We will keep Z — min;cstream h(i). Intuition?
e If you see the same visitor k times, it won't change Z
o If we see t different visitors, then the values taken by h split [0,1] in t + 1
intervals...and all should have the same size in expectation... and this size is

i1 g q 5
=) including the first !

e so you should return % -1

15

Idealized algorithm (2) — Flajolet Martin

Proof of correctness

o Let's prove that E(Z) = ﬁ

o £(2)=[;"™ P(Z>N)oA

° Show that E(Z) = m

e How to continue? by calculating the variance and applying Chebychev

e Prove that E(Z2) = m

e There is still one foolishness not to be said . E(1/Z) #1/E(2)

e Intuition: if we can control closely Z and 1/Z — 1 will be close to t
e FM+

e Let us maintain g = FM instances.

e Z; is the value produceg by FM;

H»l’

e What to return? Y = (Zqz)/ !
XizZiy_ 1
L] E(#) —t+1
21Ziy _ t E2)?
° V(:) q(t+1)2(t+2) < q
e Claim 1: P(IY — 251> :5) <n
e Claim2: P(I3 —1—t/ > ©(e)t) < n
e FM++
e choose n = %adapt €, instantiate K copies of Y Yi,..., Yk

e output median{%} Ok for K = [36 Iog(%)]
16

Toward a Non Idealized Version. A crucial tool: hashing functions

e We used the set of all possible functions (too large set, too large storage
for one function)

To make it practical, we will consider a large (not too large) family of
functions H from [1, p] — [1, p]

How to define the quality of a family H?
Notion of k-wise independence
o Vir,...,ik,Vj1,...,jk, ix # i, and if we pick a random h function in H, then
o P(h(i1) = j1 and h(ix) = jx) 1/p*
e a larger k provides a "better” family
Examples:
1. the set of all functions from [1, p] — [1, p] is Ok.
e What k, what storage cost?
e f(1) — p choices,..., f(p) — p choices
e Problem: expensive, plog p bits are necessary for one function
2. with the polynomials H";Oly of degree k — 1 in Fp
e evaluation cost? for degree k, k mult & and adds

e independence? how many polynomials such that (h(i1) = ji and h(ix) = jk
bk g X=ip

e exactly one, Lagrange polynomial: P = >_7 | by =] X jr

k

poly

is k—independent

e choice? picking a function at random in H — choose k coefficients.

e and thus the family Hy,

17

Why do we need randomization and approximation?

e Because a deterministic algorithm needs at least Q(n) bits

e How to prove this? We assume n = ©(m)

Let us consider the state of the memory of the algorithm after seeing
Myeonyim

We need to prove that there is enough information in what is stored
so as to differentiate 27 distinct elements

Remark: you can add as many computations as you want !

Input X, let us denote by Cr(X) the state on the memory

What can be computed using C¢(X) (and only C¢(X))?

we can compute h(Cr(X)) and h(Cr(X), {y}) = CG/(XU{y})

do it for all possible y values (visitors)...

If y was in the stream, then h(C¢(X),{y}) = h(Cr(X)) otherwise
B(Cr(X), {y}) = h(CF(X) + 1!

In C¢(X), there is enough information to distinguish 2" possible vectors (all
visitors vectors)

and thus n bits are needed!

18

Why do we need randomization and approximation?

e Because a deterministic approximation algorithm (say 1.1-approx) needs at

least Q(n) bits
e Let us suppose that there exists a collection C of subsets of n such that
e |C| is large (> exp(n/10%))
e VS €C,|S| =n/100 (sets are large)
o V51,5, €C?,1S1 N S2| < n/2000 (intersections are small)
e General idea
e Let us assume that we have presented to the algorithm
one of the sequences of C
e Then, we can find back which one! u
e just by trying exhaustively all #C sequences with C¢(X) B,
e Since we know how to differentiate exponentially many j

[(gg
(exp(n/10%)) elements, we need Q(n) bits “:'”j‘~~~

& TEEE
¥ D

L_hEUY L

e We still need to prove that such a set C exists ! &
e n visitors numbered from 1 to n split into n/100 packets of 100 visitors
In S;,Vi we randomly choose one visitor per packet
we build exp(n/10%) such sets S;.
easy: What is their size? n/100
we need to check that Vi, j, i # j,[Si(1S;j| < n/2000
How to do this ?it is enough to prove that the P(it works) is > 0
Why does it work ? Y; ; number of collisions between S; and S;
E(Yij) ? Pr(Y;j > n/2000) ? Pr(3i,jt.q.Y;; > n/2000) ? 19

Non Idealized FM (1)

e Stepl: find a O(1)-approximation £ of t in O(log n) bits, ie a constant C
such that & < £ < Ct with constant probability (say 3) this is the
subject of your homework !

20

Non ldealized FM (2)

Playing with constants, let us assume that Stepl provides a
32-approximation with probability %, then perform K experiments and take
the median to have 32-approx with large probability

To obtain a stronger approximation, we rely on the following technique
let us chose g in a 2 wise family from [n] to [n].
1. Imagine that we consider log n sets, with S; contains the elements i of the
stream s.t. Isb(g(i)) = j.
2. we know f (close to t), let us denote by Z the size of S; when 2/+1 ~ f¢?
3. and let consider U = 2717 in this case
E(U) =2"E(Z)=t, V(U) =27 Var(Z) < t2!
j+1 j+1 7
so that (Chebychev) P(IU — tl > et) < 2 = 2 & < ¢’
Then, we use several hashing functions and take the average value to

obtain an error with arbitrarily small probability

Not completely finished ! Is this algorithm implementable this time with
small space ?

No, because Sy is very large for instance ! But the maximum value we are
expecting in "interesting” S; is 557 = 21%% <5

Thus, we can "only” remember the first E% is each set !

Overall space complexity 7?7
21

Note on Non lIdealized FM (3)

e Technique called Geometric sampling

e n elements in the stream, k < n distinct elements (with respect to some
property)

e Store log n sub-streams, where Sy stores 1/2 of the elements (distinct wrt

the property), S stores 1/4 of the elements,... Siog « stores (close to) 1
element, Siogn a priori stores nothing if k << n

e Suppose that when there are | elements in one of the sets, we can find a

good estimation of k where typically / is of order }2

e Then, we bound all the sets to store less than 10/ elements (they are
useless after that)

e if we have a constant approximation of k (obtained elsewhere), then we
know in which set we should look at.

22

Finding Similar Itemsets

General Idea

2 type of difficulties related to

e the number of objects: N objects — N2 comparisons
e the objects themselves : large texts,...

Applications
e pages with a lot of text in common (mirror sites, approximate mirror)
e plagiarism (today)
e group news that deal with the same event
o Amazon, Netflix: users with the same taste
e dual: Amazon, Netflix: products with the same fans

we will concentrate on texts, the first step only is application specific

e Order of magnitude: 108 documents, size a few MB not huge (a few TB)
e Distributed over a datacenter: large number of nodes 103 — 10° nodes

Two goals:

e avoid moving data between the nodes (small and shared bandwidth)
e avoid performing 1012 comparisons: both for time and data movements

23

3 steps

1. Shingling : conversion of a large text into a (large) set
2. Min-hashing: assign to each text a (small) similarity-preserving signature
3. Locality Sensitive Hashing: detect suspect pairs by collision detection

e randomized approximation algorithm — errors: false positive and false
negative

e what is crucial in our context ? Complexity: we want to deal with linear
complexity algorithms only !

e Remark: we assume that the output is (at most) of linear size (otherwise,
we have no chance !)

24

Shingling

k—shingle
e sequence of k successive characters in the text
e {abcab}et k=27

Observation (admitted) close texts — a lot of shingles in common
e A text: represented by the set of shingles it contains

e How many shingles 7 with k = 10
e The data structure should enable to perform comparisons easily...
e 300 shingles = 2%°
e size if stored as a vector of bits 70 TB
e what happens in practice? Solution? shingles —> tokens
e first use of hashing functions: adapt the size, control collisions

25

Min-hashing

e Each text is associated to a set of items

e \We need to define a similarity between sets.
T _ anc
e Jaccard Similarity: Sim(Ci, G) = Ciuci

d(Ci,) =1— Sim(Cy, o) is a distance (proof later)
e one vector per document
e one row per token token

e How to compute the similarity between two documents ?

Problems:

e we do not want to deal with N2 pairs
e we cannot centralize all N pairs at a single node

26

e Let us suppose that (Ci, G;) are stored at the same place
e Goal: build a small similarity preserving signature for each document.

e General Idea: build a random game whose expected value (to win) is
Sim(C1, CQ)

e Do we really need to have (G, (2) at the same place to play the game ?
e Do we really need permutations ?

e How many hash functions do we need in order to obtain a good precision ?

27

Locality Sensitive Hashing

e So far: we have a very compact summary of each document (250 x 4B
integers= 1kB)

e Last step: given a suspicion threshold s € [0, 1], return all pairs (G,)
such that Sim(Cy, G;) > s

e Without doing all comparisons!
e Order of magnitude:

e 10° documents —» 1GO, Ok en mémoire
e 10'2 comparisons with 10~%s per comparison 12 days)-;

e Goal: go from quadratic to linear complexity
e using hash functions again and collision detection

e now, we want close vectors to collide, and distant vectors not to collide

28

locally sensitive hashing

e split the summary (250 integers) into b blocks of size r (rb = 250)
e let hy be the hash function associated to the k-th block

e collision: (almost) only if both vectors coincide on this block. Solution:
use a large number of buckets (with respect to 10°) — 10° is Ok in
practice, very few false positive.

e a pair (G, Gy) is suspicious if 3k, h(Bj) = hk(B?) where Bj, is the k—th
block of C;

e what happens ?

e if ris too small ? too many false positive
e if ris too big ? we will miss similar itemsets and get false negative

e Given r (and thus b) and s = Sim(Ci, G;), what is the probability that a

collision occurs ?

29

with N =100 and r = 3,4,5

0.2 0.4 0.6 0.8 1.0

false positive 7 false negative ?

30

with N = 1000 and r = 3,4,5

1.0}

0.8r

0.6

04 — 17(1755]200

0.2 _ 17'1754’)250
P T T 17(1753)10003

0.6 0.8 1.0

31

Practical implementation ?

distributed documents.

e keep everything local (until the computation of signatures)

e keep everything local (compute the hashing of each block) 1 document +
1 block — 4B !

e gather all information related to one block number to the same node (4B
+ 1B for the index) — 5MB

e detect all suspicious pairs (very few and send them to a specific node)...

e very few communications !

32

Locality Sensitive Hashing and
Nearest Neighbors Search

(k—) nearest neighbors

Metric space with distance, set P of points

preprocessing allowed on P
Query: given a point, find its (k) closest neighbor(s)

e example for spam classification: start with a huge annotated emails

e one word = one item

e return the k closest emails, majority vote to determine if it is spam or not
Approach # 1: no preprocessing, just look through all possible items

e space O(dn)

e query O(dn)

Approach # 2: if d=1

e space O(n) just keep the boundaries

e query O(log n) just a basic binary search
Approach # 3: if d=2

e Voronoi diagrams: space O(n) and computing cost O(nlog n)

e query time easy (locate the cell)

e As dimension increase, the description increases exponentially with d
all exact (known) approaches in high dimension either have
exponential space O(n9)
or exponential query time !

(same for kd—trees)
in very. large dimension, the naive algorithm is not that bad !

33

c—approximate nearest neighbors

e Given a set of P points, construct a data structure such that
e on query g, we return p in P such that
e d(p,q) < cminycp d(p',q)
e (r1,n)PLEB problem: point location in equal balls
e given a set P of points and r1,
construct a data structure to answer as follows
If 3p € P st d(p,q) < r, return YES and any p’ € P s.t. d(p’,q) < n
If there is no p € P st d(p,q) < r, return NO
elif don't care what algorithm returns

34

Locality Sensitive Hashing (Indyk, Motwani)

e Usually, we want hashing functions to "shuffle” items as much as possible
e When writing P(h(i1) = j1 & h(i2) = j1) = 1/p?, we say that the distance
between images should not depend on the distance between initial points
[]
e Here, we want to detect " collisions”

e we want close points to have a high probability to collide
e we want distant points to have a low probability to collide
e just as in the context of plagiarism.

General idea

e hash items into many different buckets (with different functions)
e declare that there is a collision if two items fall into of the buckets

Formal definition H a family of hash function U — S

(where U is the set of points, S the set of buckets)
is said to be (r1, r2, p1, p2) locality sensitive if

e If d(p,q) < r, then Ppey(h(p) == h(q)) > p1 and
e If d(p,q) > r2, then Pheqy(h(p) == h(q)) < p2

e of course nn < n, p1 > P

35

o Let HY = {0,1}¢ equipped with Hamming distance (number of different
coordinates)
o Let H = {h;,Vi, where hi(bs,...,bs) = bj}
o His(r,cr,1—r/d,1— cr/d) locality sensitive
e if p, g are at distance at most r, they have at least (d — r) coordinates in
common and thus a probability at least 1 — r/d to be hashed similarly,

e if p, g are at distance at least cr, they have at most (d — cr) coordinates in
common and thus a probability at most 1 — cr/d to be hashed similarly.

36

Master Theorem of LSH

Theorem

Suppose 3(r1, r2, p1, p2)-LSH family, then there is an algorithm for (ri, r,)-PLEB
with answer queries with constant probability (it might be wrong), and that
uses space O(dn + n'™?) and query time O(n”) (evaluation of hash functions),

where p = % (complexity decreases when p decreases, ie when p, << p1).
Sketch of the proof — Algorithm

e let (k,!) be parameters (t.b.d. later), let G be a family of hash functions

from U to S* (new buckets), g(p) = (hg (p), - - -, hg (p)) each hg being
randomly chosen in H.

e Preprocessing:

e (1) choose gi, ..., g/ (other parameter) independently from G
e (2) for each p € P, store gi(p),...,&(p)
e On query

e (1) search the points of P in gi(q),...,g/(q), but stop after the first 2/
points in (the unlikely) case there are more than 2/.

e (2) If there is one point p such that d(p, q) < r» return it and return YES,
otherwise return NO

37

Proof (continued)

Intuition (1): if g and p are "close”, then one the g; will send them into
the same k-bin.

Intuition (2): it is unlikely that they are 2/ distant (useless) points in the
set (that would prevent to find the useful point)

(2) There are at most 2/ — 1 points st d(p,q) > r. and 3j, gj(p) = gi(q)
with constant probability
e Let k = log;/,, n, what is the expected number of points st (2) holds ?
e If d(p,q) > r» then for each h, the probability of collision is at most p>
e so the expected number of times p is written in any g; is pé(, and the
expected number of times it is written for a given g is /pé
e and the number of "bad points” written for g is therefore at most nlpé(=}
e Markov says P(X > \) < E(X)/X so P(more than 2/ bad points) < 1/2
(1) If p € P with d(p,q) < n, then 3j, gi(p) = gi(q) with constant
probability
e If d(p,q) < 1 then for each h, the prob of collision for h is at least p;
e the probability of collisions in one bucket is pf
e the probability of a collision in at least one of the / buckets is 1 — (1 — pk)’
=1—(1—nr)
e choice of / 7 if we set /| = n” then the probability is at least 1 — 1/e ~ 0.63.
to increase the probability, use the classical and tricks

Check space and time complexities 38

Conclusion on sketching/streaming/compression

e Goal: data flow X and a function to evaluate f
e streaming: maintain a summary C¢(X) enough to compute

F(X) =~ g(C(X))

Solution: Use approximation randomized algorithms

Ve, d, Pr(relative error > ¢€) < §

enough (and often necessary) to change space complexities (from
log n — loglog n, n — log n, from n? to nfd)

at the price of sometimes large constants

but constants are pessimistic

and very small € and « are not always required (plagiarism)

e General Idea:

Do less communications (same a lot of energy, time)
But more local computations (cheap)
crucial for loT and datacenters

e Method:

Find an estimator Z tel que E(Z) = what we want to estimate
go for + and ++ versions to control the probability

hash functions are a very powerful and versatile tool:

to shuffle potentially correlated entries (Unique Visitors)

to adapt the size of sets (Plagiarism)

to create short summaries (Min-Hashing)

to detect close items (Locality Sensitive Hashing)

39

	Introduction
	Sketching – Streaming
	Introduction

	Count the number of visits
	How to count the number of unique visitors
	Finding Similar Itemsets
	Locality Sensitive Hashing and Nearest Neighbors Search

