
Loris Marchal — HDR defense

Memory and data aware scheduling

committee:

Ümit Çatalyürek (reviewer) Georgia Tech.
Pierre Manneback Polytech-Mons
Alix Munier Kordon Univ. Paris 6
Cynthia Phillips (reviewer) Sandia Nat. Lab.
Yves Robert ENS Lyon
Denis Trystram (reviewer) Grenoble INP

2 / 46

Position and supervision

I CNRS researcher since 2007

I 4 PhD students:
I Mathias Jacquelin: 2008 – 2011 (with Y. Robert)

(research scientist at Lawrence Berkeley Nat. Lab., USA)

I Julien Herrmann: 2012 – 2015 (with Y. Robert)
(postdoc at Georgia Tech., USA)

I Bertrand Simon: 2015 – 2018 (with F. Vivien)
(defense in July)

I Changjiang Gou: 2016 – . . . (with A. Benoit)

3 / 46

Motivation and context – scientific computing

I Simulation of larger systems with better accuracy

I Need for better performance on larger data

4 / 46

Increasing complexity of computing platforms

Evolution of computing platforms:

I Single processor

I n processors with shared memory
I n processors with communication delays
I n multi-core processors with memory hierachies
I n multi-core processors and k accelerators (GPUs)

My focus: optimize application mapping and task scheduling
for memory constraints and data movement

4 / 46

Increasing complexity of computing platforms

Evolution of computing platforms:

memory

I Single processor
I n processors with shared memory

I n processors with communication delays
I n multi-core processors with memory hierachies
I n multi-core processors and k accelerators (GPUs)

My focus: optimize application mapping and task scheduling
for memory constraints and data movement

4 / 46

Increasing complexity of computing platforms

Evolution of computing platforms:

memory memory memory

network

I Single processor
I n processors with shared memory
I n processors with communication delays

I n multi-core processors with memory hierachies
I n multi-core processors and k accelerators (GPUs)

My focus: optimize application mapping and task scheduling
for memory constraints and data movement

4 / 46

Increasing complexity of computing platforms

Evolution of computing platforms:

memory memory memory

network

I Single processor
I n processors with shared memory
I n processors with communication delays
I n multi-core processors with memory hierachies

I n multi-core processors and k accelerators (GPUs)

My focus: optimize application mapping and task scheduling
for memory constraints and data movement

4 / 46

Increasing complexity of computing platforms

Evolution of computing platforms:

memory memory memory

network

I Single processor
I n processors with shared memory
I n processors with communication delays
I n multi-core processors with memory hierachies
I n multi-core processors and k accelerators (GPUs)

My focus: optimize application mapping and task scheduling
for memory constraints and data movement

4 / 46

Increasing complexity of computing platforms

Evolution of computing platforms:

memory memory memory

network

I Single processor
I n processors with shared memory
I n processors with communication delays
I n multi-core processors with memory hierachies
I n multi-core processors and k accelerators (GPUs)

My focus: optimize application mapping and task scheduling
for memory constraints and data movement

5 / 46

Contributions

I Part I. Task graph scheduling with limited memory
I Chapter 2. Memory-aware dataflow model
I Chapter 3. Peak Memory and I/O Volume on Trees
I Chapter 4. Peak memory of series-parallel task graphs
I Chapter 5. Hybrid scheduling with bounded memory
I Chapter 6. Memory-aware parallel tree processing

I Part II. Minimizing data movement for matrix computations
I Chapter 7. Matrix product for memory hierarchy
I Chapter 8. Data redistribution for parallel computing
I Chapter 9. Dynamic scheduling for matrix computations

5 / 46

Contributions

I Part I. Task graph scheduling with limited memory
I Chapter 2. Memory-aware dataflow model
I Chapter 3. Peak Memory and I/O Volume on Trees
I Chapter 4. Peak memory of series-parallel task graphs
I Chapter 5. Hybrid scheduling with bounded memory
I Chapter 6. Memory-aware parallel tree processing

I Part II. Minimizing data movement for matrix computations
I Chapter 7. Matrix product for memory hierarchy
I Chapter 8. Data redistribution for parallel computing
I Chapter 9. Dynamic scheduling for matrix computations

Outline of this talk

Introduction

1. Scheduling tree-shaped task graphs with bounded memory

2. Data redistribution for parallel computing

Research perspectives

Outline

Introduction

1. Scheduling tree-shaped task graphs with bounded memory

2. Data redistribution for parallel computing

Research perspectives

8 / 46

Modeling scientific applications as task graphs

I Scientific applications divided into
rather independent modules (tasks)

I Tasks linked through data
dependencies

I Directed Acyclic Graph of tasks

I Abundant literature about (theoretical) task graph scheduling
I Popularized by runtime schedulers (ParSec, StarPU, XKaapi,

OpenMP 4)
I Express dependencies between tasks
I Write code for each task on (possibly several) processing units
I Choose task mapping at runtime

9 / 46

Task graph scheduling and memory

I Consider a simple task graph

I Tasks have durations and memory demands

A

B

C

D

E

F

I Peak memory: maximum memory usage

I Trade-off between peak memory and performance (time to
solution)

9 / 46

Task graph scheduling and memory

I Consider a simple task graph

I Tasks have durations and memory demands

A

B

C

D

E

F

duration

m
em

or
y

I Peak memory: maximum memory usage

I Trade-off between peak memory and performance (time to
solution)

9 / 46

Task graph scheduling and memory

I Consider a simple task graph

I Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

I Peak memory: maximum memory usage

I Trade-off between peak memory and performance (time to
solution)

9 / 46

Task graph scheduling and memory

I Consider a simple task graph

I Tasks have durations and memory demands

out of memory!

A B

C

D

E F

time

Processor 1:

Processor 2:

I Peak memory: maximum memory usage

I Trade-off between peak memory and performance (time to
solution)

9 / 46

Task graph scheduling and memory

I Consider a simple task graph

I Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

I Peak memory: maximum memory usage

I Trade-off between peak memory and performance (time to
solution)

10 / 46

Going back to sequential processing

I Temporary data require memory

I Scheduling influences the peak memory

A

B

C

D

E

F

When minimum memory demand > available memory:

I Store some temporary data on a larger, slower storage (disk)

I Out-of-core computing, with Input/Output operations (I/O)

I Decide both scheduling and eviction scheme

10 / 46

Going back to sequential processing

I Temporary data require memory

I Scheduling influences the peak memory

A B C D E F

A BC D E F

When minimum memory demand > available memory:

I Store some temporary data on a larger, slower storage (disk)

I Out-of-core computing, with Input/Output operations (I/O)

I Decide both scheduling and eviction scheme

10 / 46

Going back to sequential processing

I Temporary data require memory

I Scheduling influences the peak memory

A B C D E F

A BC D E F

When minimum memory demand > available memory:

I Store some temporary data on a larger, slower storage (disk)

I Out-of-core computing, with Input/Output operations (I/O)

I Decide both scheduling and eviction scheme

11 / 46

(Black) Pebble game (1970s)

A

B

C

D

E

F

Rules of the game (possible moves):

1. Put a pebble on a source vertex

2. Remove a pebble from a vertex

3. Put a pebble on a vertex if all its predecessors are pebbled

Objectives:

I Pebble all output vertices

I Minimize the number of pebbles used

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

+

u

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

t

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

tu

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

u

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

t

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

tu

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

tu

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

tu

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

tu

−

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

u

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

t

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

tu

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

12 / 46

Register allocation & pebble game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

Complexity results

Problem on trees:

I Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):

I P-Space complete [Gilbert, Lengauer & Tarjan, 1980]

I Without re-computation: NP-complete [Sethi, 1973]

Pebble movements corresponds to register operations:

1. Pebbling a source vertex: load an input into register
2. Removing a pebble: discard value in register
3. Pebbling a vertex: computing a value in a new register

Objective: use a minimal number of registers

13 / 46

Red-Blue pebble game (Hong & Kung 1991)

A

B

C

D

E

F

Rules of the game (possible moves):

1. Put a red pebble on a source vertex

2. Remove a red pebble from a vertex

3. Put a red pebble on a vertex if all predecessors red-pebbled

4. Put a red pebble on a blue-pebbled vertex

5. Put a blue pebble on a red-pebbled vertex

6. Remove a blue pebble from a vertex

7. Never use more than M red pebbles

Objective: pebble graph with minimum number of rules 4/5

13 / 46

Red-Blue pebble game (Hong & Kung 1991)

A

B

C

D

E

F

Rules of the game (possible moves):

1. Put a red pebble on a source vertex

2. Remove a red pebble from a vertex

3. Put a red pebble on a vertex if all predecessors red-pebbled

4. Put a red pebble on a blue-pebbled vertex

5. Put a blue pebble on a red-pebbled vertex

6. Remove a blue pebble from a vertex

7. Never use more than M red pebbles

Objective: pebble graph with minimum number of rules 4/5

13 / 46

Red-Blue pebble game (Hong & Kung 1991)

A

B

C

D

E

F

Rules of the game (possible moves):

1. Put a red pebble on a source vertex

2. Remove a red pebble from a vertex

3. Put a red pebble on a vertex if all predecessors red-pebbled

4. Put a red pebble on a blue-pebbled vertex

5. Put a blue pebble on a red-pebbled vertex

6. Remove a blue pebble from a vertex

7. Never use more than M red pebbles

Objective: pebble graph with minimum number of rules 4/5

14 / 46

Red-Blue pebble game and I/O complexity

t

+

7

+

v

−
2 z

5 1z x

×

/

+

+

−

−

Analogy with out-of-core processing:

I red pebbles: memory slots

I blue pebbles: secondary storage (disk)

I red −→ blue: write to disk, evict from memory

I blue −→ red: read from disk, load in memory

I M: number of available memory slots

Objective: minimum number of I/O operations

15 / 46

Red/Blue pebble game – Results

Idea of Hong & Kung:

I Partition graph into sets with at most M reads and writes

I Number of sets needed ⇒ lower-bound on I/Os

Lower-bound on I/Os:

I Product of 2 n2-matrices: Θ(n3/
√
M)

I Other regular graphs (FFT)

Later extended to other matrix operations:

I Lower bounds

I Communication-avoiding algorithms

16 / 46

Summary

Three problems:

I Memory minimization
Black pebble game

I I/O minimization for out-of-core processing
Red-Blue pebble game

I Memory/Time tradeoff for parallel processing

Shift of focus:

I Pebble games limited to unit-size data

I Target coarse-grain tasks, with heterogeneous data sizes

16 / 46

Summary

Three problems:

I Memory minimization
Black pebble game

I I/O minimization for out-of-core processing
Red-Blue pebble game

I Memory/Time tradeoff for parallel processing

Shift of focus:

I Pebble games limited to unit-size data

I Target coarse-grain tasks, with heterogeneous data sizes

17 / 46

Tree-shaped task graphs

I Multifrontal sparse matrix factorization

I To cope with complex/heterogeneous platforms:
I Express factorization as a task graph
I Scheduled using specialized runtime

I Assembly/Elimination tree: task graph is an in-tree

Problem:

I Large temporary data

I Memory becomes a
bottleneck

I Schedule trees
with limited memory

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→):

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0

0 0

3

D

A B

C

E

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←):

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11, 7

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0

0 0

3

D

A B

C

E

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11, 7, 9

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11, 7, 9, 11

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11, 7, 9, 11, 9

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11, 7, 9, 11, 9

Focus on two problems:

I How to minimize the memory requirement of a tree?
I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

18 / 46

Tree traversal influences peak memory

33

22

81

22

0 0

0

3E

D

A B

C

I Nodes: tasks
I Node weight: temporary data (mi)

I Edges: dependencies (data)
I Edge weight: data size (di,j)

I Process a node:
load inputs + output + temporary data

I Memory (→): 4, 2, 6, 4, 8, 3, 14, 6, 9

I Memory (←): 11, 7, 9, 11, 9

Focus on two problems:
I How to minimize the memory requirement of a tree?

I Best post-order traversal
I Optimal traversal

I Given an amount of available memory, how to efficiently
process a tree?

I Parallel processing
I Goal: minimize processing time

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1,

d1 + P2, d1 + d2 + P3, . . . ,
∑
i<n

di + Pn,
∑
i≤n

di + mi + dr



I Optimal order:

non-increasing Pi − di

I Best post-order traversal is optimal for unit-weight trees

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1, d1 + P2,

d1 + d2 + P3, . . . ,
∑
i<n

di + Pn,
∑
i≤n

di + mi + dr



I Optimal order:

non-increasing Pi − di

I Best post-order traversal is optimal for unit-weight trees

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1, d1 + P2, d1 + d2 + P3,

. . . ,
∑
i<n

di + Pn,
∑
i≤n

di + mi + dr



I Optimal order:

non-increasing Pi − di

I Best post-order traversal is optimal for unit-weight trees

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1, d1 + P2, d1 + d2 + P3, . . . ,
∑
i<n

di + Pn,

∑
i≤n

di + mi + dr



I Optimal order:

non-increasing Pi − di

I Best post-order traversal is optimal for unit-weight trees

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1, d1 + P2, d1 + d2 + P3, . . . ,
∑
i<n

di + Pn,
∑
i≤n

di + mi + dr



I Optimal order:

non-increasing Pi − di

I Best post-order traversal is optimal for unit-weight trees

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1, d1 + P2, d1 + d2 + P3, . . . ,
∑
i<n

di + Pn,
∑
i≤n

di + mi + dr


I Optimal order: non-increasing Pi − di

I Best post-order traversal is optimal for unit-weight trees

19 / 46

Best post-order traversal for trees [Liu 86]

Post-Order: totally process a subtree before starting another one

dnd2

r

P1
P2 . . . Pn

d1

I For each subtree: peak memory Pi , residual memory di
I Given a processing order 1, . . . , n, the peak memory:

max

P1, d1 + P2, d1 + d2 + P3, . . . ,
∑
i<n

di + Pn,
∑
i≤n

di + mi + dr


I Optimal order: non-increasing Pi − di
I Best post-order traversal is optimal for unit-weight trees

20 / 46

Post-Order vs. optimal traversals

I In some cases, interesting to stop within a subtree
(if there exists a cut with small weight)

I For any K , possible to build a tree such that post-order uses
K times as much memory as the optimal traversal

150

100 100

150

100
2525

20 / 46

Post-Order vs. optimal traversals

I In some cases, interesting to stop within a subtree
(if there exists a cut with small weight)

I For any K , possible to build a tree such that post-order uses
K times as much memory as the optimal traversal

25

150

100 100

150

100
25

20 / 46

Post-Order vs. optimal traversals

I In some cases, interesting to stop within a subtree
(if there exists a cut with small weight)

I For any K , possible to build a tree such that post-order uses
K times as much memory as the optimal traversal

150

100 100

150

100
2525

20 / 46

Post-Order vs. optimal traversals

I In some cases, interesting to stop within a subtree
(if there exists a cut with small weight)

I For any K , possible to build a tree such that post-order uses
K times as much memory as the optimal traversal

150

100 100

150

100
2525

20 / 46

Post-Order vs. optimal traversals

I In some cases, interesting to stop within a subtree
(if there exists a cut with small weight)

I For any K , possible to build a tree such that post-order uses
K times as much memory as the optimal traversal

150

100 100

150

100
2525

20 / 46

Post-Order vs. optimal traversals

I In some cases, interesting to stop within a subtree
(if there exists a cut with small weight)

I For any K , possible to build a tree such that post-order uses
K times as much memory as the optimal traversal

on actual on random
assembly trees trees

Fraction of non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

Optimal algorithms:

I First algorithm proposed by [Liu 87]
Complex mutli-way merge, O(n2)

I New algorithm
Recursive exploration of the tree, O(n2), faster in practice

[M. Jacquelin, L. Marchal, Y. Robert & B. Uçar, IPDPS 2011]

21 / 46

Model for parallel tree processing

I p identical processors

I Shared memory of size M

I Task i has execution times pi
I Parallel processing of nodes ⇒ larger memory
I Trade-off time vs. memory: bi-objective problem

I Peak memory
I Makespan (total processing time)

d3d2

d5d4

m3m2

m5m4
00

0

m1

2

1

3

54

22 / 46

NP-Completeness in the pebble game model

Background:

I Makespan minimization NP-complete for trees (P|trees|Cmax)

I Polynomial when unit-weight tasks (P|pi = 1, trees|Cmax)

I Pebble game polynomial on trees

Pebble game model:

I Unit execution time: pi = 1

I Unit memory costs: mi = 0, di = 1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.

[L. Eyraud-Dubois, L. Marchal, O. Sinnen, F. Vivien, TOPC 2015]

23 / 46

Space-Time tradeoff

No guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma: For a schedule with peak memory M and makespan Cmax,
M × Cmax ≥ 2(n − 1)

Proof: each edge stays in memory for at least 2 steps.

Theorem 2

For any α(p)-approximation for makespan and β(p)-approximation
for memory peak with p ≥ 2 processors,

α(p)β(p) ≥ 2p

dlog(p)e+ 2
·

24 / 46

How to cope with limited memory?

I When processing a tree on a given machine: bounded memory

I Objective: Minimize processing time under this constraint

I NB: bounded memory ≥ memory for sequential processing

I Intuition:
I When data sizes � memory bound:

process many tasks in parallel
I When approaching memory bound, limit parallelism

I Rely on a (memory-friendly) sequential traversal

Existing (system) approach:

I Book memory as in sequential processing

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

activated

completed

running

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

completed

running

activated

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

completed

running

activated

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

completed

running

activated

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

completed

running

activated

I , Can cope with very small memory bound

I / No memory reuse

25 / 46

Conservative approach: task activation
I From [Agullo, Buttari, Guermouche & Lopez 2013]

I Choose a sequential task order (e.g. best post-order)

I While memory available, activate tasks in this order:
book memory for their output + tmp. data

I Process only activated tasks (with given scheduling priority)

When a tasks completes:

I Free inputs

I Activate as many new tasks as possible

I Then, start scheduling activated tasks

completed

running

activated

I , Can cope with very small memory bound

I / No memory reuse

26 / 46

Refined activation: predict memory reuse

activated

completed

running

I Follow the same activation approach
I When activating a node:

I Check how much memory is already booked by its subtree
I Book only what is missing (if needed)

I When completing a node:
I Distribute the booked memory to all activated ancestors
I Then, release the remaining memory (if any)

I Proof of termination
I Based on a sequential schedule using less than the memory

bound
I Process the whole tree without going out of memory

27 / 46

New makespan lower bound

Theorem (Memory aware makespan lower bound).

Cmax ≥
1

M

∑
i

MemNeeded i × ti .

I M: memory bound

I Cmax: makespan (total processing time)

I MemNeeded i : memory needed to process task i

I ti : processing time of task i .

time

memory usage

memory bound M

makespan

MemNeeded i

ti

task i

28 / 46

Simulation on assembly trees

I Dataset: assembly trees of actual sparse matrices
I Algorithms:

I Activation from [Agullo et al, Europar 2013]
I MemBooking

I Sequential tasks (simple performance model)

I 8 processors (similar results for 2,4,16 and 32)

I Reference memory MPO :
peak memory of best sequential post-order

I Activation and execution orders: best seq. post-order

I Makespan normalized by max(CP, Wp ,MemAwareLB)

29 / 46

Simulations: total processing time

1.0

1.2

1.4

1.6

1.8

0 5 10 15 20
Normalized memory bound

N
or

m
al

iz
ed

m
ak

es
p

an

Heuristics: Activation MemBooking

I MemBooking able to activate more nodes, increase parallelism

I Even for scarce memory conditions

[G. Aupy, C. Brasseur, L. Marchal, IPDPS 2017]

30 / 46

Conclusion on memory-aware tree scheduling

Summary:

I Related to pebble games

I Well-known sequential algorithms for trees
I Parallel processing difficult:

I Complexity and inapproximability
I Efficient booking heuristics (guaranteed termination)

Other contributions in this area:

I Optimal sequential algorithm for SP-graphs

I Complexity and heuristics for two types of cores (hybrid)

I I/O volume minimization: optimal sequential algorithm for
homogeneous trees

I Guaranteed heuristic for memory-bounded parallel scheduling
of DAGs

Outline

Introduction

1. Scheduling tree-shaped task graphs with bounded memory

2. Data redistribution for parallel computing

Research perspectives

32 / 46

Introduction

Distributed computing:

I Processors have their own memory

I Data transfers are needed, but costly (time, energy)

I Computing speed increases faster than network bandwidth

I Need for limiting these communications

Following study:

I Data is originally (ill) distributed

I Computation to be performed has a preferred data layout

I Should we redistribute the data? How?

33 / 46

Data collection and storage

I Origin of data: sensors (e.g.
satellites) that aggregate snapshots

I Data partitioned and distributed
before the computation

I During the collection
I By a previous computation

I Computation kernel (e.g. linear
algebra kernels) must be applied to
data

I Initial data distribution may be
inefficient for the computation kernel

34 / 46

Data distribution and mapping

I A data distribution is usually
defined to minimize the completion
time of an algorithm

I Ex: 2D-cyclic

I There is not necessarily a single
data distribution that maximizes
this efficiency

I Find the one-to-one mapping
(subsets of data - processors) for
which the cost of the redistribution
is minimal

34 / 46

Data distribution and mapping

I A data distribution is usually
defined to minimize the completion
time of an algorithm

I Ex: 2D-cyclic

I There is not necessarily a single
data distribution that maximizes
this efficiency

I Find the one-to-one mapping
(subsets of data - processors) for
which the cost of the redistribution
is minimal

34 / 46

Data distribution and mapping

I A data distribution is usually
defined to minimize the completion
time of an algorithm

I Ex: 2D-cyclic

I There is not necessarily a single
data distribution that maximizes
this efficiency

I Find the one-to-one mapping
(subsets of data - processors) for
which the cost of the redistribution
is minimal

34 / 46

Data distribution and mapping

I A data distribution is usually
defined to minimize the completion
time of an algorithm

I Ex: 2D-cyclic

I There is not necessarily a single
data distribution that maximizes
this efficiency

I Find the one-to-one mapping
(subsets of data - processors) for
which the cost of the redistribution
is minimal

35 / 46

Data distribution / Data partition

I Let P be a finite set of identical processors

I Let A be a finite set of data items

I Data Distribution: D : A 7→ P
∀a ∈ A,D(a) = p ⇔ a hosted on proc p

I Data Partition: P : A 7→ P
∀a, b ∈ A,P(a) = P(b)⇔ a and b are hosted
by the same processor

I A data distribution D is compatible with the data partition P
iif there exists a permutation σ such that
∀a ∈ A,D(a) = σ(P(a))

36 / 46

Cost of redistribution

I Hardware symmetry assumption: the efficiency of the
computation algorithm is a function of the data partition

I Unitary size assumption: all data items are of the same size

I Evaluation of the redistribution with two metrics:
I Total volume of communication: the total number of data

items sent from one processor to another
I Number of parallel communication steps: one-port

bi-directional model

37 / 46

Best redistribution to given partition

I For many algorithms, we know ideal data partitions that
minimize completion time

I There are |P|! data distributions compatible with the ideal
partition

Best redistribution problem

Given an initial data distribution Dini , find the target data
distribution Dtar compatible with the ideal data partition that
minimizes the cost of redistribution.

I Optimal algorithms for each metric

I Based on building bipartite graphs and computing perfect
matching

38 / 46

Redistribution followed by computation kernel

I Non-overlapping phases assumption:

Ttot = Tredist(Dini → Dtar) + Tcomp(Dtar)

I Close formula for Tredist(Dini → Dtar) depending on the
communication model

I No close formula for Tcomp(Dtar) in the general case

39 / 46

NP-completeness for 1D Stencil

I Consider the simple case of iterative 1D Stencil

step t

step t + 1

I Simple close formula for T stencil
comp (Dtar) for both communication

models

Theorem

Finding the optimal distribution Dtar that minimizes

Ttot = Tredist(Dini → Dtar) + T stencil
comp (Dtar)

is NP-complete in the strong sense.

40 / 46

Heuristics for redistribution + computation

Näıve options:

I Do not redistribute (owner-compute)

I Canonical redistribution to target partition:

I Processor i gets part i

Using previous algorithms:
I Compute best redistribution for each metric

I Total volume (vol)
I Redistribution steps (steps)

41 / 46

Experimental set up

I Implementation with the ParSEC runtime

I Initial distribution: random balanced distributions

I Targeted partition Ptar : optimal partition for the considered
computation kernel (QR: 2D-block cyclic)

I Parsec moves data from initial distribution to the target
compute location when needed
(computation/communication overlap)

I Target distribution computed according to four heuristics:
I Owner compute (default heuristics of Parsec)
I Canonical redistribution to Ptar

I Best redistribution for total volume (vol)
I Best redistribution for number of steps (steps)

42 / 46

Results on QR factorization

I Improvements in total completion time (redistribution +
computation)

I Compared to Owner compute (no redistribution)

I Average on 50 matrices

n canonical Vol. algo. Steps algo.
16 41.9% 39.5% 43.4%
34 64.1% 67.7% 66.4%
52 65.8% 70.5% 71.2%
70 70.8% 72.7% 71.4%
88 70.8% 72.6% 72.4%

Results on skewed distribution
(2D-block cyclic + 50% tiles

randomly moved)

n canonical Vol. algo. Steps algo.
16 27.0% 28.1% 28.1%
34 20.6% 25.5% 22.1%
52 13.6% 25.8% 26.2%
70 12.7% 14.5% 4.8%
88 12.0% 15.7% 13.4%

Results for ChunkSet
(Earth science application)

[J. Herrmann et al., Parallel Computing 2016]

43 / 46

Data redistribution – Conclusion

Summary:

I Algorithms that find the optimal target distribution for
different redistribution metrics

I NP-completeness proof for minimizing redistribution time
followed by a computation kernel

I Experimental validation on ParSEC for QR factorization kernel

Outline

Introduction

1. Scheduling tree-shaped task graphs with bounded memory

2. Data redistribution for parallel computing

Research perspectives

45 / 46

Perspectives – scheduling problems

Data locality still a very timely research topic

Memory-aware scheduling for distributed memories

I Consider data movement at the same time

I Trade-off between performance and data movement

I Partition trees/graphs for both performance and memory

Memory-aware work-stealing

I Work-stealing: distributed, dynamic scheduler

I Existing lower/upper bounds on data locality

I How to derive memory guarantees?

I Based on which pre-computed information?

46 / 46

Perspectives – runtime schedulers

Collaboration with runtime experts:

I Started during the SOLHAR project

I Need to adapt our algorithms:
I Lower scheduling complexity
I Make the algorithms dynamic (graph gradually uncovered)
I Distributing scheduling decisions

I Possible tools:
I Hierarchical scheduling
I Precompute memory information on the graph

; New scheduling problems!

Outline

Introduction

1. Scheduling tree-shaped task graphs with bounded memory
Introduction
Pebble games
Tree-shaped task graphs
Post-Order vs. optimal peak memory
Parallel processing of trees – complexity
Parallel processing of trees – algorithms

2. Data redistribution for parallel computing
Redistribution data
Coupling redistribution and computation
Performance Evaluation
Conclusion

Research perspectives

	Introduction
	1. Scheduling tree-shaped task graphs with bounded memory
	Introduction
	Pebble games
	Tree-shaped task graphs
	Post-Order vs. optimal peak memory
	Parallel processing of trees – complexity
	Parallel processing of trees – algorithms

	2. Data redistribution for parallel computing
	Redistribution data
	Coupling redistribution and computation
	Performance Evaluation
	Conclusion

	Research perspectives

