
Theoretical Computer Science 707 (2018) 1–23
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Scheduling series-parallel task graphs to minimize peak

memory

Enver Kayaaslan a, Thomas Lambert b, Loris Marchal c, Bora Uçar c,∗
a Inria and Université de Lyon, France
b Université de Bordeaux, France
c LIP, UMR5668 (CNRS–ENS Lyon–UCBL–Université de Lyon–INRIA), Lyon, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2016
Received in revised form 12 July 2017
Accepted 29 September 2017
Available online 9 October 2017
Communicated by A. Marchetti-Spaccamela

Keywords:
Series-parallel graphs
Scheduling
Peak memory minimization

We consider a variant of the well-known, NP-complete problem of minimum cut linear
arrangement for directed acyclic graphs. In this variant, we are given a directed acyclic
graph and we are asked to find a topological ordering such that the maximum number
of cut edges at any point in this ordering is minimum. In our variant, the vertices and
edges have weights, and the aim is to minimize the maximum weight of cut edges in
addition to the weight of the last vertex before the cut. There is a known, polynomial time
algorithm (Liu, 1987 [17]) for the cases where the input graph is a rooted tree. We focus
on the instances where the input graph is a directed series-parallel graph, and propose
a polynomial time algorithm, thus expanding the class of graphs for which a polynomial
time algorithm is known. Directed acyclic graphs are used to model scientific applications
where the vertices correspond to the tasks of a given application and the edges represent
the dependencies between the tasks. In such models, the problem we address reads
as minimizing the peak memory requirement in an execution of the application. Our
work, combined with Liu’s work on rooted trees addresses this practical problem in two
important classes of applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A layout or a linear arrangement of a graph G is a total ordering of the vertices of G . In layout problems, the aim is to
optimize a certain objective function. There are a number of very well-known layout problems which are surveyed by Díaz
et al. [5,20]. Among those problems CutWidth or the minimum cut linear arrangement (MCLA) is of immediate interest.
Consider a graph on n vertices and a layout. Consider a cut at i, where the first i vertices in the layout are on the left part
and the remaining vertices are on the right part. The number of edges whose end points straddle the cut at i is called the
width of the cut. The CutWidth problem asks for a layout in which the maximum width of a cut at positions 1 to n − 1
is the minimum. This paper addresses a variant of the CutWidth problem in which the vertices and edges have weights,
and the aim is to minimize the maximum value of a cut at position i for i = 1, . . . , n, where the value of a cut at i is now
defined as the sum of the weight of the vertex v at position i, of the weights of all edges whose one end point is either
v or ordered before v and whose other end point is v or ordered after v . We address this problem for the well-known

* Corresponding author at: 46 allée d’Italie, 69007, Lyon, France.
E-mail addresses: enver.kayaaslan@ens-lyon.fr (E. Kayaaslan), thomas.lambert@inria.fr (T. Lambert), loris.marchal@ens-lyon.fr (L. Marchal),

bora.ucar@ens-lyon.fr (B. Uçar).
https://doi.org/10.1016/j.tcs.2017.09.037
0304-3975/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2017.09.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:enver.kayaaslan@ens-lyon.fr
mailto:thomas.lambert@inria.fr
mailto:loris.marchal@ens-lyon.fr
mailto:bora.ucar@ens-lyon.fr
https://doi.org/10.1016/j.tcs.2017.09.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.09.037&domain=pdf

2 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
class of series-parallel graphs (a formal definition is given in Section 2 for completeness), and propose a polynomial time
algorithm.

The CutWidth problem is NP-complete both in undirected graphs [9] and directed graphs [27], and solved efficiently for
graphs with small treewidth [25] and small cutwidth [24]—see the survey and its addendum [5,20] for a more thorough
view of the known results. Leighton and Rao [14] discuss approximation algorithms for the CutWidth problem, which
can be improved by using the heuristics by Arora et al. [1]. Yannakakis [28] presents a polynomial time algorithm for the
CutWidth problem on trees (general trees) without weights; the weighted version remains NP-complete [18]. A historical
source of interest in the CutWidth problem for graphs with unit weight edges (no vertex weights) is the pebble game of
Sethi and Ullman [23], which is Pspace complete [10], and polynomial time solvable for rooted trees [22].

The variant of the CutWidth problem studied in this paper is first addressed by Liu [17] for the class of rooted trees.
Liu discusses how the problem at hand corresponds to minimizing the peak memory in the context of a certain sparse
direct solver [16]. For the sake of fidelity to Liu’s original work, we use the term “peak memory” for defining the objective
in our layout problem. Our main contribution in this paper is thus to expand the family of graph classes for which the
peak-memory problem can be solved in polynomial time.

Our results are of theoretical nature, yet we have been motivated by the practical problem of reducing the memory
consumption of applications which are modeled as task graphs [21]. In these graphs, vertices represent tasks and edges
represent the dependencies between tasks. Each task consumes one or more input file/data, and produces one or more
output file/data. To be executed, a task also requires an execution file/data. As the size of the data to be processed increases,
minimizing the peak memory of an application becomes an important objective, since the memory traffic is often the
bottleneck. Consider the execution of an application on a single compute resource, i.e., a single processor and a single
memory hierarchy. An execution of the application is defined by a traversal of its task graph, that is, a schedule of the
vertices which respects the dependencies (or topological order). The peak memory of a traversal is the maximum amount
of memory needed to store application files/data at any given time throughout the application execution. The graphs with
vertex and edges weights, and the definition of the value of a cut given above express the objective of minimizing the peak
memory as a graph layout problem. The peak memory minimization problem has been addressed for applications whose
task graphs are rooted trees [12,13,15,17]. This work aspires to be helpful in scheduling applications whose task graphs are
series parallel [3,8,19], as theoretical understanding of the underlying layout problem is needed to reduce the peak memory
in a parallel execution environment (see for example a previous study [7]).

This paper is organized as follows. We present the problem formally in Section 2. We then describe the existing optimal
algorithm for trees in Section 3, since this algorithm forms the basis of our proposed algorithms. In the same section, we
present the principle of our algorithms on a subclass of SP-graphs. Then, Section 4 presents the proposed algorithm for gen-
eral SP-graphs as well as the new notion on min-cut optimality needed to prove its correctness. Some of the arguments in
our proofs are very lengthy and involved. For the sake of readability, the most demanding proofs are detailed in Appendices.

2. Peak memory minimization: model and objective

We define the problem in general directed acyclic graphs (DAGs) with vertex and edge weights modeling applications. In
this model, a DAG G = (V , E, wn, we) contains a vertex for each task of the application and a directed edge (p, q) between
two vertices if the task corresponding to the vertex q needs a data produced by the task corresponding to the vertex p.
Each task in the graph may have several input data, some execution data (or program), and several output data. We denote
by we(p,q) ≥ 0 the weight of edge (p, q) which represents the size of the data produced by task p for task q, and by
wn(p) ≥ 0 the weight of a vertex p which is the size of the execution data of task p.

During the execution of a task (vertex) p, the memory must contain its input data, the execution data, and its output
data. The memory needed for executing p is thus:⎛⎝ ∑

(r,p)∈E

we(r, p)

⎞⎠ + wn(p) +
⎛⎝ ∑

(p,q)∈E

we(p,q)

⎞⎠ .

After p has been processed, its input and execution data are discarded, while its output data are kept in memory until
they are consumed at the end of the execution of the corresponding tasks. For example, in the graph depicted in Fig. 1(a),
if task A is processed first, 8 units of memory are needed for its processing, but only 4 remains in the memory after its
completion. If task C is processed right after task A, 7 units of memory are needed during its processing (4 to store the
data produced by A for B , and 3 for the execution and output data of C).

While processing the task graph, memory consumption changes as data are created and deleted. Our objective is to
minimize the peak memory, i.e., the maximum amount of memory used in the graph traversal.

More formally, we define a schedule of the graph as a total order (layout) π on the vertices, denoted with ≤π , such that
p ≤π q means that vertex p is ordered before vertex q. The precedence constraints of the task graphs impose that this is a
topological order: we have p ≤π q for any edge (p, q) ∈ E . We use the notation maxπ (resp. minπ) to express the maximum
(resp. minimum) according to the order π : minπ G is, for instance, the first vertex scheduled by π . When considering a
subset X of vertices, we denote by π [X] the order π restricted to this subset. A schedule is also represented as a list of
vertices: π = 〈1, 2, 3〉 denotes that 1 ≤π 2 ≤π 3.

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 3
Fig. 1. Sample in-tree and decomposition of its schedule in segments.

Fig. 2. Sample parallel-chain graph. This graph’s decomposition is used for Lemma 1. If the dashed edges are minimum in the corresponding chains, an
optimal traversal can be found by first ordering the vertices in the set S and then the vertices in the set T .

We define μ(p, π) as the memory required during the execution of a vertex p ∈ V under the schedule π as

μ(p,π) = wn(p) +
∑

q≤π p≤π r

{we(q, r) : (q, r) ∈ E} .

Note that the edges (q, r) such that q ≤π p ≤π r correspond to the data that have been created but not yet consumed while
p is being processed. The objective is to find a schedule π for a graph G that minimizes the peak memory, defined as

μ(π) = max
p∈V

μ(p,π) .

Given a directed graph G = (V , E, wn, we), we define the reverse graph Ḡ = (V , Ē, wn, we) where the orientation of all
edges is changed: Ē = {(j, i), (i, j) ∈ E}. The vertex and edge weights are kept unchanged. Given a schedule π of G , we may
build the reverse schedule π̄ such that q ≤π̄ p whenever p ≤π q. It is straightforward to check that both schedules have
the same peak memory on their respective graph: μG(π) = μḠ(π̄).

In this paper, we concentrate on series-parallel graphs, which are defined as follows (see for example [6] for more
information).

Definition 1. A two-terminal series-parallel graph, or SP-graph, G with terminals s and t is recursively defined to be either:

Base case: A graph with two vertices s and t , and an edge (s, t).
Series composition: The series composition of two SP-graphs G1 with terminals s1, t1 and G2 with terminals s2, t2 formed

by identifying s = s1, t = t2 and t1 = s2, and denoted by 〈G1, G2〉;
Parallel composition: The parallel composition of two SP-graphs G1 with terminals s1, t1 and G2 with terminals s2, t2

formed by identifying s = s1 = s2 and t = t1 = t2, and denoted by {G1, G2}.

The vertices s and t are called source and target of the graph.

When the graph is defined this way, the dependencies are from the source vertices to the target vertices. Series-parallel
graphs can be recognized and decomposed into a tree of series and parallel combinations in linear time [26].

While solving the peak memory minimization problem for SP-graphs, we will need a solution for a sub-family of SP-
graphs, which are called parallel-chains and are defined below. A sample parallel-chain graph is shown in Fig. 2.

Definition 2. A chain is a two-terminal series-parallel graph obtained without using any parallel composition. A parallel-chain
graph is a two-terminal series-parallel graph obtained by the parallel composition of a number of chains.

4 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
3. Solving the peak memory problem on trees and parallel-chain graphs

We first recall Liu’s algorithm [17] for solving the peak memory minimization problem on rooted trees. We then propose
its adaptation for parallel-chain graphs; this new algorithm is used later (in Section 4) as a building block for solving the
peak memory problem on series-parallel graphs. The algorithm proposed by Liu applies to in-trees, that is, trees whose
dependencies are directed towards the root (contrarily to out-trees, where dependencies are directed towards leaves). Note
that if T is an in-tree and π is the schedule of T computed by Liu’s algorithm, then π̄ is also a peak memory minimizing
schedule of the out-tree T̄ .

3.1. Liu’s algorithm for trees

Liu [17] proposes an algorithm to find an optimal tree traversal for minimizing the peak memory. Liu’s original work
concerns a different model where there is no edge weights (there are only vertex weights). We present here its immediate
adaptation to our model.

Algorithm 1 Liu-Tree-Schedule(T).
Require: T = (V , E, wn, we): tree with vertex- and edge-weights.
Ensure: π : Schedule with the minimum peak memory μ(π)

� Base case
if V = {u} then

return 〈u〉

� General case
Let r be the root of T and T1, T2, . . . , Tk its subtrees
for i = 1 to k do

πi ← Liu-Tree-Schedule(Ti)
Compute the hill–valleys segments si

1, . . . , si
� of Ti in schedule πi as in Definition 3

Sort all segments of all subtrees in non-increasing (hill − valley) value
Based on this segment ordering, order the vertices in each segment consecutively, followed by the root r, to build π . Within each segment si

j , vertices
are ordered according to πi .

Liu’s algorithm is shown in Algorithm 1. To compute an optimal traversal for a tree rooted at vertex k, it recursively
computes an optimal traversal for the subtrees rooted at the children of k, then merges theses optimal traversals, and
finally appends k to the end. Merging the traversals of the children is the sophisticated part of the algorithm. There is no
reason to schedule the subtrees one after the other; an optimal schedule may switch from one subtree to another. Liu makes
the observation that in an optimal traversal the switching points between the subtrees’ processing have to be local minima
in the memory profile: while processing one subtree Ti , there is no reason to switch to T j if one can reduce the memory
needed for Ti by processing one more task in Ti . This leads to slicing the traversal into atomic parts, called segments. The
end-points of segments (which are some particular local minima in the memory profile) are called valleys, while the peak
memory vertices of each segment are called hills. The segments and their hill/valley values are formally defined as follows.

Definition 3. Let G be an in-tree and π be a traversal of G . The first segment of π consists in nodes u ≤π v1 and the ith
segment of π (for i ≥ 2) contains nodes u such that vi−1 <π u ≤π vi with:

• Mh
1 is the peak memory of the whole traversal;

• M v
i is the minimum amount of memory occurring after the step when Mh

i is (last) attained, for i ≥ 1;
• M v

i is (last) attained on vi , for i ≥ 1;
• Mh

i (for i ≥ 2) is the peak memory after vi .

The sequence of hill–valley ends when the last vertex is reached. The segments consist of the vertices comprised between
two valleys. For example, for the tree depicted in Fig. 1(a), consider the traversal (A, B, C, D, E) of the subtree rooted in E .
The memory occupation during and after the processing of the tasks and the segments that are deduced from this memory
profile are illustrated in Fig. 1(c). Similarly, the segments of the traversal (F , G) of the subtree rooted in G are detailed on
Fig. 1(d).

To merge the traversals of the subtrees, the first step is to compute all hill–valley segments. Then the lists of segments
are merged using the following criterion: if several segments are available (one for each subtree in the beginning), it is
always beneficial to start with the segment with the maximum (hill − valley) difference. Intuitively, the residual memory
will only increase when processing segments, so it seems better to start with (i) segments with larger peak memory (hill)
to avoid large memory consumption later, and (ii) segments with smaller residual memory (valley) to ensure an increase of
memory as small as possible. The tradeoff between both criteria is obtained using the difference (hill − valley).

In the example of Fig. 1, when merging the traversals from the subtrees rooted at E and G at the vertex H , we start
by comparing the first segments of each subtree: segment (F) is selected because it has a larger (hill − valley) value of

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 5
9 − 1 = 8. This segment is ordered, and then removed from the segments list, and we proceed by comparing segments
(A, B) and (G): (A, B) has larger (hill − valley) value of 8 − 1 = 7, so it is selected. By iterating this process, we end up with
the following ordering: (F), (A, B), (C, D, E), (G). The last step is to add the root H of the subtree to the traversal.

Liu proves that Algorithm 1 is correct and its worst-case runtime complexity is O (n2). We note that even if this algorithm
is designed for in-trees, we can compute an optimal schedule of an out-tree by reversing all edges to obtain an in-tree,
applying this algorithm, and then reversing the obtained schedule.

3.2. Algorithm for parallel-chain graphs

We now move to the description of the proposed algorithm for a restricted class of series-parallel graphs, namely
parallel-chains graphs. The main idea (summarized in Fig. 2) is to remove one edge from each chain, so as to discon-
nect the graph into one out-tree (the part S in the figure) and one in-tree (the part T in the figure). Then, we can reuse
Liu’s algorithm to compute an optimal traversal for these two trees. The following lemma states that if the removed edges
are of minimal weight in each chain, it is possible to first schedule all the vertices that are before this minimal cut, and
then all the vertices after the cut, without increasing the peak memory.

Lemma 1. Let G be a parallel-chain graph. For each chain Ci of this graph, let emin
i = (umin

i , vmin
i) be an edge of Ci with the minimum

weight. Let S be the set of ancestors of the umin
i ’s, including them. Let T be the set of successors of the vmin

i ’s, including them. Let π be
a schedule of G and γ be the schedule obtained from π by scheduling all vertices of S before vertices of T , formally γ = 〈π [S], π [T]〉.
Then, μ(γ) ≤ μ(π).

This intuitive result can be proved by using Theorem 2, Corollary 1 and Theorem 1 given below. We do not formalize
the proof, since the objective of this section is to give an intuition on the algorithm for general SP-graphs.

Thanks to this result, we know that there exists an optimal schedule which ordered first vertices from S , and then
vertices from T . Assume for a moment that the weight of all emin

i edges is zero (we(emin
i) = 0). Then, it is as if the graph

was disconnected, and we have two separate trees to schedule. T is an in-tree, and Liu’s algorithm can compute an optimal
schedule π for it. S is an out-tree, so that S̄ is an in-tree: if γ is the optimal schedule computed by Liu’s algorithm for S̄ , γ̄
is optimal for S . Then, 〈γ̄ , π〉 is an optimal schedule of the whole graph. This approach can be generalized to parallel-chain
graphs with non-zero weights on the minimal edges, as stated in Algorithm 2. For such graph, the weight of the minimal
edges is subtracted from all edges of a chain, and is added to the weight of all vertex of the chain (except the terminals).
By setting C = ∑

i we(emin
i), it is easy to verify that for any schedule π , the memory footprint during the execution of a

node or after its execution in the modified graph is the same memory as in the original graph minus C . Thus, any optimal
schedule for the modified graph is an optimal schedule for the original graph. We will prove that this algorithm computes
an optimal schedule of all parallel-chain graphs (Theorem 8).

Algorithm 2 Parallel-Chains-Schedule(T).
Require: P C = (V , E, wn, we): parallel-chain graph with vertex- and edge-weights.
Ensure: π : Schedule with the minimum peak memory μ(π)

Let C1, . . . , Cq be the chains of P C
for i = 1 to q do

Let emin
i = (umin

i , vmin
i) be the edge of minimum weight in Ci

Remove the edge emin
i from the graph

Update the weight of each other edge e of Ci : we(e) ← we(e) − we(emin
i)

Update the weight of each vertex u in Ci (except s and t): wn(u) ← wn(u) + we(emin
i)

Consider the two trees T out , T in obtained after the removal of emin
1 , . . . ,

Let T̄ out be the in-tree obtained by reversing all edges in T out

π1 ← Liu-Tree-Schedule(T̄ out)
π2 ← Liu-Tree-Schedule(T in)
return 〈π1, π2〉

4. Solving the peak memory problem for series-parallel graphs

This section contains the proposed polynomial time algorithm to compute a peak memory minimizing schedule of series-
parallel graphs. Let us first give a verbal overview of the final algorithm. As is common, the algorithm relies on the recursive
structure of the series-parallel graphs. To solve the peak memory problem for a series-parallel graph G which is a compo-
sition of G1 and G2, we first recursively solve the peak memory problem on G1 and G2. If G is a series composition of G1
and G2, it is straightforward to obtain a schedule for G by concatenating those for G1 and G2. If G is a parallel composition
of G1 and G2, we first create a chain (according to the optimal schedules found) for G1 and G2. By identifying the terminal
vertices in G1 and G2, we obtain a parallel-chain graph on which the peak memory problem is solved using the algorithm
proposed in Section 3.2. This results in a peak memory minimizing schedule for the initial graph G . The algorithm is simple
and intuitive as it follows the recursive definition of series-parallel graphs. However, the proof of optimality of the algorithm

6 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
Fig. 3. Simple SP-graph in the cumulative weight model and two possible schedules.

is complex and involved. This is not surprising as it was also the case for Liu’s algorithm on trees [17], which extended an
already involved algorithm [28].

The formal algorithm (Section 4.4) is an adaptation of Liu’s algorithm for vertex weighted trees. In order to facilitate this
adaptation, we define a new graph model (presented in Section 4.1) in which we have only vertex weights. This model is
simpler, yet expressive enough to capture the peak memory objective. We then define a new relation on schedules and a
new objective function (Sections 4.2 and 4.3) in this model that are needed to obtain the proof of its optimality (which is
presented in Section 4.5). Some of the detailed proofs are delegated to the Appendices.

4.1. A simpler model with only vertex weights

We introduce here a new graph model, called the cumulative weight model, which has only vertex weights (no edge
weights). We prove that this model can emulate the peak-memory minimization problem. Formally, let G = (V , E, ω), where
ω : V → Z is a weight function on the vertices. For a given set U ⊆ V of vertices, ω(U) denotes the sum of weights of
vertices in U , i.e., ω(U) = ∑

v∈U ω(v). The vertex-weight function ω should satisfy ω(G) = 0. Let π be a schedule and for
each vertex v ∈ V , consider the cumulative sum of the weighs of all vertices scheduled before v:

�(v,π) = ω({u ∈ V , u ≤π v}) . (1)

We define the cutwidth ρ(π) of a schedule π as the maximum of all these sums:

ρ(π) = max
p∈V

ω({q ∈ V , q ≤π p}) = max
p∈V

�(p,π) . (2)

Fig. 3 presents a simple SP graph in the cumulative weight model as well as three schedules: π with cutwidth 3 (which
is minimal), and γ and λ with cutwidth 6.

Note that the cutwidth as defined in the cumulative weight model is a straightforward adaptation of the CutWidth

problem (or minimum cut linear arrangement) as presented in the introduction: from a graph with only edge weights we ,
having the vertex weights initially set to zero, for each edge (i, j) we simply add we(i, j) to ω(i) and subtract we(i, j) from
w(j) to obtain the same problem with the cumulative weight model. Thus, the algorithm presented below for SP-graphs in
the cumulative weight model also solves the classical CutWidth problem on SP-graphs with edge weights. We now exhibit
a similar reduction from the peak memory problem presented in Section 2.

4.1.1. Minimizing the cutwidth allows to minimize the peak memory
Below (Theorem 1), we show that by minimizing the cutwidth in the cumulative weight model, one can minimize the

peak memory in the original model. For this purpose we need some definitions. Given an instance G = (V , E, wn, we) of
the peak memory problem, we construct an instance of the cumulative weight problem, with a (directed) bipartite graph
GB = (V B, EB, ω) as follows. For each vertex p ∈ V , we introduce a pair of vertices pstart, pstop ∈ V B such that (pstart, pstop) ∈
EB . The vertex pstart represents the beginning of the computation corresponding to the task p, while pstop represents the
end of this computation. For each edge (p, q) ∈ E , we add an edge (pstop, qstart) ∈ EB . For each vertex p, we set

ω(pstart) = wn(p) +
∑

(p,r)∈E

we(p, r) , (3)

to represent the allocation of temporary and output data in the memory at the beginning of the task p, and

ω(pstop) = −wn(p) −
∑

(q,p)∈E

we(q, p) , (4)

to represent the deallocation of temporary and input data from the memory at the end of the task p. Note that with these
definitions ω(GB) = 0. Let πB be a schedule of G B . It is easy to see that a schedule can be constructed for G using the

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 7
order of “stop” vertices in πB . Given πB , let π be a schedule of G such that p ≤π q whenever pstop ≤πB qstop . Observe that ∑
(vstop, πB) = ∑

x≤π v<π y we(x, y), that is, the cumulative weight of vstop corresponds to the weight of the edges (in G)
which are cut by an imaginary line just after v under the schedule π . We now show how minimizing the cutwidth in GB

minimizes the peak memory in G .

Theorem 1. Let πB be a schedule of GB whose cutwidth ρ(πB) is minimum for GB and π be the corresponding schedule of G. Then,
μ(π) is the minimum peak memory for G.

Proof. We provide the outline of the proof by using lemmas proved in Appendix A. By Lemma A.4, we can assume without
loss of generality that pstart and pstop are consecutive for all p in πB . This implies that μ(π) = ρ(πB) by Lemma A.3.
Suppose for the sake of contradiction that μ(π) is not minimum. In other words, there is a schedule γ of G where
μ(γ) < μ(π). Then, we can construct γB for GB from γ by replacing each vertex p with pstart and pstop . By Lemma A.3
again, μ(γ) = ρ(γB) and hence ρ(γB) < ρ(πB), a contradiction. �
4.1.2. Reverse graph in the cumulative weight model

We now show a few useful results in the proposed cumulative weight model that uses the reverse graph. Remember
that in our final algorithm, we will disconnect a parallel composition into both an in-tree and an out-tree, and that we will
apply Liu’s algorithm on the reverse of the in-tree. Thus, it is important to determine the cutwidth of the reverse graph, as
done in the following two lemmas.

We first recall and extend the notion of reverse graph from Section 2 to the vertex-weighted model. Given a graph
G = (V , E, ω), its reverse graph Ḡ = (V , Ē, ω̄) has the same set of vertices as G , however all edges are reversed Ē = {(q, p) :
(p, q) ∈ E} and all vertex weights take the opposite sign of their value in G: ω̄(p) = −ω(p) for any p ∈ V . The reverse of a
schedule π is defined as in Section 2: q ≤π̄ p whenever p ≤π q, for any pair of vertices p, q.

The first result links the cumulative sums up to some vertex p in both π and π̄ .

Lemma 2. For any vertex p ∈ G, we have

�(p,π) − �(p, π̄) = ω(p), (5)

where �(p, π) and �(p, π̄) are defined over G and Ḡ , respectively.

Proof. Notice that {q ≤π̄ p} = {q ≥π p} due to the definition above. Recall that ω(G) = 0, and thus ω̄(Ḡ) = −ω(G) = 0.
Then,

�(p, π̄) = ω̄({q ≤π̄ p}) = ω̄({q ≥π p})
= ω̄(Ḡ) − ω̄({q <π p})
= −ω̄({q <π p})
= ω({q <π p}) = �(p,π) − ω(p). �

The second result shows that a schedule π has the same cutwidth as its reverse π̄ .

Lemma 3. For any schedule π of G, ρ(π) = ρ(π̄).

Proof. Let p̄∗ be a vertex such that ρ(π̄) = �(p̄∗, π̄) and q be its predecessor under π . Then,

ρ(π) ≥ �(q,π) = �(p̄∗,π) − ω(p̄∗) holds by the definitions (1) and (2)

= �(p̄∗, π̄) by Equation (5)

= ρ(π̄).

By noting that the roles of π and π̄ can be changed in the above lines, we obtain ρ(π̄) ≥ ρ(π) and hence the equality
ρ(π) = ρ(π̄). �
4.2. A new relation on schedules

We present here a relation on schedules, denoted by �. In order to prove the optimality of our algorithm, we first prove
that it produces a schedule which is minimal for �, and that this implies cutwidth optimality. The � relation is stronger
than cutwidth comparison and includes all the assumptions needed for the induction. This reasoning is largely implies by
Liu’s proof for trees [17], and the new relation itself is the translation of the partial orders on subtree schedules that he
introduced.

8 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
4.2.1. Definition of the relation on schedules
Given a directed graph G , two vertices p and q of G , and two schedules π and γ of G , we say that the schedule π at p

dominates the schedule γ at q (and we write p π→γ q) if and only if

C1. �(p, π) ≤ �(q, γ), and
C2. min{�(s, π) :s ≥π p} ≤ min{�(r, γ) :r≥γ q}.

Note that the second condition (C2) is equivalent to stating that for any r ≥γ q, there exists s ≥π p such that �(s, π) ≤
�(r, γ).

Now, we define the relation � on the set of schedules for G as follows.

Definition 4 (Relation �). Let π and γ be two schedules of G . We say that π � γ for G , if for each p ∈ G , there is a vertex
q ∈ G such that p π →γ q.

In the sample graph presented in Fig. 3, we have π � γ and π � λ since for each vertex p, p π→γ E and p π →λ E . We
also have γ � λ and λ � γ since

for p ∈ {A, B, C, E, F }, p γ →λ B and p λ→γ E,

for p ∈ {D, G, H}, p γ →λ G and p λ→γ G.

This example illustrates that the � relation is not anti-symmetric, therefore it is not a partial order. We prove that � is
reflexive and transitive, and thus is a preorder.

Lemma 4. The relation � is a preorder (reflexive and transitive).

Proof. We need to show that the relation � is both reflexive and transitive. Let α, β , and θ be schedules of G .

(i) Reflexivity. Since p α→α p for each p ∈ V , α � α, and thus, � is reflexive.
(ii) Transitivity. Assume that α � β and β � θ . Take any p ∈ G . Let v and q be such that p α→β v and v β→θ q. We claim

that p α→θ q, as well. There are two conditions we should examine.
1) (C1). This follows as �(p, α) ≤�(v, β) and �(v, β) ≤�(q, θ), due to the first conditions of p α→β v and v β→θ q.
2) (C2). Take any vertex r ≥θ q. Then, there exist s ≥α p and w ≥β v such that �(s, α) ≤ �(w, β) ≤ �(r, θ), as a

consequence of the second conditions of p α→β v and v β→θ q. �
4.2.2. Minimality for the � relation implies cutwidth optimality

In the example of Fig. 3, we noticed that π � γ and π � λ while π has a smaller cutwidth than both γ and λ. This
is actually a major property of the � relation: it implies a comparison on the cutwidth, not only for the schedules being
compared but also for their reverse schedule, as expressed by the following lemma and its corollary.

Lemma 5. If π � γ then ρ(π) ≤ ρ(γ) and ρ(π̄) ≤ ρ(γ̄).

Proof. Assume that π � γ . Then for any p ∈ V , there exists q ∈ V such that p π →γ q, and thus, �(p, π) ≤ �(q, γ). Then,
by definition, ρ(π) ≤ ρ(γ). Moreover, thanks to Lemma 3, we have ρ(γ̄) = ρ(γ) ≥ ρ(π) = ρ(π̄). �
Corollary 1. If π is minimal for � on G, then π and π̄ have the minimum cutwidths (on G and Ḡ respectively).

4.3. Min-cut optimality

We are now ready to present the central notion needed to provide an optimal algorithm for series-parallel graphs,
namely the min-cut optimality. We show that a min-cut optimal schedule is also cutwidth optimal.

4.3.1. Definition of min-cut optimality
Min-cut optimality is based on the classical notion of cut in a graph: a cut (S, T) of G is defined as a bisection of its

vertices into two nonempty sets S and T . We say that a cut is topological if there exists no edge (p, q) ∈ E such that p ∈ T
and q ∈ S (or equivalently, for any edge (p, q) ∈ E , we have either p ∈ S or q ∈ T). The width of a topological cut (S, T) is
defined as c(S, T) = ω(S).

Consider a topological cut (S, T) and a schedule π . If in π all vertices of S appear before all vertices of T , that is, for
p ∈ S and q ∈ T , we have p ≤π q, then we say that π is in compliance with (S, T). In this case, we have

c(S, T) = �(p∗,π), where p∗ = maxπ S. (6)

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 9
We say that a topological cut (S, T) is minimum, or a min-ω-cut, if its width is minimum, that is,

c(S, T) = min{c(S ′, T ′) where (S ′, T ′) is a topological cut}.
We define by G[S] the subgraph of G which contains only the vertices in S and the edges between these vertices.

Similarly, for any schedule π of G , π [S] is the schedule induced by π on G[S].

Definition 5 (Min-cut optimality). Let (S, T) be a minimum topological cut. A schedule π is cut-optimal with (S, T), if π is
in compliance with (S, T), π̄ [S] is minimal for � on Ḡ[S], and π [T] is minimal for � on G[T]. Furthermore, π is called
min-cut optimal if π is cut-optimal with some min-ω-cut of G .

The following lemma states that the partial cumulative sum of any schedule π is never smaller than the cutwidth of a
minimal cut, and will be useful in the following proofs.

Lemma 6. Let π be a schedule of G. Let (S, T) be any minimum topological cut of G. Then,

c(S, T) ≤ �(p,π),

for any p <π maxπ G.

Proof. Take any p <π maxπ G . Then suppose for the sake of contradiction that �(p, π) < c(S, T). Consider the topological
cut (S p, T p), where S p = {v ≤π p}. Then, by (6), we have c(S p, T p) = ω(S p) = �(p, π) < c(S, T), which contradicts that
c(S, T) is minimum. �
4.3.2. Properties of min-cut optimality

We present two important properties of min-ω-cuts. The first property, shown in the next theorem, is that transforming
a schedule so that it is in compliance with a min-ω-cut will not make it larger in the sense of the � relation (and thus,
thanks to Lemma 5, will not increase its cutwidth). It generalizes Lemma 1, which was limited to parallel-chain graphs and
expressed in the original graph model.

Theorem 2. Let G be an acyclic graph with a single source vertex and a single sink vertex, and γ be a schedule of G. Let (S, T) be a
min-ω-cut of G, and π = 〈γ [S], γ [T]〉. Then, π � γ and π̄ � γ̄ .

Proof. Since (S, T) is a topological cut of G , π is a schedule of G . Note that γ may not be in compliance with (S, T).
The proof relies on the two following properties: for each p ∈ G , p π→γ p (which proves that π � γ according to the

definition of this relation) and p π̄→γ̄ p (which proves π̄ � γ̄). We only provide the proof of the first property, as the
second one can be proved using the very same arguments.

Let s+ be the last scheduled vertex of S in γ . Similarly, let t− be the first scheduled vertex of T in γ . Formally,

s+ = maxγ S, t− = minγ T .

Note that s+ is also the last scheduled vertex of S in π (and t− the first scheduled vertex of T in π) and �(s+, π) = c(S, T).
To prove that p π→γ p for p ∈ G , we investigate �(p, π) and �(p, γ). First, for any p ∈ V , we consider sp (respectively

tp), the last scheduled vertex of S (resp. of T) that does not come after p in γ :

sp = maxγ {s ∈ S, s ≤γ p}, tp = maxγ {t ∈ T , t ≤γ p}.
Note that sp is always defined since G has a single source vertex. However, tp may not be defined, as the set {t ∈ T , t ≤γ p}
may be empty, which occurs when p ∈ S and p comes before t− in γ ; in this case p = sp . If tp is defined, we have:

�(p, γ) = �(sp, γ [S]) + �(tp, γ [T])
= �(sp,π [S]) + �(tp,π [T])
= �(sp,π) + �(tp,π) − �(s+,π)

= �(sp,π) + �(tp,π) − c(S, T). (7)

As a result,

�(p, γ) =
{

�(p,π) if tp is not defined,

�(tp,π) + �(sp,π) − c(S, T) otherwise.
(8)

We are now ready to show p π→γ p, for any p ∈ V . We verify the two conditions defining this statement given in
Section 4.2.1 for any p ∈ V , as follows.

10 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
1. The first condition to verify is C1: �(p, π) ≤ �(p, γ). When tp is not defined, this condition directly derives from
Equation (8). Consider now that tp is defined. We consider two cases depending on which side of the cut p lies:
(a) (p ∈ S). Then, sp = p. This implies

�(p, γ) = �(p,π) + �(tp,π) − c(S, T).

Note that tp <γ p <γ maxγ G = maxπ G , since p ∈ S . Since �(tp, π) ≥ c(S, T) by Lemma 6 applied on π , the
condition C1 is met.

(b) (p ∈ T). Then, tp = p. This implies

�(p, γ) = �(p,π) + �(sp,π) − c(S, T).

Note that sp <γ maxγ G = maxπ G , since sp ∈ S . Since �(sp, π) ≥ c(S, T) by Lemma 6, the condition C1 is met.
2. The second condition to verify (C2) is

min{�(s,π) : s ≥π p} ≤ min{�(r, γ) : r ≥γ p}
(or equivalently, for any r ≥γ p, there exists s ≥π p such that �(s, π) ≤ �(r, γ)). First, note that the last vertex is the
same in both schedules: rend = maxπ G = maxγ G and thus �(rend, π) = �(rend, γ). Now, consider any r ≥γ p such that
r <γ maxγ G . We consider the two following cases:
a) p is in S . Then, �(s+, π) = c(S, T) ≤ �(r, γ) and s+ ≥π p.
b) p is in T . Let tr = maxγ {t ∈ T , t ≤γ r}. Note that tr is well defined, since r ≥γ p. We also have tr ≥γ p. Then, by

Equation (7),

�(r, γ) = �(sr,π) + �(tr,π) − c(S, T).

Since �(sr, π) ≥ c(S, T) by Lemma 6, we have �(tr, π) ≤ �(r, γ). Notice that tr ≥π p since tr ≥γ p, and, both p ∈ T
and tr ∈ T . �

The second property of min-ω-cuts explains the relevance of min-cut optimality. It states that, for a schedule π , being
min-cut optimal implies optimality for the � relation both for π and its reverse π̄ .

Theorem 3. Let G be a directed acyclic graph with a single source vertex and a single sink vertex, and π be a min-cut optimal schedule
of G. Then, π is minimal for � on G and π̄ is minimal for � on Ḡ .

Proof. Consider a directed acyclic graph G with single source and sink vertices, and a min-cut optimal schedule π . Since
π is min-cut optimal, π is cut-optimal with some min-ω-cut (S, T). Take any schedule λ of G , and consider the schedule
γ = 〈λ[S], λ[T]〉, which is in compliance with (S, T). We have γ � λ and γ̄ � λ̄ by Theorem 2. Here, we only show π � γ
for G (which induces π � λ), as with similar arguments one can also show π̄ � γ̄ (which induces π̄ � λ̄).

By the definition of a min-cut optimal schedule, π̄ [S] (respectively π [T]) is minimal for � on S (resp. on T), thus
π̄ [S] � γ̄ [S] and π [T] � γ [T]. We show that for any vertex p ∈ V , there is a vertex q ∈ V such that p π →γ q. We consider
a vertex p ∈ V and distinguish two cases depending where p lies:

1. (p ∈ S). Let q be such that �(q, γ [S]) = ρ(γ [S]). We show p π →γ q by examining the two conditions.
(a) (C1: �(p, π) ≤ �(q, γ)). Since π̄ [S] � γ̄ [S], by Corollary 1 we have ρ(π [S]) ≤ ρ(γ [S]). Hence,

�(p,π) ≤ ρ(π [S]) ≤ ρ(γ [S]) = �(q, γ).

(b) (C2: min{�(s, π) :s ≥π p} ≤ min{�(r, γ) :r ≥γ q}). Let t be the sink vertex. Note that �(t, π) ≤ �(t, γ) and t ≥π p.
Take any r ≥γ q and r <γ t . For s+ = maxπ {s ∈ S}, we have �(s+, π) = c(S, T) ≤ �(r, γ). Notice that s+ ≥π p, as
p ∈ S .

2. (p ∈ T). Let q be such that p π [T]→γ [T] q; such a q exists, because π [T] � γ [T]. We show p π→γ q by examining the
two conditions:
(a) (C1: �(p, π) ≤ �(q, γ)). It holds that

�(p,π) = �(p,π [T]) + �(s+,π [S]) (9)

≤ �(q, γ [T]) + �(s+,π [S]) (10)

= �(q, γ [T]) + �(s+, γ [S]) = �(q, γ). (11)

Equations (9) and (11) come from the fact that π and γ are in compliance with (S, T). Equation (10) is derived
from (9) and p π [T]→γ [T] q.

(b) (C2: min{�(s, π) :s ≥π p} ≤ min{�(r, γ) :r≥γ q}). Take any r ≥γ q. Then, there exists s ≥π p such that �(s, π [T]) ≤
�(r, γ [T]). Then,

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 11
�(s,π) = �(s,π [T]) + �(s+,π [S])
≤ �(r, γ [T]) + �(s+,π [S])
= �(r, γ [T]) + �(s+, γ [S]) = �(r, γ). �

Note that the previous two theorems only apply to directed graphs with a single source and a single sink, and thus in
particular to series-parallel graphs. However, it is easy to transform any directed graph so that it obeys these conditions:
simply add two zero-weight artificial vertices, one for the source and one for the sink, connect all sources of the original
graph to the new source, and connect the new sink to all original sinks.

4.4. Algorithm for general series-parallel graphs

We present here our main contribution, which is a recursive algorithm, called SP-Schedule, that computes a min-cut
optimal schedule for a series-parallel graph G in the cumulative weight model. As presented before, this means that the
computed schedule is cut-optimal with some min-ω-cut (S, T) and implies that it also minimizes the cutwidth. The algo-
rithm also outputs this (S, T) cut.

This algorithm relies on an algorithm to compute a min-cut optimal schedule of a parallel-chain graph, PC-Schedule

which is presented below. This algorithm for parallel-chain graphs is similar to Algorithm 2, but applies to our new cumu-
lative weight model. Likewise, this latter algorithm relies on an algorithm for trees, Tree-Schedule, which is the translation
of Liu’s algorithm for the cumulative weight model. Besides, it is much shorter than Algorithm 2, as the computation of the
minimum cut is not needed (the cut is provided as a parameter).

Algorithm 3 SP-Schedule(G).
Require: G = (V , E, ω): series-parallel graph.
Ensure: π : schedule and (S, T): min-ω-cut
� Base case
if |E| = 1 then

(S, T) ← ({v}, {w})
return [〈v, w〉, (S, T)]

� G is series or parallel comb. of G1 = (V 1, E1, ω) and G2 = (V 2, E2, ω)

[π1, (S1, T1)] ← SP-Schedule(G1)
[π2, (S2, T2)] ← SP-Schedule(G2)

� Series Composition
if G = 〈G1, G2〉 then

Let (S, T) be one of the topological cuts (S1, T1 ∪ V 2) and (V 1 ∪ S2, T2) with the minimum cutwidth
return [〈π1, π2〉, (S, T)]

� Parallel Composition
if G = {G1, G2} then

G̃1 ← Linearize(G1, π1)
G̃2 ← Linearize(G2, π2)
(S, T) ← (S1 ∪ S2, T1 ∪ T2)

π ← PC-Schedule(G̃1 ∪ G̃2, (S, T))
return [π, (S, T)]

The base case of the algorithm considers a series-parallel graph with a single edge, and outputs the unique schedule
along with the unique topological cut.

In the general case, G is a series or parallel composition of two smaller series-parallel graphs G1 and G2. We first
recursively compute schedules π1 and π2 that are cut-optimal with topological cuts (S1, T1) and (S2, T2) for G1 and G2.

If G is a series composition, the final schedule is obtained through a simple concatenation of π1 and π2. This schedule
of G is cut-optimal with both topological cuts induced by (S1, T1) and (S2, T2) on G . Thus, we select the one with lower
cutwidth as it is a min-ω-cut of G . Therefore, π is a min-cut-optimal schedule of G .

In case of parallel composition, we transform each subgraphs G1 and G2 into a chain using Linearize, based on schedules
π1 and π2, respectively: G̃1 (resp. G̃2) is a chain with the same vertices as G1 (resp. G2) such that its unique topological
order is π1 (resp. π2). The graph obtained by replacing G1 and G2 by G̃1 and G̃2 is a parallel-chain graph with two chains.
We consider the topological-cut (S, T) obtained by unifying the min-ω-cuts of G1 and G2: as we will prove later, it is a
min-ω-cut of the parallel-chain graph, but also of the original graph. We then call the routine PC-Schedule which finds a
schedule π that is cut-optimal with this particular topological cut (S, T).

Algorithm 4 presents PC-Schedule, which computes a schedule π that is cut-optimal with the given min-ω-cut (S, T)

for a given parallel-chain graph G . The algorithm simply divides the parallel-chain graph into two trees according to (S, T).
These trees have a special property: a subtree rooted at every vertex but the root itself has a non-negative total weight. This
property follows from the fact that (S, T) is a min-ω-cut of G . The algorithm then schedules the two trees independently

12 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
Algorithm 4 PC-Schedule(G, (S, T)).
Require: G = (V , E, ω): parallel-chain directed graph.
Require: (S, T): Min-ω-cut of G .
Ensure: π : Schedule

σ̄ ← Tree-Schedule(Ḡ[S])
τ ← Tree-Schedule(G[T])
return 〈σ , τ 〉

using Tree-Schedule routine, which is a translation of Liu’s optimal algorithm for trees for the cumulative weight model,
and can be found as Algorithm D.1 in Appendix D.

4.5. Correctness of the algorithm

We prove here that SP-Schedule computes a schedule which minimizes the cutwidth (and therefore, thanks to Theo-
rem 1, it also minimizes peak memory). This result is expressed in Theorem 4.

Theorem 4 (Main Theorem). For any series-parallel graph, SP-Schedule computes a schedule π such that the cutwidth of π is optimal.

Theorem 4 is easily proved below once the following theorem is proved.

Theorem 5. For any series-parallel graph, SP-Schedule computes a schedule π and a min-ω-cut (S, T) such that π is min-cut optimal
with (S, T).

The proof of Theorem 5 is decomposed into several steps, following the different cases in the algorithm. These steps are
formalized through the following three theorems.

The first step deals with the series composition. The following theorem states that concatenating two min-cut optimal
schedules for the subgraphs leads to a min-cut optimal schedule of their series composition. This case seems straight-
forward, at least when considering cutwidth minimization: concatenating two schedules with minimal cutwidth on both
subgraphs clearly gives a schedule with minimal cutwidth on the whole graph. However, this theorem is stronger and
deserves more care as we need to prove min-cut optimality, that is minimality with respect to the � relation.

Theorem 6. Let G1 and G2 be two series-parallel directed graphs. Let π1 and π2 each be a min-cut-optimal schedule of G1 and G2 ,
respectively. Then, π = 〈π1, π2〉 is a min-cut-optimal schedule of their series composition G = 〈G1, G2〉.

Proof. The statement follows as a corollary of Lemma B.1 in Appendix B. �
The second step deals with the parallel composition. If we have a min-ω-cut of a series-parallel directed graph and an

optimal schedule of each part of this directed graph, then there is an optimal schedule of the whole graph which induces
theses two schedules. This theorem is used to compare the schedule returned by SP-Schedule with an optimal one and
show that it is indeed optimal itself.

Theorem 7. Let G1 and G2 be two series-parallel directed graphs, and G = {G1, G2} be their parallel composition. Let (S, T) be
a min-ω-cut of G, and π1 and π2 be schedules that are cut-optimal with the topological cuts induced by (S, T) on G1 and G2 ,
respectively. For each schedule γ in compliance with (S, T) of G, there is a schedule π in compliance with (S, T) of G such that

(i) π induces π1 and π2 ,
(ii) π̄ [S] � γ̄ [S] and π [T] � γ [T].

Proof. See Appendix C. �
The final step is to prove that the PC-Schedule algorithm used to process parallel-chain graphs produces a min-cut

optimal schedule compatible with the provided cut.

Theorem 8. For any parallel-chain graph G and any min-ω-cut (S, T) of G, PC-Schedule computes a schedule π that is cut-optimal
with (S, T).

Proof. See Appendix D. �
We are now ready to prove the main theorem by proving Theorem 5.

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 13
Proof of Theorem 5. The proof is by induction on the number of edges of G . In the base case, G has a single edge, that
connects the source to the sinks. There is a unique schedule of G , which is also cut-optimal with the unique topological cut.

We now assume that the theorem holds for any series-parallel graph with fewer than k edges, where k > 1, and consider
a series-parallel graph G with exactly k edges. G is made by the (series or parallel) composition of two series-parallel
graphs G1 and G2. Both subgraphs have fewer than k edges, thus by induction hypothesis, the recursive calls to SP-Schedule

produce two min-cut-optimal schedules π1 and π2 together with their respective min-ω-cuts (S1, T1) and (S2, T2). We now
distinguish between the two possible compositions.

Series composition. Theorem 6 shows that the schedule π = 〈π1, π2〉 computed by SP-Schedule is a min-cut-optimal sched-
ule of G . Besides a min-ω-cut of G can simply be found by selecting one of the min-ω-cut of G1 and G2 with minimal
cutwidth.

Parallel composition. Now, we consider that G = {G1, G2}. The algorithm first compute the cut (S, T) such that S = S1 ∪ S2
and T = T1 ∪ T2. We first prove that (S, T) is a min-ω-cut of G . For the sake of contradiction assume the contrary. It means
that there exists a topological cut (S∗, T ∗) such that c(S∗, T ∗) < c(S, T). Let (S∗

1, T
∗
1) and (S∗

2, T ∗
2) be the topological cuts

induced by (S∗, T ∗) on G1 and G2, respectively. Then,

c(S∗
1, T ∗

1) + c(S∗
2, T ∗

2) = c(S∗, T ∗)
< c(S, T)

= c(S1, T1) + c(S2, T2).

This implies c(S∗
1, T

∗
1) < c(S1, T1) or c(S∗

2, T
∗
2) < c(S2, T2), which is a contradiction as (S1, T1) and (S2, T2) both are

min-ω-cuts.
In the case of a parallel composition, the algorithm computes the chain graph G̃1 (respectively G̃2) by sequencing the

vertices of G1 (resp. G2) in the order of π1 (resp. π2) and calls PC-Schedule on the parallel-chain graph G̃ made by the
parallel composition of G̃1 and G̃2 and the cut (S, T). Thanks to Theorem 8, we know that PC-Schedule outputs a schedule
π cut-optimal with (S, T). Thus, for any schedule γ of G̃ in compliance with (S, T), we have

π̄ [S] � γ̄ [S], and π [T] � γ [T]. (12)

We now show that π is cut-optimal with (S, T) for G as well, that is, the previous inequalities also hold for any schedule
γ of G in compliance with (S, T). We consider such a schedule γ . Theorem 7 proves that there exists a schedule π∗ that
(i) induces π1 and π2, (ii) π∗ is in compliance with (S, T), and (iii)

π̄∗[S] � γ̄ [S], and π∗[T] � γ [T]. (13)

As π∗ induces π1 and π2, π∗ is a valid schedule of G̃ , we may thus apply Equation (12) to γ = π∗ . Combining it with
Equation (13), we get

π̄ [S] � π̄∗[S] � γ̄ [S], and π [T] � π∗[T] � γ [T].
As � is transitive, we have π̄ [S] � γ̄ [S] and π [T] � γ [T]. �
Proof of the Main Theorem 4. SP-Schedule computes a schedule π and a min-ω-cut such that π is min-cut optimal with
the found cut (see Theorem 5). Theorem 3 implies that π is also minimal for the � relation, which in turn means that π
minimizes the cutwidth ρ(π) due to Corollary 1. �
Algorithm complexity. The PC-Schedule algorithm calls twice Liu’s algorithm for trees, whose worst-case complexity for an
input of size n is a O (n2). Except for the recursive calls, this is the most costly step of the SP-Schedule. Since there are at
most O (n) recursive calls, the overall worst-case complexity of SP-Schedule is O (n3).

5. Conclusion

In this paper, we have proposed an algorithm to schedule a series-parallel task graph with the minimum peak memory.
To prove the correctness of the algorithm, we have introduced a new and simpler model, based on a vertex-weighted graph.
We have shown how to simulate task graphs with weights on vertices and edges using the new model. The proof of the
proposed algorithm is complex, and consists in an extension of Liu’s work on trees [17].

The use of the proposed algorithm is limited to task graphs structured as series-parallel computations, which constitutes
an important class of scientific computing applications. However, this algorithm may be applied to general graphs, if we
first transform them into series-parallel graphs, for example using the SP-ization process [11], which is also suggested in
the literature [2]. This will lead to suboptimal schedules, because some fictitious edges are added to a graph when it is
turned into a series-parallel graph. Future research directions include looking for optimal schedules for other regular graph

14 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
structures that appear in scientific computing (such as 2D or 3D meshes) structures, which could be approached using
existing work on unweighted 2D grids by Díaz et al. [4,5].

The remaining part of the article is composed of four appendices. Appendix A contains lemmas used in the proof of
Theorem 1 in which we proved that minimizing the cutwidth in the cumulative weight model minimizes the peak mem-
ory in the original model. Appendix B, Appendix C, and Appendix D contain lemmas used in showing the correctness of
SP-Schedule algorithm. These three sections give the proofs of Theorems 6, 7, and 8, respectively. The last Appendix D also
contains the adaptation of Liu’s algorithm to the cumulative weight model.

Acknowledgements

We thank Henri Casanova for his comments on an earlier version of this manuscript. Loris Marchal and Bora Uçar were
supported in part by French National Research Agency (ANR) project SOLHAR (ANR-13-MONU-0007).

Appendix A. Problem transformation

Lemmas A.1–A.4 are used in the proof of Theorem 1 and assume the same notation. In particular, the peak memory
minimization problem is given by a graph G = (V , E, wn, we), and the corresponding cutwidth instance has the bipartite
graph GB = (V B, EB, ω).

Lemma A.1. Let πB be a schedule of GB. There exists a vertex p ∈ G such that the cutwidth of πB is reached on pstart , i.e., ρ(πB) =
�(pstart, πB).

Proof. For the sake of contradiction, assume that ρ(πB) > �(pstart, πB) for every p ∈ G . Consider a vertex q of G such that
the cutwidth of πB is reached on qstop , i.e., ρ(π) = �(qstop, πB).

By construction (4), ω(vstop) ≤ 0, for any vertex v . We consider pstart , the last “start” vertex scheduled before qstop in πB :
pstart = maxπ ({vstart ≤πB qstop}). Note that there exists such a pstart since qstart is scheduled before qstop . Then,

�(qstop,πB) = �(pstart,πB) +
∑

pstart<πB vstop≤πB qstop

ω(vstop) ≤ �(pstart,πB).

Then, we have

ρ(πB) = �(qstop,πB) ≤ �(pstart,πB),

which contradicts that ρ(πB) > �(pstart, πB). �
Lemma A.2. Let π be a schedule of G. Then, for any p ∈ G,

μ(p,π) = ω(pstart) +
∑

v<π p

(ω(vstart) + ω(vstop)).

Proof. For this proof, we extend the definition of the edge weights in such a way that we(q, r) = 0 if there is no edge (q, r)
in E . With this extension, we may write

ω(vstart) = wn(v) +
∑
v≤π r

we(v, r),

ω(vstop) = −wn(v) −
∑

q≤π v

we(q, v).

Now, consider any vertex p ∈ G . We have

μ(p,π) = wn(p) +
∑

q≤π p≤π r

we(q, r)

= wn(p) +
∑
p≤π r

we(p, r) +
∑

q<π p≤π r

we(q, r)

= ω(pstart) +
∑

q<π p≤π r

we(q, r) +
∑

q≤π r<π p

we(q, r) −
∑

q≤π r<π p

we(q, r)

= ω(pstart) +
∑ (∑

we(q, r) +
∑

we(q, r)

)
−

∑
we(q, r)
q<π p p≤π r q≤π r<π p q≤π r<π p

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 15
= ω(pstart) +
∑

q<π p

∑
q≤π r

we(q, r) −
∑

r<π p

∑
q≤π r

we(q, r)

= ω(pstart) +
∑

v<π p

(ω(vstart) − wn(v)) −
∑

v<π p

(−ω(vstop) − wn(v))

= ω(pstart) +
∑

v<π p

(ω(vstart) − wn(v) + ω(vstop) + wn(v))

= ω(pstart) +
∑

v<π p

(ω(vstart) + ω(vstop)). �

Lemma A.3. Let πB be a schedule of GB such that pstart and pstop are consecutive in πB , for each p ∈ G. Consider the schedule π of G
such that p ≤π q whenever pstop ≤πB qstop. Then, μ(π) = ρ(πB).

Proof. As pstart and pstop are consecutive in πB , for each p ∈ G , we have

�(pstart,πB) = ω(pstart) +
∑

v<π p

(ω(vstart) + ω(vstop))

and, due to Lemma A.2, �(pstart, πB) = μ(p, π), for any p ∈ G . We consider the vertex p which reaches the cutwidth of πB ,
as defined by Lemma A.1: ρ(πB) = �(pstart

∗, πB). Then,

ρ(πB) = �(pstart,πB) = μ(p,π) ≤ μ(π). (A.1)

Let q ∈ G be such that μ(π) = μ(q, π). Then,

μ(π) = μ(q,π) = �(qstart,πB) ≤ ρ(πB). (A.2)

By combining Equations (A.1) and (A.2), we have μ(π) = ρ(πB). �
Lemma A.4. Let πB be a schedule of GB. There exists a schedule π ′

B of GB such that (i) pstart and pstop are consecutive in π ′
B , for each

p ∈ G, and (ii) ρ(π ′
B) ≤ ρ(πB).

Proof. Let p ∈ G be such that pstart and pstop are not consecutive in πB . We construct a schedule π ′′
B from πB , where pstart

is placed right before pstop . We show that π ′′
B has a cutwidth that is smaller than or equal to that of πB .

Let q ∈ G be such that ρ(π ′′
B) = �(qstart, π ′′

B), which exists due to Lemma A.1. We investigate the following two cases
of q:

• qstart is scheduled before pstart in πB . Then, moving pstart forward does not influence the cutwidth.
• qstart is scheduled after pstart in πB .

We first show that �(qstart, π ′′
B) ≤ �(qstart, πB) as follows. If qstart >πB pstop , then �(qstart, π ′′

B) = �(qstart, πB). Otherwise,
since ω(pstop) ≤ 0, we have �(qstart, π ′′

B) = �(qstart, πB) +ω(pstop) ≤ �(qstart, πB). Thus, we have ρ(π ′′
B) = �(qstart, π ′′

B) ≤
�(qstart, πB) ≤ ρ(πB).

We repeat this process until pstart, pstop vertices are scheduled consecutively, which does not degrade the cutwidth. �
Appendix B. Series composition (used for Theorem 6)

Lemma B.1. Let G1 = (V 1, E1) and G2 = (V 2, E2) be two series-parallel directed graphs. Let (S1, T1) and (S2, T2) be min-ω-cuts,
and π1 and π2 be schedules cut-optimal with (S1, T1) and (S2, T2) for G1 and G2 , respectively. Let π = 〈π1, π2〉 be the schedule of
the series composition G = 〈G1, G2〉 inducing π1 and π2 . Then,

(i) π is cut-optimal with both (S1, T1∪V 2) and (V 1∪S2, T2),
(ii) (S, T) is a min-ω-cut of G, where

(S, T) = argmin {(S1, T1 ∪ V 2), (V 1 ∪ S2, T2)}.

Proof. We first concentrate on item (i) of the lemma. We only show that π is cut-optimal with (S1, T1 ∪ G2), as the other
can be proven similarly. Let (S, T) = (S1, T1 ∪ G2). We need to show π̄ [S] and π [T] both are minimal for �. First consider
π̄ [S]. Since π1 is cut-optimal with (S1, T1) for G1, π̄1[S1] is minimal for � on G1. Then, π̄ [S] is minimal for � on G .

Now consider τ = π [T]. For any schedule κ of G[T], we need to show τ � κ . Take any schedule κ of G[T]. We show
that there is a vertex q ∈ T for each vertex p ∈ T such that p τ →κ q.

16 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
Take any p ∈ T . We consider two scenarios of p ∈ T1 and p ∈ G2, separately.

a) (p ∈ T1). Let τ1 = τ [T1] = π1[T1] and κ1 = κ[T1]. Notice that π1 is min-cut-optimal for G1. Then, π1[T1], and equiva-
lently τ1, is minimal for � by definition. Then, τ1 � κ1. Then, there is a vertex q∗ ∈ T1 such that p τ1 →κ1 q∗ . Note that
q∗ ∈ T1 ⊆ T , and we show p τ →κ q∗ , as follows.
1) (C1: �(p, τ) ≤ �(q∗, κ)). �(p, τ) = �(p, τ1) ≤ �(q∗, κ1) = �(q∗, κ).
2) (C2: min{�(s, τ) : s ≥τ p} ≤ min{�(r, κ) : r ≥κ q∗}). We examine a vertex r ≥κ q∗ , in relation to the vertex to =

maxκ T = maxτ T , which is the single sink vertex of G .
Case 1. (r ∈ T1). Since p τ1 →κ1 q∗ , there is a vertex s ∈ T1 and s ≥τ1 p such that �(s, τ1) ≤ �(r, κ1). Then, s ≥τ p

and

�(s, τ) = �(s, τ1) ≤ �(r, κ1) = �(r, κ).

Case 2. (r ∈ G2, r<κ to). Consider s ∈ G2 such that �(s, π2) =c(S2, T2). Then, �(s, π2) ≤ �(r, κ2), where κ2 = κ[G2],
due to Lemma 6. Then, s ≥τ p and

�(s, τ) = �(s,π2) + ω(T1)

≤ �(r, κ2) + ω(T1) = �(r, κ).

Case 3. (r = to). Consider s = to . Then, s ≥τ p, and

�(s, τ) = �(to, τ) = �(to, κ) = �(r, κ).

b) (p ∈ G2). Let τ2 = τ [G2] = π2 and κ2 = κ[G2]. Notice that π2 is min-cut-optimal for G2. Then, π2, and equivalently τ2,
is minimal for � on G2, due to Theorem 3. Then, τ2 � κ2. Then, there is a vertex q∗ ∈ G2 such that p τ2 →κ2 q∗ . Notice
that �(v, τ) = �(v, τ2) + ω(T1) and �(v, κ) = �(v, κ) + ω(T1), for any vertex v ∈ G2. Since both p ∈ G2 and q∗ ∈ G2,
and p τ2 →κ2 q∗ , it holds p τ →κ q∗ , and q∗ ∈ G2 ⊆ T .

We now concentrate on item (ii) of the lemma. We recall that (S1, T1) and (S2, T2) are both min-ω-cuts. Now, for the
sake of contradiction, suppose that none of (S1, T1 ∪ G2) and (G1 ∪ S2, T2) is a min-ω-cut of G . Take any min-ω-cut (S∗, T ∗)
of G . Consider the vertex, say v , that is shared by G1 and G2. We analyze the cases of v ∈ S∗ and v ∈ T ∗ , as follows.

a) (v ∈ S∗). Let (S∗
2, T

∗
2) be the topological cut induced by (S∗, T ∗) on G2. Then,

c(S∗
2, T ∗

2) = c(G1 ∪ S∗
2, T ∗

2) − ω(G1)

= c(S∗, T ∗) − ω(G1)

< c(G1 ∪ S2, T2) − ω(G1) = c(S2, T2).

This contradicts with the fact that (S2, T2) is a min-ω-cut of G2.
b) (v ∈ T ∗). Let (S∗

1, T
∗
1) be the topological cut induced by (S∗, T ∗) on G1. Then,

c(S∗
1, T ∗

1) = c(S∗
1, T ∗

1 ∪ G2)

= c(S∗, T ∗)
< c(S1, T1 ∪ G2) = c(S1, T1).

This contradicts with the fact that (S1, T1) is a min-ω-cut of G1. �
Appendix C. Compatible orders are sufficient (Theorem 7)

In this section, we prove Theorem 7 which allows to transform subgraphs into chains using Linearize before their parallel
composition in Algorithm 3. We first define the segmentation of a graph into blocks, which is a coarsening of the graph
following a topological order.

Definition C.1 (Segmentation into blocks). Let G be a directed acyclic graph, and κ be a schedule of G . We say Qκ =
{Q 1, Q 2, . . .} is a segmentation into blocks on G for κ , if Qκ is a partition of the vertices of G , and for any two vertices
p ∈ Q j and q ∈ Q k , p ≤κ q implies j ≤ k. Each Q j ∈ Qκ is called a block of Qκ . We define the highest value H(Q j) of a
block Q j ∈Qκ as

H(Q j) = max
q∈Q j

�(q, κ).

Similar to that of Liu [17], we define the hill–valley segmentation of a schedule of a directed acyclic graph, as follows.

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 17
Definition C.2 (Hill–valley segmentation). Let G be a directed acyclic graph, and τ be a schedule of G . The hill–valley seg-
mentation Pτ = {P1, P2, . . .} is a particular block segmentation into blocks on G for τ , which is defined as follows. Let
v0 = minτ G and

h1 = maxτ {h ∈ G : �(h, τ) = ρ(τ)}.
Define vi and hi , recursively, as

vi = maxτ {arg min
v≥τ hi

�(v, τ)},

and

hi = maxτ {arg max
h>τ vi−1

�(h, τ)}.

Finally, define P1 = {v : v0 ≤τ v ≤τ v1}, and Pi = {v : vi−1 < v ≤ vi}, for i > 1. We say that each Pi ∈Pτ is a segment of Pτ .
The hill-value Hi and the valley-value Vi of a segment Pi ∈Pτ are defined as

Hi = �(hi, τ), and Vi = �(vi, τ).

Note that �(p, τ) ≤ Hi , for any p ∈ Pi .

The following property, similar to that given by Liu [17, Lemma 5.1], of the hill–valley segmentation is clear from the
definition.

Lemma C.1. Let G be a directed acyclic graph, τ be a schedule of G, and Pτ = {P1, P2, . . . , Pr} be the hill–valley segmentation of G
for τ . Then,

H1 > H2 > · · · > Hr ≥ Vr > · · · > V2 > V1.

Hereafter, we assume that Pτ implies a hill–valley segmentation of G for a schedule τ , implicitly. Similarly, Qκ implies
any arbitrary segmentation, unless explicitly stated, of G into blocks for a schedule κ .

Definition C.3 (Segment indicates block). Let G be a directed acyclic graph, τ and κ be schedules of G . Let Pi ∈ Pτ be a
segment and Q j ∈ Qκ be a block. We write Pi → Q j , and read Pi indicates Q j , if there is a vertex q∗

j ∈ Q j such that
hi τ →κ q∗

j .

We now demonstrate some properties of the hill–valley segmentation. For Propositions C.1–C.4, we assume G is any
arbitrary directed acyclic, and τ and κ are schedules of G .

Proposition C.1. Let Pi ∈Pτ be a segment and Q j ∈Qκ be a block. If Pi → Q j , then

(i) Hi ≤ H(Q j),
(ii) Vi ≤ min{�(r, κ) : r ≥κ qo

j }, where qo
j = maxκ Q j .

Proof. Assume Pi → Q j . Then, there is a q∗
j ∈ Q j such that hi τ →κ q∗

j , following the definition of dominance given in
Section 4.2.1. We prove the two results separately as follows.

(i) By the first condition (C1) of hi τ →κ q∗
j , we conclude

Hi = �(hi, τ) ≤ �(q∗
j , κ) ≤ H(Q j).

(ii) By the second condition (C2) of hi τ →κ q∗
j , we have

Vi = min{�(s, τ):s≥τ hi}
≤ min{�(r, κ):r≥κ q∗

j } ≤ min{�(r, κ):r≥κ qo
j}. �

Proposition C.2. Let Pi ∈ Pτ be a segment and Q j ∈ Qκ be a block. Let Q k ∈ Qκ be another block with k < j. If Pi → Q k and
Pi � Q j , then H(Q j) < Hi .

Proof. Suppose, for the sake of contradiction, that Pi → Q k and Pi � Q j but H(Q j) ≥ Hi . Since Pi → Q k , there is q∗
k ∈ Q k

such that hi τ →κ q∗ . Then,
k

18 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
min{�(s, τ):s≥τ hi} ≤ min{�(r, κ):r≥κ q∗
k}.

Consider q∗
j ∈ Q j such that �(q∗

j , κ) = H(Q j). Then, q∗
k ≤κ q∗

j , and thus,

min{�(s, τ):s≥τ hi} ≤ min{�(r, κ):r≥κ q∗
j }. (C.1)

Since Hi ≤ H(Q j), as we have supposed for the sake of contradiction, we have

�(hi, τ) = Hi ≤ H(Q j) = �(q∗
j , κ). (C.2)

Then, Equations (C.1) and (C.2) together imply hi τ →κ q∗
j , which arises a contradiction with Pi � Q j . �

Proposition C.3. Let τ � κ . For any segment Pi ∈Pτ , there is a block Q j ∈Qκ such that Pi → Q j .

Proof. Take any Pi ∈ Pτ . Since τ � κ , we have hi τ →κ q∗
j , for some q∗

j ∈ G . For q∗
j ∈ Q j , this implies Pi → Q j , by Defini-

tion C.3. �
Definition C.4 (Monotonic segments-to-blocks function). A function g :Pτ →Qκ is called monotonic if

(i) Pi → g(Pi), for any Pi ∈Pτ , and
(ii) Q j = g(Pi) and Q k = g(Pi+1) implies j ≤ k.

Proposition C.4, together with Proposition C.3, proves that there is a monotonic segments-to-blocks function gτ→κ when-
ever τ � κ .

Proposition C.4. Let τ � κ . For any consecutive segments Pi, Pi+1 ∈ Pτ and any block Q j ∈ Qκ with Pi → Q j , there is a block
Q k ∈Qκ such that Pi+1 → Q k and j ≤ k.

Proof. We prove by contradiction. Suppose the contrary that, Pi+1 � Q k for any k ≥ j. Take any Q k ∈Qκ such that Pi+1 →
Q k , which exists due to Preposition C.3. Then we have, Pi → Q j , Pi+1 � Q j , Pi+1 → Q k , and k < j.

(1) Hi+1 < Hi , due to Lemma C.1,
(2) Hi ≤ H(Q j), due to Proposition C.1,
(3) H(Q j) < Hi+1, due to Proposition C.2.

Then, we obtain Hi+1 < Hi+1, which arises a contradiction. �
Hereafter, we focus on a particular kind of directed acyclic graph, so called half-series-parallel. We use half-series-parallel

directed graphs and Lemma C.4 as building blocks of the proof of Theorem 7.

Definition C.5 (Half-series-parallel directed graph). A directed acyclic graph H is called half-series-parallel, if there is a series-
parallel directed graph G and a min-ω-cut (S, T) of G such that H = G[T].

Lemma C.2. Let H be a half-series-parallel directed graph, and to be the single sink vertex of H. Let τ be a schedule of H. Then,
�(p, τ) ≥ 0, for any p ∈ H \ {to}.

Proof. Consider a series-parallel directed graph G , a min-ω-cut (S, T) of G such that G[T] = H . Take any p ∈ H \ {to}. For
the sake of contradiction, suppose �(p, τ) < 0. Consider the set P = {v ∈ T : v ≤τ p}. Then, (S ∪ P , T /P) is topological and
ω(P) = �(p, τ) < 0. Therefore, c(S ∪ P , T /P) = ω(S) + ω(P) < ω(S) = c(S, T), which contradicts with the minimality of
(S, T). �
Lemma C.3. Let H1 and H2 be two half-series-parallel directed graphs, and H be the half-series-parallel directed graph obtained from
H1 and H2 by unifying their unique sink vertex. Let λ be a schedule of H and p∗ ∈ H. Consider p∗

i = maxλ{p ∈ Hi : p ≤λ p∗}, for
i = 1, 2. If p∗

1 and p∗
2 both are defined, then

�(p∗, λ) = �(p∗
1, λ[H1]) + �(p∗

2, λ[H2]).

Proof. Assume p∗
1 and p∗

2 are defined. Then,

�(p∗, λ) = ω({p ∈ H : p ≤λ p∗})
= ω({p ∈ H1 : p ≤λ p∗}) + ω({p ∈ H2 : p ≤λ p∗})

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 19
Fig. C.1. Illustration of a schedule η built upon gτ→κ over λ, and notations used in Propositions C.5 and C.6.

= ω({p ∈ H1 : p ≤λ[H1] p∗
1}) + ω({p ∈ H2 : p ≤λ[H2] p∗

2})
= �(p∗

1, λ[H1]) + �(p∗
2, λ[H2]). �

Lemma C.4. Let H1 and H2 be two half-series-parallel directed graphs, and H be the half-series-parallel directed graph obtained from
H1 and H2 by unifying their unique sink vertex. Let τ be a schedule of H1 minimal for �. For any schedule λ of H, there is a schedule
η of H such that (i) η induces τ , and (ii) η � λ.

Before proving Lemma C.4, we state and prove Propositions C.5–C.6, which are used in the proof of Lemma C.4. For
Propositions C.5–C.6, we use the definitions in Lemma C.4. That is, H1 and H2 are half-series-parallel directed graphs,
and H is the half-series-parallel directed graph obtained from H1 and H2 by unifying their sink vertex. Accordingly, λ is
a schedule of H and induces κ on H1 (κ = λ[H1]), and Qκ is the segmentation of H1 into blocks induced by κ . This
particular segmentation is built such that for any p, q ∈ H1 with p ≤κ q, where p ∈ Q j and q ∈ Q k , it holds that j = k if and
only if there is no r ∈ H2 with p ≤λ r ≤λ q. We assume τ is a schedule of H1 such that τ � κ , and gτ→κ : Pτ → Qκ is a
monotonic segments-to-block function (see Definition C.4 and the discussion after it). We introduce a schedule η which is
built upon gτ→κ over λ, as follows. We replace in λ each block Q j ∈Q with the segments of

g−1
τ→κ (Q j) = {Pi ∈ Pτ : gτ→κ (Pi) = Q j}.

By virtue of the monotonic character of gτ→κ , we end up with a schedule η that induces τ by the above-mentioned
replacement. Note that η is equivalent to λ on H2, i.e., η[H2] = λ[H2]. Figs. C.1 and C.2 illustrate the construction of η and
the notations used in the following propositions. Then, there only remains to show that η � λ in order to prove Lemma C.4.
To do so, we need Propositions C.5–C.7, concerned with the schedule η of H that is built upon gτ→κ over schedule λ of H .

Proposition C.5. Let Pi ∈ Pτ be a segment and Q j ∈ Qκ be a block such that gτ→κ (Pi) = Q j . Recall from above that τ is minimal
for � on H1 and λ is any schedule of H. Let κ be the schedule induced by λ on H1 , and η be the schedule of H built upon gτ→κ over λ.
For any p ∈ Pi and any q ∈ Q j , if �(p, τ) ≤ �(q, κ), then �(p, η) ≤ �(q, λ).

Proof. Assume �(p, τ) ≤ �(q, κ). Let pλ = maxλ{w ∈ H2, w ≤λ p}. Then, we have two cases to consider.

1. (pλ is not defined). Then, �(p, η) = �(p, τ) ≤ �(q, κ) = �(q, λ).
2. (pλ is defined). Then, by the use of Lemma C.3, we have

�(p, η) = �(p, τ) + �(pλ,η[H2])
≤ �(q, κ) + �(pλ,λ[H2]) = �(q, λ).

Note that by construction of η, pλ = maxλ{w ∈ H2, w ≤λ q} which justifies the last equality. �
Proposition C.6. Recall that η and λ are schedules of H where η is built upon gτ→κ over λ using the same τ and κ as before. Let
p ∈ H1 and pλ = maxλ{w ∈ H2, w ≤λ p}. If pλ is defined, then �(pλ, η) ≤ �(p, λ).

Proof. Assume pλ is defined. Let pτ = maxη{w ∈ H1, w ≤η pλ}. We consider the following two cases, separately.

1. (pτ is not defined). Since H1 is half-series-parallel, �(p, κ) ≥ 0, as suggested by Lemma C.2. Then, by the use of
Lemma C.3, we have

�(pλ,η) = �(pλ,η[H2])
≤ �(pλ,λ[H2]) + �(p, κ) = �(p, λ).

20 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
Fig. C.2. Illustration of a schedule η built upon gτ→κ over λ, and notations used in Proposition C.7.

2. (pτ is defined). Let Pi ∈ Pτ such that pτ ∈ Pi , and notice that pτ = vi . Similarly, let Q j ∈ Qκ such that p ∈ Q j . Let
Q k = gτ→κ (Pi), and qo

k = maxκ Q k . By definition of pλ and pτ , we have k < j, and thus, p ≥κ qo
k . Note that Pi → Q k .

Then, due to Proposition C.1, we have

�(pτ , τ) = Vi ≤ min{�(r, κ) : r ≥κ qo
k} ≤ �(p, κ).

Then, by Lemma C.3, we have

�(pλ,η) = �(pτ , τ) + �(pλ,η[H2])
≤ �(p, κ) + �(pλ,λ[H2]) = �(p, λ). �

Proposition C.7. Recall that η and λ are schedules of H where η is built upon gτ→κ over λ using the same τ and κ as before. For any
p ∈ H2 , we have �(p, η) ≤ �(p, λ).

Proof. Let pκ = maxλ{w ∈ H1, w ≤λ p} and pτ = maxη{w ∈ H1, w ≤η p}. Note that when pκ is not defined, then pτ is not
defined either. Then, we have the following three cases to consider.

1. (Either pκ or pτ is not defined). Then,

�(p, η) = �(p, η[H2]) = �(p, λ[H2]) = �(p, λ).

2. (pκ is defined, but pτ is not). Since H1 is half-series-parallel, �(pκ , κ) ≥ 0, as Lemma C.2 suggests. Thus, by the use of
Lemma C.3, we have

�(p, η) = �(p, λ[H2])
≤ �(p, λ[H2]) + �(pκ , κ) = �(p, κ).

3. (Both pκ and pτ are defined). Let Pi ∈ Pτ such that pτ ∈ Pi , and notice that pτ = vi . Similarly, let Q j ∈ Qκ such that
pκ ∈ Q j . Let Q k = gτ→κ (Pi), and qo

k = maxκ Q k . By definition of pκ and pτ , we have j ≥ k, and thus, pκ ≥κ qo
k . Note

that Pi → Q k . Then, due to Proposition C.1, we have

�(pτ , τ) = Vi ≤ min{�(r, κ) : r ≥κ qo
k} ≤ �(pκ , κ).

Then, by Lemma C.3, we have

�(p, η) = �(pτ , τ) + �(p, η[H2])
≤ �(pκ , κ) + �(p, λ[H2]) = �(p, λ). �

Now, we are ready to prove Lemma C.4.

Proof of Lemma C.4. Recall that τ is a schedule of H1 which is minimal for �, and λ is an arbitrary schedule of H that
induces κ on H1. Since τ is minimal for �, τ � κ . Then, let gτ→κ be a monotonic segments-to-blocks function, which
exists due to Propositions C.3 and C.4. Let η be a schedule of H built upon gτ→κ over λ.

With the above construction (i) is proved, as η induces τ in H1.
We now establish (ii) η � λ. For this, we show that for each p ∈ H , there is q∗ ∈ H such that p η→λ q∗ . For any p, either

p ∈ H1 or p ∈ H2. We explore these two cases separately.

a) (p ∈ H1). Let p ∈ Pi and Q j = gτ→κ (Pi). Since Pi → Q j , there is a vertex q∗
j ∈ Q j such that p τ →κ q∗

j . Now, we show
that it also holds p η→λ q∗ .
j

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 21
1) (C1: �(p, η) ≤ �(q∗
j , λ)). Since p τ →κ q∗

j , we have �(p, τ) ≤ �(q∗
j , κ). Then, Proposition C.5 suggests that C1 is met.

2) (C2: min{�(s, η) :s ≥η p} ≤ min{�(r, λ) :r ≥λ q∗
j }). We show that for each r ≥λ q∗

j , there is a vertex s ≥η p such that
�(s, η) ≤ �(r, λ). We examine three cases: r ∈ Q j , or r ∈ H1 \ Q j , or r ∈ H2.
Case 1. (r ∈ Q j). Since p τ →κ q∗

j , there is a vertex s ≥τ p such that �(s, τ) ≤ �(r, κ). We consider two scenarios of
s ∈ Pi and s /∈ Pi .
i) (s ∈ Pi). Then, Proposition C.5 suggests

�(s, η) ≤ �(r, λ),

and notice that s ≥η p, as s ≥τ p.
ii) (s /∈ Pi). Then, s ≥τ vi ≥τ p. Since �(vi, τ) ≤ �(s, τ), by the definition of vi , we have �(vi, τ) ≤ �(r, κ).

Then, Proposition C.5 suggests

�(vi, η) ≤ �(r, λ),

and notice that vi ≥η p, as vi ≥τ p.
Case 2. (r ∈ H1 \ Q j). Let r ∈ Q k and rλ = maxλ{w ∈ H2, w ≤λ r}. Since r ≥κ q∗

j and r /∈ Q j , it holds k > j, and thus,
rλ is defined and rλ ≥λ q∗

j . Then, Proposition C.6 suggests

�(rλ,η) ≤ �(r, λ),

and notice that rλ ≥η p, as rλ ≥λ q∗
j .

Case 3. (r ∈ H2). Then, Proposition C.7 suggests

�(r, η) ≤ �(r, λ),

and notice that r ≥η p, as r ≥λ q∗
j .

b) (p ∈ H2). We show p η→λ p. The first condition (C1) directly holds due to Proposition C.7. Considering the second
condition (C2), we show, for any r ≥λ p, there is s ≥η p, such that �(s, η) ≤ �(r, λ). We explore the two cases of r ∈ H1
and r ∈ H2, separately.
Case 1. (r ∈ H1). Let rλ = maxλ{w ∈ H2, w ≤λ r}. Since r ≥λ p and p ∈ H2, rλ is defined and rλ ≥λ p. Due to Proposi-

tion C.6, we have

�(rλ,η) ≤ �(r, λ),

and notice that rλ ≥η p, as rλ ≥λ p.
Case 2. (r ∈ H2). Proposition C.7 suggests

�(r, η) ≤ �(r, λ),

and notice that r ≥η p, as r ≥λ p. �
We first recall Theorem 7, and show the proof as a consequence of Lemma C.4.

Theorem C.1 (Restatement of Theorem 7). Let G1 and G2 be two series-parallel directed graphs, and G = {G1, G2} be their parallel
composition. Let (S, T) be a min-ω-cut of G, and π1 and π2 be schedules that are cut-optimal with the topological cuts induced by
(S, T) on G1 and G2 , respectively. For each schedule γ in compliance with (S, T) of G, there is a schedule π in compliance with (S, T)

of G such that

(i) π induces π1 and π2 ,
(ii) π̄ [S] � γ̄ [S] and π [T] � γ [T].

Proof of Theorem 7. Take any schedule γ in compliance with (S, T) of G . Let (S1, T1) be topological cut induced by (S, T)

on G1. Consider λt = γ [T] and τ t
1 = π1[T1]. Then, τ t

1 is minimal for �, since π1 is cut-optimal with (S1, T1). Then, we have
a schedule ηt of G[T] inducing τ t

1 such that ηt � λt , as suggested by Lemma C.4. Now, consider λ̄s = γ̄ [S] and τ̄ s
1 = π̄1[S1].

Then, τ̄ s
1 is minimal for �, since π1 is cut-optimal with (S1, T1). Then, we have a schedule η̄s of G[S] inducing τ̄ s

1 such that
η̄s � λ̄s , as suggested by Lemma C.4. We consider π̇ = 〈ηs, ηt〉. We notice that (i) π̇ induces π1 and γ [G2] on G1 and G2,
respectively. It also holds that (ii) ˙̄π [S] � γ̄ [S] and π̇ [T] � γ [T].

Now, apply the procedure given above on π̇ (instead of γ) for π2 (instead of π1). Then, we obtain π = 〈η̇s, η̇t〉 that (i)
induces π̇ [G1] and π2 on G1 and G2, respectively. It also holds that (ii) π̄ [S] � ˙̄π [S] and π [T] � π̇ [T].

As a result, (i) π induces π1 and π2. Secondly, since � is transitive, it holds that (ii) π̄ [S] � γ̄ [S] and π [T] � γ [T]. �

22 E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23
Appendix D. PC-SCHEDULE is min-cut-optimal (Theorem 8)

PC-Schedule, presented in Algorithm 4, relies on Tree-Schedule to compute schedules for trees that are minimal for �.
This latter algorithm, which we describe below, in turn relies on Liu’s algorithm for trees. However, Liu’s algorithm uses
another model, namely the generalized pebble game: each node is provided with a number of pebbles which should be use
to pebble it. As usual in pebble games, the objective is to pebble the tree up to the root using a minimal number of pebbles.
In order to prove that his algorithm is optimal, Liu’s relies on the notion of Pcost sequences. In the following, we prove that
a schedule minimal for Pcost sequences is also minimal for our relation �. The proof of Theorem D.1 thus largely relies on
notations and concepts borrowed from [17]. We first introduce a restriction on the trees on which Tree-Schedule may be
applied.

Definition D.1 (Liu-compatible tree). Let T be a directed in-tree and r be its root vertex. We say T is Liu-compatible if
ω(T [v]) ≥ 0 for each vertex v ∈ T − {r}, where T [v] is the subtree rooted at v .

Algorithm D.1 Tree-Schedule(G, (S, T)).
Require: G = (V , E, ω): Liu-compatible vertex-weighted tree with root r
Ensure: π : A minimal schedule for �

for v ∈ V do
if v = r then

τ (v) ← ω(T − {r})
else

τ (v) ← ω(T − {r}[v])
Call Algorithm 4.1 in [17] (“Pebble-Ordering”) on T , with “Combine” procedure from Algorithm 6.1 ([17]) to compute schedule π
return π

Theorem D.1. For any Liu-compatible tree T , Algorithm D.1 computes a schedule which is minimal for �.

Proof. For this proof, we use the notations given in [17], and we assume that the reader is familiar with its results. In this
article, Liu considers for any vertex v of a tree a non-negative value τ (v) which represents the number of pebbles required
to satisfy this node. We consider here the following pebbling function as defined in Algorithm D.1, namely:

τ (v) =
{

ω(T [v]) v ∈ T − {r}
ω(T − {r}) v = r.

(D.1)

Notice that τ (v) ≥ 0 for each v ∈ T , as T is Liu-compatible. Let Parent(v) represent the parent vertex of v , for a vertex
v ∈ T − {r}. As in [17], we consider for any schedule π of T the value pebπ (v) which represents the “total number of
pebbles used during the pebbling of the vertex v” while following schedule π .

We first prove that with the previous pebbling function, pebπ (v) = �(v, π), for each v ∈ T − {r}. Take any v ∈ T − {r}.
Let F v = {r ∈ T : r ≤π v <π Parent(r)}, that is, the set populated by the root vertices of the pruned forest. Then,

pebπ (v) =
∑
r∈F v

τ (r) =
∑
r∈F v

ω(T [r]) = ω({u ≤π v}) = �(v,π).

We then consider the Pcost(π), the cost sequence of a schedule π , as defined in [17]. We prove that if Pcost(π) ≺
Pcost(γ) then π � γ , for two schedules π and γ of T .

Assume Pcost(π) ≺ Pcost(γ). Now, for each vertex p ∈ T , we need to exhibit a vertex q∗ ∈ T such that p π →γ q∗ . Since
r = maxπ T = maxγ T , we have r π→γ r. Now, take any vertex p ∈ T − {r}. Let p reside in the ith hill–valley segment with
respect to π . By definition of ≺ in [17, Section 5.2], there exists j such that H̃i ≤ H j , and Ṽ i ≤ V j , where (H̃i, Ṽ i) and
(H j, V j) are the hill–valley values for ith and jth segments with respect to schedules π and γ , respectively. Consider a
vertex q∗ ∈ T − {r} so that q∗ resides in the jth hill–valley segment with respect to γ , and pebγ (q∗) = H j , where such q∗
exists due to Equation (D.1). Now, we show p π→γ q∗ as follows.

1) (C1: �(p, π) ≤ �(q∗, γ)). Recall that pebπ (p) = �(p, π) and pebγ (q∗) = �(q∗, γ). Then, we have:

�(p,π) = pebπ (p) ≤ H̃i ≤ H j = pebγ (q∗) = �(q∗, γ).

2) (C2: min{�(s, π) : s ≥π p} ≤ min{�(r, γ) : r ≥γ q∗}). Recall that pebπ (v) = �(v, π) and pebπ (v) = �(v, γ), for each
v ∈ T − {r}. By definition of Ṽ i and V j ,

min{�(s,π):s≥π p} = Ṽ i ≤ V j = min{�(r, γ):r≥γ q∗}.
Thanks to [17, Theorem 6.4], we known that Algorithm 4.1 in [17] with Combine procedure 6.1 ([17]) computes a

schedule π of T so that Pcost(π) ≺ Pcost(γ), for any schedule γ of T . As a corollary, π is minimal for � on T . �

E. Kayaaslan et al. / Theoretical Computer Science 707 (2018) 1–23 23
Theorem D.2 (Restatement of Theorem 8). For any parallel-chain graph G and any min-ω-cut (S, T) of G, PC-Schedule computes a
schedule π that is cut-optimal with (S, T).

Proof of Theorem 8. Let G be a parallel-chain directed graph and (S, T) be a min-ω-cut of G . We first check that both Ḡ[S]
and G[T] are Liu-compatible trees.

We only show that G[T] is Liu-compatible, as the other can be proven similarly. For the sake of contradiction, suppose
that G[T] is not Liu-compatible. Then, there is a vertex, say v , such that ω(T [v]) < 0. Consider the topological cut (S ′, T ′),
where S ′ = S ∪ T [v] and T ′ = G − S ′ . Then, c(S ′, T ′) = ω(S ′) = ω(S) + ω(T [v]) < ω(S) = c(S, T). This contradicts the fact
that (S, T) is a min-ω-cut of G .

The first steps of PC-Schedule as described in Algorithm 4 is to compute schedules σ̄ and τ for Ḡ[S] and G[T] using
Tree-Schedule. Thanks to Theorem D.1, we know that these schedules are minimal for �.

Then, by definition, π = 〈σ , τ 〉 is cut-optimal with (S, T), as π is in compliance with (S, T), σ̄ is minimal for � on Ḡ[S],
and τ is minimal for � on Ḡ[S]. �
References

[1] S. Arora, S. Rao, U. Vazirani, Geometry, flows, and graph-partitioning algorithms, Commun. ACM 51 (10) (2008) 96–105.
[2] G. Cordasco, R.D. Chiara, A.L. Rosenberg, Assessing the computational benefits of area-oriented DAG-scheduling, in: Euro-Par 2011 Parallel Processing –

17th International Conference, Springer, 2011, pp. 180–192.
[3] G. Cordasco, A.L. Rosenberg, On scheduling series-parallel DAGs to maximize area, Internat. J. Found. Comput. Sci. 25 (5) (2014) 597–622.
[4] J. Díaz, M.D. Penrose, J. Petit, M.J. Serna, Layout problems on lattice graphs, in: Proceedings of the 5th Annual International Conference on Computing

and Combinatorics, COCOON ’99, Tokyo, Japan, July 26–28, 1999, 1999, pp. 103–112.
[5] J. Díaz, J. Petit, M. Serna, A survey of graph layout problems, ACM Comput. Surv. 34 (3) (2002) 313–356.
[6] D. Eppstein, Parallel recognition of series-parallel graphs, Inform. and Comput. 98 (1) (1992) 41–55.
[7] L. Eyraud-Dubois, L. Marchal, O. Sinnen, F. Vivien, Parallel scheduling of task trees with limited memory, ACM Trans. Parallel Comput. 2 (2) (2015) 13.
[8] L. Finta, Z. Liu, I. Mills, E. Bampis, Scheduling UET–UCT series-parallel graphs on two processors, Theoret. Comput. Sci. 162 (2) (1996) 323–340.
[9] F. Gavril, Some NP-complete problems on graphs, in: 11th Conference on Information Sciences and Systems, The John Hopkins University, Baltimore,

MD, 1977, pp. 91–95.
[10] J.R. Gilbert, T. Lengauer, R.E. Tarjan, The pebbling problem is complete in polynomial space, SIAM J. Comput. 9 (3) (1980) 513–524.
[11] A. González-Escribano, A.J.C. van Gemund, V. Cardeñoso-Payo, Mapping unstructured applications into nested parallelism, in: High Performance Com-

puting for Computational Science – VECPAR, Springer, 2002, pp. 407–420.
[12] M. Jacquelin, L. Marchal, Y. Robert, B. Uçar, On optimal tree traversals for sparse matrix factorization, in: IPDPS ’11, IEEE Computer Society, 2011,

pp. 556–567.
[13] C.-C. Lam, T. Rauber, G. Baumgartner, D. Cociorva, P. Sadayappan, Memory-optimal evaluation of expression trees involving large objects, Comput. Lang.

Syst. Struct. 37 (2) (2011) 63–75.
[14] T. Leighton, S. Rao, Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms, J. ACM 46 (6) (1999) 787–832.
[15] J.W.H. Liu, On the storage requirement in the out-of-core multifrontal method for sparse factorization, ACM Trans. Math. Software 12 (3) (1986)

249–264.
[16] J.W.H. Liu, An adaptive general sparse out-of-core Cholesky factorization scheme, SIAM J. Sci. Statist. Comput. 8 (4) (1987) 585–599.
[17] J.W.H. Liu, An application of generalized tree pebbling to sparse matrix factorization, SIAM J. Algebr. Discrete Methods 8 (3) (1987) 375–395.
[18] B. Monien, I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoret. Comput. Sci. 58 (1) (1988) 209–229.
[19] C.L. Monma, J.B. Sidney, Sequencing with series-parallel precedence constraints, Math. Oper. Res. 4 (3) (1979) 215–224.
[20] J. Petit, Addenda to the survey of layout problems, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 105 (2011) 177–201.
[21] Y. Robert, Task graph scheduling, in: D. Padua (Ed.), Encyclopedia of Parallel Computing, Springer US, Boston, MA, 2011, pp. 2013–2025.
[22] R. Sethi, Complete register allocation problems, in: STOC ’73, ACM Press, 1973, pp. 182–195.
[23] R. Sethi, J. Ullman, The generation of optimal code for arithmetic expressions, J. ACM 17 (4) (1970) 715–728.
[24] D.M. Thilikos, M. Serna, H.L. Bodlaender, Cutwidth I: a linear time fixed parameter algorithm, J. Algorithms 56 (1) (2005) 1–24.
[25] D.M. Thilikos, M.J. Serna, H.L. Bodlaender, A polynomial time algorithm for the cutwidth of bounded degree graphs with small treewidth, in: F.M.

auf der Heide (Ed.), Proceedings of the 9th Annual European Symposium on Algorithms, ESA 2001, Århus, Denmark, August 28–31, 2001, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 380–390.

[26] J. Valdes, R.E. Tarjan, E.L. Lawler, The recognition of series parallel digraphs, SIAM J. Comput. 11 (2) (1982) 298–313.
[27] Y. Wu, P. Austrin, T. Pitassi, D. Liu, Inapproximability of treewidth and related problems, J. Artificial Intelligence Res. 49 (2014) 569–600.
[28] M. Yannakakis, A polynomial algorithm for the min-cut linear arrangement of trees, J. ACM 32 (4) (1985) 950–988.

http://refhub.elsevier.com/S0304-3975(17)30705-3/bib617272763A3038s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib726F73656E62657267323031316575726F706172s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib726F73656E62657267323031316575726F706172s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib726F73656E6265726731345350s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib6469617A39395F6C61796F75745F6C617474696365s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib6469617A39395F6C61796F75745F6C617474696365s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib646970733A3032s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib457070737465696E3938s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib544F50433135706172616C6C656C74726565s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib66696E7461313939367363686564756C696E67s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib676176723A3737s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib676176723A3737s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib67696C626572743830s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib476F6E7A616C657A2D457363726962616E6F5645435041523032s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib476F6E7A616C657A2D457363726962616E6F5645435041523032s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib69706470732D747265652D74726176657273616Cs1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib69706470732D747265652D74726176657273616Cs1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib7261756265723131434C5353s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib7261756265723131434C5353s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib6C6572613A3939s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib4C69753836s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib4C69753836s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib6C69753A383762s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib4C69753837s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib6D6F6E69656E3838s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib6D6F6E6D6137395350s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib706574693A3131s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib7461736B67726170687363686564756C696E67s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib53657468693733s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib5365746869556C6C6D616E3730s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib746873623A3035s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib746873623A3031s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib746873623A3031s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib746873623A3031s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib53502D7265636Fs1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib7761706C3A3134s1
http://refhub.elsevier.com/S0304-3975(17)30705-3/bib79616E6E3A3835s1

	Scheduling series-parallel task graphs to minimize peak memory
	1 Introduction
	2 Peak memory minimization: model and objective
	3 Solving the peak memory problem on trees and parallel-chain graphs
	3.1 Liu's algorithm for trees
	3.2 Algorithm for parallel-chain graphs

	4 Solving the peak memory problem for series-parallel graphs
	4.1 A simpler model with only vertex weights
	4.1.1 Minimizing the cutwidth allows to minimize the peak memory
	4.1.2 Reverse graph in the cumulative weight model

	4.2 A new relation on schedules
	4.2.1 Deﬁnition of the relation on schedules
	4.2.2 Minimality for the <= relation implies cutwidth optimality

	4.3 Min-cut optimality
	4.3.1 Deﬁnition of min-cut optimality
	4.3.2 Properties of min-cut optimality

	4.4 Algorithm for general series-parallel graphs
	4.5 Correctness of the algorithm

	5 Conclusion
	Acknowledgements
	Appendix A Problem transformation
	Appendix B Series composition (used for Theorem 6)
	Appendix C Compatible orders are sufﬁcient (Theorem 7)
	Appendix D PC-Schedule is min-cut-optimal (Theorem 8)
	References

