
Cours ENSL:

Big Data – Streaming, Sketching, Compression

Olivier Beaumont, Inria Bordeaux Sud-Ouest

Olivier.Beaumont@inria.fr

1

Introduction

Positioning: Memory Aware Complexity of Algorithms

• w.r.t. traditional courses on algorithms

• Exact algorithms for polynomial problems

• Approximation algorithms for NP-Complete problems

• Potentially exponential algorithms for difficult problems (going through an

ILP for example)

• Here, we will consider extreme contexts

• not enough space to transmit input data (sketching) or

• not enough space to store the data stream (streaming)

• not enough time to use an algorithm other than a linear complexity one

• Compared to the more ”classical” context of algorithms:

• we aim at solving simple problems and

• we are looking for approximate solutions only because we have very strong

time or space constraints.

• Disclaimer: it is not my research topic, but I like to look at the

sketching/streaming papers and I am happy to teach it to you!

2

Application Context 1: Internet of Things (IoT)

• Connected objects, which take measurements

• The goal is to aggregate data.

• Processing can be done either locally, or on their way (fog computing), or

in a data center (cloud computing).

• We must be very energy efficient

• because objects are often embedded without power supply.

• Energy cost: Communication is the main source of energy consumption,

followed by memory movements (from storage), followed by computations

(which are inexpensive)

• A good solution is to do as many local computations as possible!

• but it is known to be difficult (distributed algorithms)

• especially when the complexity is not linear (e.g. think about quadratic

complexity)

• Solution:

• compress information locally (and on the fly)

• only send the summaries; summaries must contain enough information!

3

Application Context 2: Datacenters

• Aggregate construction

• except the network (we can have several levels + infiniband), everything is

”linear”

• the distance between certain nodes/data is very large but a strong

proximity with certain data stored on disk

• with 1,000 nodes with 1TB of disk and a link at 400 MB/s, we have 1 PB

and 400 GB/s (higher than with a HPC system)

• provided the data is loaded locally !

• for 25 TF/s (10325GFs seti@home) in total, ratio 60 (HPC system 40 000)

• in practice, dedicated to linear algorithms and very inefficient for other

classes.

• In both contexts, there is a strong need to have data driven algorithms

(where placement is imposed by data) whose complexity is linear

4

Outline of the lectures

• Keywords:

• Compression, Hashing, Randomized Approximation Algorithms

1. Lecture 1: Two basic theoretical problems

• Lecture 2: with known lower and upper + randomized and deterministic

bounds

2. Lecture 3: Big Data example: Plagiarism detection

• randomized algorithm + Locality Sensitive Hashing

3. Lecture 4: Randomized Linear Algebra

• compression beyond Singular Value Decompositions for very large matrices

• Shared Problems

• Not enough space to store input data

• Not enough space/time to implement something else than low (linear)

complexity algorithms

• Need for very cheap (online) but dedicated compression algorithm

5

Sketching – Streaming

Sketching - Streaming – Context

• large volume of data generated in a distributed way

• to be processed locally and compressed before transmission.

• Types of compression?

• lossless compression

• compression with losses

• compression with losses, but tightly controlled loss for a specific function

(sketching)

• + we are going to do online (on the fly) compression (streaming)

7

On-the-fly compression dedicated to a function f

• Let X be a stream of numbers (temperatures from a sensor)

• Easy problems?

• examples: min,max,
∑
, mean value median?

• Constraint: compress data and linearize computations

• How?

• The solution is often to switch to randomized approximation algorithms.

8

Compression associated to a specific function f

• More formally, given f and a stream X ,

• we want to compress the data X but still be able to compute ' f (X) .

• Sketching: we are looking for Cf and g such that
• the storage space Cf (X) is small (compression)

• from f (X), we can recover f (X), ie g(Cf (X)) ' f (X)

• Streaming: additional difficulty, the update is performed on the fly.
• we cannot compute Cf ({X , y}) from {X , y}
• because we cannot store {X , y}
• so we need another function h such that . h(Cf (X), {y}) = Cf ({X , y})

• and one last difficulty:

• very often, it is impossible to do in deterministic and exact / deterministic

and approximate

• but only with a randomized and approximation algorithm.

• How to write this ?
• We are looking for an estimator Z such that for given α and ε
• Pr(|Z − f (X)| ≥ εf (X)) ≤ α. How to read this?

• the probability of making a mistake by a ratio greater than ε (as small as you

want)

• is smaller than α (as small as you want)

9

Count the number of visits

Example: count the number of visits / packets

• Context
• a sensor/router sees packets / visits passing through,....

• you just want to maintain elementary statistics (number of visits, number of

visits over the last 1 hour, standard deviations)

• Here, we simply want to count the number of visits

• What storage is necessary if we have n visits? log n bits. Why ?

Pigeonhole principle. If we have strictly less than log n bits, then we have

two events (among the n) that will be coded in the same way.

• What happens if we only allow an approximate answer (say, to a factor of

ρ <2)? you need at least log log n bits. Why ? sketch of the proof: if we

use t < log log n bits, then we will be able to distinguish less than log n

different groups and you can estimate how many groups are needed to

count {0}, {0, 1}, {0, 1, 2}, {0, 1, ..., 7}.
• We will look for a randomized and approximated solution

• Let us set α and ε

• we are looking for an algorithm that computes ñ, an approximation of n

• that only uses K log log n bits storage

• and such that Pr(|ñ − n| ≥ εn) ≤ α
• K must be a constant...not necessarily a small constant for now!

10

Crash Course in probabilities

• Z random variable with positive values

• E(Z) is the expectation of Z
• definitions and properties ?

• E(Z) =
∫
λP(Z = λ)dλ or E(Z) =

∑
j jP(Z = j)

• E(Z) =
∫
P(Z ≥ λ)dλ or E(Z) =

∑
j P(Z ≥ j)

• E(aX + bY) =aE(X) + bE(Y)

• total probabilities (with conditioning) E(Z) =
∑

j E(ZIY = j)P(Y = j)

• To measure the distance from Z to E(Z), we use the variance V (Z)
• Definition?

• V (Z) = E((Z − E(Z))2) = E(Z2)− E(Z)2

• Properties:

• V (aZ) = a2V (Z)

• In general, V (X + Y) 6= V (X) + V (Y) (but it is true if X and Y are

independent random variables)

• How to measure the difference between Z to E(Z)?
1. Markov: Pr(Z ≥ λ) ≤ E(Z)/λ

2. Chebyshev: Pr(|Z − E(Z)| ≥ λE(Z)) ≤ V (Z)

λ2E(Z)2

3. Chernoff: If Z1, . . . ,Zn are Independent Bernouilli rv with pi ∈ [0.1] and

Z =
∑

Zi , then

Pr(|Z − E(Z)| ≥ λE(Z)) ≤ 2 exp(−λ
2E(Z)
3

).

11

Morris Algorithm: Counting the number of events

• Step 1: Find an estimator Z

• Z must be small (of order of log log n)

• we need to define an additional function g

• such that E(g(Z)) = n

• Morris algorithm

• Z → 0

• At each event, Z → Z + 1 with probability 1/2Z

• When queried, return g(Z) = 2Z − 1

• What is the space complexity to implement Morris’ algorithm?

• What is the time complexity in the worst case? What is the expected

complexity of a step?

• Prove the correctness: E(2Zn − 1) = n (note Zn the random variable that

denotes Z after n events) Hint: by induction, assuming that

E(2Zn) = n + 1 and showing that E(2Zn+1) = n + 2

• How to find a probabilistic guarantee of the type

Pr(|f (Zn) = ñ − n| ≥ εn) ≤ α? Hint Prove E(22Zn) = 3/2n2 + 3/2n + 1.

• Conclusion? Is this unexpected ?

12

From Morris to Morris+ and Morris+++

• 2nd step: How to get a useful bound?

• Objective: to reduce the variance (the expectation is already what we
want). How to do it?

• Classic idea: do the same experience many times and average them

• Morris algorithm +

• Morris is used to compute independent Z
(1)
n ,Z

(2)
n , . . . ,Z

(K)
n

• On demand, compute Yn =
∑K

i=1(2Z
(i)
n)

K
− 1.

• Questions:

• Which space complexity to implement Morris+’s algorithm?

• What time complexity?

• Establish the correctness: E(2Yn − 1) = n

• What is the new guarantee obtained with Chebyshev? How many counters

should be maintained?

• How can we do even better?

• Morris++ = Morris+(1/3) and median

• proof with Chernoff: If Z1, . . . ,Zn are Independent Bernouilli rv with

pi ∈ [0.1] and Z =
∑

Zi , then

Pr(|Z − E(Z)| ≥ λE(Z)) ≤ 2 exp(−λ
2E(Z)
3

).

13

How to count the number of unique

visitors

2nd example: how to count the number of unique visitors

Context

• It is assumed that visitors are identified by their address (ik ∈ [1, n])

• We observe a flow of m visits i1, . . . , im with ik ∈ [1, n]

• How many different visitors ?

• Deterministic and trivial algorithms:

• if n is small, if n is big... and in front of what?

• solution in n:n bit array

• solution in m log n: we keep the whole stream!

• We will see a bit later

• that we cannot do better with exact and deterministic algorithms

• that we cannot do better with approximated and deterministic algorithms

• How to do if you cannot store n bits

• but only O(logk n) for a certain k?

• we will see that it is again possible by using both randomization and

approximation.

• and that no deterministic exact or deterministic approximation can do it

with this space constraint.

14

Idealized algorithm (1) – Flajolet Martin

We will start with an idealized algorithm (which cannot be implemented in

practice).

• Let us choose a random h function from [1, n] to [0, 1]

• Why idealized?

• Problem 1: to store such a random function, you must define the images for

in each of the n points... at least Ω(n) bits

• Problem 2: and in addition we would have to store real values!

• We will come back to these two problems in a moment....

• Let us assume for now that storing such a function costs Θ(1)

• How do you keep track of the number of unique visitors?

• We will keep Z −→ mini∈stream h(i). Intuition?

• If you see the same visitor k times, it won’t change Z

• If we see t different visitors, then the values taken by h split [0, 1] in t + 1

intervals...and all should have the same size in expectation... and this size is
1

t+1
including the first !

• so you should return 1
Z
− 1 !

15

Idealized algorithm (2) – Flajolet Martin

Proof of correctness

• Let’s prove that E(Z) = 1
t+1

.

• E(Z) =
∫ +∞

0
P(Z ≥ λ)dλ.

• Show that E(Z) = 1
t+1

• How to continue? by calculating the variance and applying Chebychev

• Prove that E(Z2) = 2
(t+1)(t+2)

• There is still one foolishness not to be said.... E(1/Z) 6= 1/E(Z)

• Intuition: if we can control closely Z and 1
t+1

, 1/Z − 1 will be close to t

• FM+
• Let us maintain q = 1

ε2η
FM instances.

• Zi is the value produced by FMi

• What to return? Y = 1
(
∑q

1 Zi)/q
− 1

• E(
∑q

1 Zi

q
) = 1

t+1

• V (
∑q

1 Zi

q
) = t

q(t+1)2(t+2)
<

E(Z))2

q

• Claim 1: P(IY − 1
t+1

I ≥ ε
t+1

) ≤ η
• Claim 2: P(I 1

Y
− 1− tI ≥ Θ(ε)t) ≤ η

• FM++
• choose η = 1

3
adapt ε, instantiate K copies of Y Y1, . . . ,YK

• output median{ 1
Yi
} Ok for K = d36 log(1

δ
)e

16

Toward a Non Idealized Version. A crucial tool: hashing functions

• We used the set of all possible functions (too large set, too large storage

for one function)

• To make it practical, we will consider a large (not too large) family of

functions H from [1, p]→ [1, p]

• How to define the quality of a family H?
• Notion of k-wise independence

• ∀i1, . . . , ik ,∀j1, . . . , jk , ik 6= il , and if we pick a random h function in H, then

• P(h(i1) = j1 and h(ik) = jk) 1/pk

• a larger k provides a ”better” family

• Examples:
1. the set of all functions from [1, p]→ [1, p] is Ok.

• What k, what storage cost?

• f (1)→ p choices,..., f (p)→ p choices

• Problem: expensive, p log p bits are necessary for one function

2. with the polynomials Hk
poly of degree k − 1 in Fp

• evaluation cost? for degree k, k mult & and adds

• independence? how many polynomials such that (h(i1) = j1 and h(ik) = jk

• exactly one, Lagrange polynomial: P =
∑k

r=1

∏
l 6=r (X−il)∏
l 6=r (ir−il) × jr

• choice? picking a function at random in Hk
poly → choose k coefficients.

• and thus the family Hk
poly is k−independent

17

Why do we need randomization and approximation?

• Because a deterministic algorithm needs at least Ω(n) bits

• How to prove this? We assume n = Θ(m)

• Let us consider the state of the memory of the algorithm after seeing

i1, . . . , im
• We need to prove that there is enough information in what is stored

• so as to differentiate 2n distinct elements

• Remark: you can add as many computations as you want !

• Input X , let us denote by Cf (X) the state on the memory

• What can be computed using Cf (X) (and only Cf (X))?

• we can compute h(Cf (X)) and h(Cf (X), {y}) = Cf (X
⋃
{y})

• do it for all possible y values (visitors)...

• If y was in the stream, then h(Cf (X), {y}) = h(Cf (X)) otherwise

h(Cf (X), {y}) = h(Cf (X) + 1!

• In Cf (X), there is enough information to distinguish 2n possible vectors (all

visitors vectors)

• and thus n bits are needed!

18

Why do we need randomization and approximation?

• Because a deterministic approximation algorithm (say 1.1-approx) needs at

least Ω(n) bits
• Let us suppose that there exists a collection C of subsets of n such that

• |C| is large (≥ exp(n/104))

• ∀S ∈ C, |S| = n/100 (sets are large)

• ∀S1, S2 ∈ C2, |S1
⋂

S2| ≤ n/2000 (intersections are small)

• General idea
• Let us assume that we have presented to the algorithm

one of the sequences of C
• Then, we can find back which one!

• just by trying exhaustively all #C sequences with Cf (X)

• Since we know how to differentiate exponentially many

(exp(n/104)) elements, we need Ω(n) bits

• We still need to prove that such a set C exists !
• n visitors numbered from 1 to n split into n/100 packets of 100 visitors

• In Si , ∀i we randomly choose one visitor per packet

• we build exp(n/104) such sets Si .

• easy: What is their size? n/100

• we need to check that ∀i , j , i 6= j , |Si
⋂

Sj | ≤ n/2000

• How to do this ?it is enough to prove that the P(it works) is > 0

• Why does it work ? Yi,j number of collisions between Si and Sj
• E(Yi,j) ? Pr(Yi,j > n/2000) ? Pr(∃i , jt.q.Yi,j > n/2000) ? 19

Non Idealized FM (1)

• Step1: find a O(1)-approximation t̃ of t in O(log n) bits, ie a constant C

such that t
C
≤ t̃ ≤ Ct with constant probability (say 2

3
) this is the

subject of your homework !

20

Non Idealized FM (2)

• Playing with constants, let us assume that Step1 provides a

32-approximation with probability 2
3
, then perform K experiments and take

the median to have 32-approx with large probability

• To obtain a stronger approximation, we rely on the following technique
• let us chose g in a 2 wise family from [n] to [n].

1. Imagine that we consider log n sets, with Sj contains the elements i of the

stream s.t. lsb(g(i)) = j .

2. we know t̃ (close to t), let us denote by Z the size of Sj when 2j+1 ' t̃ε2

3. and let consider U = 2j+1Z in this case

• E(U) =2j+1E(Z) = t , V (Ui) =22j+2Var(Z) ≤ t2j+1

• so that (Chebychev) P(IU − tI ≥ εt) ≤ t2j+1

ε2t2 = 2j+1

ε2 t̃
t̃
t
≤ C ′

• Then, we use several hashing functions and take the average value to

obtain an error with arbitrarily small probability

• Not completely finished ! Is this algorithm implementable this time with

small space ?

• No, because S0 is very large for instance ! But the maximum value we are

expecting in ”interesting” Sj is t
2j+1 = t̃

2j+1
t
t̃
≤ C

ε2

• Thus, we can ”only” remember the first C
ε2 is each set !

• Overall space complexity ???
21

Note on Non Idealized FM (3)

• Technique called Geometric sampling

• n elements in the stream, k ≤ n distinct elements (with respect to some

property)

• Store log n sub-streams, where S0 stores 1/2 of the elements (distinct wrt

the property), S1 stores 1/4 of the elements,... Slog k stores (close to) 1

element, Slog n a priori stores nothing if k << n

• Suppose that when there are l elements in one of the sets, we can find a

good estimation of k where typically l is of order 1
ε2

• Then, we bound all the sets to store less than 10l elements (they are

useless after that)

• if we have a constant approximation of k (obtained elsewhere), then we

know in which set we should look at.

22

Finding Similar Itemsets

General Idea

• 2 type of difficulties related to

• the number of objects: N objects −→ N2 comparisons

• the objects themselves : large texts,...

• Applications

• pages with a lot of text in common (mirror sites, approximate mirror)

• plagiarism (today)

• group news that deal with the same event

• Amazon, Netflix: users with the same taste

• dual: Amazon, Netflix: products with the same fans

• we will concentrate on texts, the first step only is application specific

• Order of magnitude: 106 documents, size a few MB not huge (a few TB)

• Distributed over a datacenter: large number of nodes 103 − 106 nodes

• Two goals:

• avoid moving data between the nodes (small and shared bandwidth)

• avoid performing 1012 comparisons: both for time and data movements

23

Techniques

• 3 steps

1. Shingling : conversion of a large text into a (large) set

2. Min-hashing: assign to each text a (small) similarity-preserving signature

3. Locality Sensitive Hashing: detect suspect pairs by collision detection

• randomized approximation algorithm −→ errors: false positive and false

negative

• what is crucial in our context ? Complexity: we want to deal with linear

complexity algorithms only !

• Remark: we assume that the output is (at most) of linear size (otherwise,

we have no chance !)

24

Shingling

• k−shingle

• sequence of k successive characters in the text

• {abcab} et k = 2 ?

• Observation (admitted) close texts −→ a lot of shingles in common

• A text: represented by the set of shingles it contains

• How many shingles ? with k = 10

• The data structure should enable to perform comparisons easily...

• 3010 shingles = 249

• size if stored as a vector of bits 70 TB

• what happens in practice? Solution? shingles −→ tokens

• first use of hashing functions: adapt the size, control collisions

25

Min-hashing

• Each text is associated to a set of items

• We need to define a similarity between sets.

• Jaccard Similarity: Sim(C1,C2) = C1∩C2
C1∪C2

• d(C1,C2) = 1− Sim(C1,C2) is a distance (proof later)

• one vector per document

• one row per token token

• How to compute the similarity between two documents ?

• Problems:

• we do not want to deal with N2 pairs

• we cannot centralize all N pairs at a single node

26

Minhashing

• Let us suppose that (C1,C2) are stored at the same place

• Goal: build a small similarity preserving signature for each document.

• General Idea: build a random game whose expected value (to win) is

Sim(C1,C2)

• Do we really need to have (C1,C2) at the same place to play the game ?

• Do we really need permutations ?

• How many hash functions do we need in order to obtain a good precision ?

27

Locality Sensitive Hashing

• So far: we have a very compact summary of each document (250× 4B

integers= 1kB)

• Last step: given a suspicion threshold s ∈ [0, 1], return all pairs (C1,C2)

such that Sim(C1,C2) > s

• Without doing all comparisons!

• Order of magnitude:

• 106 documents −→ 1GO, Ok en mémoire

• 1012 comparisons with 10−6s per comparison 12 days)-;

• Goal: go from quadratic to linear complexity

• using hash functions again and collision detection

• now, we want close vectors to collide, and distant vectors not to collide

28

locally sensitive hashing

• split the summary (250 integers) into b blocks of size r (rb = 250)

• let hk be the hash function associated to the k-th block

• collision: (almost) only if both vectors coincide on this block. Solution:

use a large number of buckets (with respect to 106) −→ 109 is Ok in

practice, very few false positive.

• a pair (C1,C2) is suspicious if ∃k, hk(B1
k) = hk(B2

k) where B i
k is the k−th

block of Ci

• what happens ?

• if r is too small ? too many false positive

• if r is too big ? we will miss similar itemsets and get false negative

• Given r (and thus b) and s = Sim(C1,C2), what is the probability that a

collision occurs ?

29

with N = 100 and r = 3, 4, 5

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1 - Is5
- 1M20

Is4
- 1M25

+ 1

1 - I1 - s
3M100�3

false positive ? false negative ?

30

with N = 1000 and r = 3, 4, 5

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1 - I1 - s
5M200

1 - I1 - s
4M250

1 - I1 - s
3M1000�3

31

Practical implementation ?

• distributed documents.

• keep everything local (until the computation of signatures)

• keep everything local (compute the hashing of each block) 1 document +

1 block −→ 4B !

• gather all information related to one block number to the same node (4B

+ 1B for the index) −→ 5MB

• detect all suspicious pairs (very few and send them to a specific node)...

• very few communications !

32

Locality Sensitive Hashing and

Nearest Neighbors Search

(k−) nearest neighbors

• Metric space with distance, set P of points

• preprocessing allowed on P
• Query: given a point, find its (k) closest neighbor(s)

• example for spam classification: start with a huge annotated emails

• one word = one item

• return the k closest emails, majority vote to determine if it is spam or not

• Approach # 1: no preprocessing, just look through all possible items
• space O(dn)

• query O(dn)

• Approach # 2: if d=1
• space O(n) just keep the boundaries

• query O(log n) just a basic binary search

• Approach # 3: if d=2
• Voronöı diagrams: space O(n) and computing cost O(n log n)

• query time easy (locate the cell)

• As dimension increase, the description increases exponentially with d

• all exact (known) approaches in high dimension either have
• exponential space O(nd)

• or exponential query time !

• (same for kd−trees)

• in very. large dimension, the naive algorithm is not that bad !

33

c−approximate nearest neighbors

• Given a set of P points, construct a data structure such that

• on query q, we return p in P such that

• d(p, q) ≤ c minp′∈P d(p′, q)

• (r1, r2)PLEB problem: point location in equal balls

• given a set P of points and r1, r2

• construct a data structure to answer as follows

• If ∃p ∈ P st d(p, q) ≤ r1, return YES and any p′ ∈ P s.t. d(p′, q) ≤ r2

• If there is no p ∈ P st d(p, q) ≤ r2, return NO

• elif don’t care what algorithm returns

34

Locality Sensitive Hashing (Indyk, Motwani)

• Usually, we want hashing functions to ”shuffle” items as much as possible

• When writing P(h(i1) = j1 & h(i2) = j1) = 1/p2, we say that the distance

between images should not depend on the distance between initial points

•
• Here, we want to detect ”collisions”

• we want close points to have a high probability to collide

• we want distant points to have a low probability to collide

• just as in the context of plagiarism.

• General idea

• hash items into many different buckets (with different functions)

• declare that there is a collision if two items fall into of the buckets

• Formal definition H a family of hash function U −→ S

• (where U is the set of points, S the set of buckets)

• is said to be (r1, r2, p1, p2) locality sensitive if

• If d(p, q) ≤ r1, then Ph∈H(h(p) == h(q)) ≥ p1 and

• If d(p, q) ≥ r2, then Ph∈H(h(p) == h(q)) ≤ p2

• of course r1 < r2, p1 > p2

35

Example

• Let Hd = {0, 1}d equipped with Hamming distance (number of different

coordinates)

• Let H = {hi ,∀i , where hi (b1, . . . , bd) = bi}
• H is (r , cr , 1− r/d , 1− cr/d) locality sensitive

• if p, q are at distance at most r , they have at least (d − r) coordinates in

common and thus a probability at least 1− r/d to be hashed similarly,

• if p, q are at distance at least cr , they have at most (d − cr) coordinates in

common and thus a probability at most 1− cr/d to be hashed similarly.

36

Master Theorem of LSH

Theorem
Suppose ∃(r1, r2, p1, p2)-LSH family, then there is an algorithm for (r1, r2)-PLEB

with answer queries with constant probability (it might be wrong), and that

uses space O(dn + n1+ρ) and query time O(nρ) (evaluation of hash functions),

where ρ = log(1/p1)
log(1/p2)

(complexity decreases when ρ decreases, ie when p2 << p1).

Sketch of the proof — Algorithm

• let (k, l) be parameters (t.b.d. later), let G be a family of hash functions

from U to Sk (new buckets), g(p) = (hg1 (p), . . . , hgk (p)) each hgi being

randomly chosen in H.

• Preprocessing:

• (1) choose g1, . . . , gl (other parameter) independently from G

• (2) for each p ∈ P, store g1(p), . . . , gl (p)

• On query

• (1) search the points of P in g1(q), . . . , gl (q), but stop after the first 2l

points in (the unlikely) case there are more than 2l .

• (2) If there is one point p such that d(p, q) ≤ r2 return it and return YES,

otherwise return NO

37

Proof (continued)

• Intuition (1): if q and p are ”close”, then one the gi will send them into

the same k-bin.

• Intuition (2): it is unlikely that they are 2l distant (useless) points in the

set (that would prevent to find the useful point)

• (2) There are at most 2l − 1 points st d(p, q) > r2 and ∃j , gj(p) = gj(q)
with constant probability
• Let k = log1/p2

n, what is the expected number of points st (2) holds ?

• If d(p, q) > r2 then for each h, the probability of collision is at most p2

• so the expected number of times p is written in any gj is pk2 , and the

expected number of times it is written for a given g is lpk2
• and the number of ”bad points” written for g is therefore at most nlpk2 = l

• Markov says P(X > λ) < E(X)/λ so P(more than 2l bad points) ≤ 1/2

• (1) If p ∈ P with d(p, q) ≤ r1, then ∃j , gj(p) = gj(q) with constant
probability
• If d(p, q) ≤ r1 then for each h, the prob of collision for h is at least p1

• the probability of collisions in one bucket is pk1
• the probability of a collision in at least one of the l buckets is 1− (1− pk1)l

= 1− (1− nρ)l

• choice of l ? if we set l = nρ then the probability is at least 1− 1/e ' 0.63.

• to increase the probability, use the classical and tricks

• Check space and time complexities 38

Conclusion on sketching/streaming/compression

• Goal: data flow X and a function to evaluate f
• streaming: maintain a summary Cf (X) enough to compute

f (X) =' g(Cf (X))
• Solution: Use approximation randomized algorithms

• ∀ε, δ, Pr(relative error ≥ ε) ≤ δ
• enough (and often necessary) to change space complexities (from

log n→ log log n, n→ log n, from nd to nρd)

• at the price of sometimes large constants

• but constants are pessimistic

• and very small ε and α are not always required (plagiarism)

• General Idea:
• Do less communications (same a lot of energy, time)

• But more local computations (cheap)

• crucial for IoT and datacenters

• Method:
• Find an estimator Z tel que E(Z) = what we want to estimate

• go for + and ++ versions to control the probability
• hash functions are a very powerful and versatile tool:

• to shuffle potentially correlated entries (Unique Visitors)

• to adapt the size of sets (Plagiarism)

• to create short summaries (Min-Hashing)

• to detect close items (Locality Sensitive Hashing)

39

	Introduction
	Sketching – Streaming
	Introduction

	Count the number of visits
	How to count the number of unique visitors
	Finding Similar Itemsets
	Locality Sensitive Hashing and Nearest Neighbors Search

