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Introduction

I Complex applications on grid environment require collective
communications, in particular broadcast

I multicast = broadcast to a strict subset of targets in the
platform nodes

I Numerous studies of multicast:
I Steiner trees (minimize the cost of a single multicast tree, NP

hard problem)
I for a wide variety of particular architectures and technologies

(wormhole-routed, wireless, ad-hoc, optical networks)
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Introduction

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of multicasts from same source)
I maximize throughput of steady-state operation

I with the same framework as in previous work for other
collective communications:

scatter, reduce, broadcast ⇒
{

optimal throughput,
asymptotically optimal algorithms

I surprisingly, multicast turned out to be more challenging

Loris Marchal Pipelined Multicast 5/ 26



Introduction

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of multicasts from same source)
I maximize throughput of steady-state operation

I with the same framework as in previous work for other
collective communications:

scatter, reduce, broadcast ⇒
{

optimal throughput,
asymptotically optimal algorithms

I surprisingly, multicast turned out to be more challenging

Loris Marchal Pipelined Multicast 5/ 26



Introduction

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of multicasts from same source)
I maximize throughput of steady-state operation

I with the same framework as in previous work for other
collective communications:

scatter, reduce, broadcast ⇒
{

optimal throughput,
asymptotically optimal algorithms

I surprisingly, multicast turned out to be more challenging

Loris Marchal Pipelined Multicast 5/ 26



Introduction

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of multicasts from same source)
I maximize throughput of steady-state operation

I with the same framework as in previous work for other
collective communications:

scatter, reduce, broadcast ⇒
{

optimal throughput,
asymptotically optimal algorithms

I surprisingly, multicast turned out to be more challenging

Loris Marchal Pipelined Multicast 5/ 26



Introduction

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of multicasts from same source)
I maximize throughput of steady-state operation

I with the same framework as in previous work for other
collective communications:

scatter, reduce, broadcast ⇒
{

optimal throughput,
asymptotically optimal algorithms

I surprisingly, multicast turned out to be more challenging

Loris Marchal Pipelined Multicast 5/ 26



Introduction

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of multicasts from same source)
I maximize throughput of steady-state operation

I with the same framework as in previous work for other
collective communications:

scatter, reduce, broadcast ⇒
{

optimal throughput,
asymptotically optimal algorithms

I surprisingly, multicast turned out to be more challenging

Loris Marchal Pipelined Multicast 5/ 26



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I Psource : processor initiating the
multicast

I Ptarget : set of target processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time needed to transfer one
unit message from Pj to Pk

I one-port model for incoming
communications

I one-port model for outgoing
communications
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Framework for pipelined Broadcast and Scatter

1. express optimization problem as set of linear constraints
(variables = fraction of time a processor spends sending to
another during one time-unit)

2. solve linear program (in rational numbers)

3. use solution to build periodic schedule reaching best
throughput

two preliminaries operations:

I Scatter: Psource sends different messages to each target in
Ptarget

I Broadcast: Psource sends the same messages to every processor
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Linear constraints for broadcast and scatter

I variables: average quantities during one time-unit

I express constraints on these quantities:
I bounded capacities on links:

(data sent through i → j)× c(i, j) 6 1

I one-port assumptions:

time spent by Pi sending (or receiving) data 6 1

I conservation laws:

3mk
5mk

2mk

4mk

Pi
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Linear Program for Broadcast and Scatter

previous linear programs gives, for Scatter and Broadcast:

I optimal throughput,

I number of messages of each type on each link,

I occupation time of each edge

Using classical graph techniques, we orchestrate communications

and derive a periodic schedule.
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Toy example
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Toy example

1 2 3 4 {

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa
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Periodic schedule obtained from the solution of the linear program
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Complexity result

Theorem.

Computing the best throughput for a multicast operation on a
given platform is NP-hard

I reduction from MINIMUM-SET-COVER:
C is a collection of subsets of X, a B is a bound
does C contain a cover of X of size at most B ?
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NP-Completeness

I reduction from MINIMUM-SET-COVER:
C is a collection of subsets of X, a B is a bound
does C contain a cover of X of size at most B ?

X1 X2 X3 X4 X5 X6 X7 X8

C1

C2

C3

C4
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Straightforward heuristics

Optimal solutions (obtained by linear programming) on Scatter
and Broadcast problem give two heuristics:

I scatter:
I forget that messages sent to different targets are the same
I scatter has a guarantee factor of |Ptarget|:

throughput(scatter) >
optimal throughput

number of targets

I broadcast:
consider each node is a target, broadcast messages on the
whole platform
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Refined heuristics

I Reduced Broadcast:

1. compute the solution of the broadcast
2. choose the node Pmin which forwards the minimum of

messages to the targets
3. delete this vertex from the platform graph and start again

until the throughput is not improved

I Augmented Multicast:

1. compute the solution of the scatter
2. choose the node Pmax which forwards the maximum of

messages to the targets
3. add this node to Ptarget if it improves the throughput of a

broadcast on the set of nodes {Psource} ∪ Ptarget
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Refined heuristics

I Multisource Multicast

1. start from the solution of a scatter
2. compute the node which forwards the maximum of

messages
3. add this node as secondary source:

it receives all the messages from the previous sources
it sends part of the messages to the target nodes
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Tree based heuristic

I problem: find a low-cost multicast tree

I cost: sum of the weights of the edges in the tree

I Minimum Steiner Tree: NP-complete

I some heuristics exist, among other the Minimum Cost Path
Heuristic:

I grow a tree until it spans all the target nodes
I at each step, find the target which could be added with

minimum cost to the current tree
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Simulation results

I we perform experiments on platforms generated by Tiers

I two types of platforms:
I one “big”: 65 nodes
I one “small”: 30 nodes

I results: comparison of the throughput of our heuristics over
two bounds:

I lower bound (scatter operation)
I theoretical upper bound
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Small platform - comparison over scatter
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Small platform - comparison over the lower bound
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Big platform - comparison over scatter
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Big platform - comparison over the lower bound
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Conclusion

I contributions:
I framework to study pipelined collective communications and

optimize throughput
I Pipelined Multicast is NP-Complete
I NP-Completeness can be extended to Parallel Prefix

computation
I design of several heuristics based on linear programming or on

classical minimum cost tree algorithms
I comparison by simulations: LP based heuristics are close to the

theoretical bound

I limitations:
I communication model: send-OR-receive more difficult
I acquiring reliable informations on the platform
I dynamic version

I next step: tests on bigger platforms, ideally integrate this into
a real application
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