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Why do we need scheduling for in-situ tasks?

• Current HPC simulations generate up to PB data/step

– Often requiring post-processing tasks in real time

• QoI computation, compression, data transformation, pre-processing, check 
correctness, identify regions of interest

– Could be done in-situ or on dedicated cores

• Pre-processing tasks executed every simulation step

– Time/resource constraints

– Some tasks are more important than others

This talk: Priority based scheduling with resource constraints
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Examples of data processing tasks

• Post-processing data to identify features
– E3sm (climate) data to identify the trajectory of tornadoes and refactor

– QIUP (medical) data to identify cancerous cells

• Post-processing data for training 
– FASTRAN (fusion) data to identify regions in the training space where data is missing

• Remote visualization 
– S3D (combustion) data to visualize temperature in regions of interest

• Surrogate model execution
– GE (aerospace) to predict the trajectory of the simulation

• Correctness checks
– GE (aerospace) data to audit properties of the data

• Post-mortem visualization and analysis
– For non-critical tasks that will help scientists after the simulation is done
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• Our problem: execute as many high priority tasks as possible 
– Input: set of tasks that need to be executed each simulation step

– There is not enough space/time to execute all of them

– Some tasks are critical, some are optional

• Schedulers in HPC: Easy-BF
– Jobs are ordered based on some priority criteria

• FCFS, LJF, SJF

– Backfilling based the queue order

• And what job can start earliest

– Conservative-BF as an alternative

• Backfill with jobs in the order of their submission

Current solutions

J0 finished, J1 and J2 are scheduled

• J1 starts running

• J2 is guaranteed a start after J1

• All other jobs are mutable
• Available area is between red lines

J0

J1
J2

time
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Example of limitation

time

J3

time

J1

Easy-BF Conservative-BF

J2

J5

J4

J1
Priority 
queue

• Limited time and resources to perform 
as many jobs as possible
– Example one simulation loop (red lines)

– Allocate external nodes

• Assuming we can set job priorities
– J4 higher priority than J5
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J4

J5

J4

Example

J3J2

time

J1

J3J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is 
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting 
queue
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Our proposal for scheduling algorithm

• Philosophy
– Simplicity

• System administrators understand the rationale behind scheduling decisions

– Robustness

• Accommodate diverse workloads

– Rely on qualitative constraints rather than rigid specifications

• Incorporate job importance
– At the granularity of the job (set by users)

– When all jobs share the same priority our algorithm reverts to Easy-BF
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Our proposal for scheduling algorithm

• Main idea
– Use several priority queues 

– Within a queue, jobs are scheduled with an EASY-BF strategy

– Between queues, jobs are scheduled conservatively
• Jobs from a queue with a higher index cannot delay jobs with a lower index

– Minimize response times for high-priority jobs

How do we get scientists to set task priorities?
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Our proposal for scheduling algorithm

• Main idea
– Use several priority queues 

– Within a queue, jobs are scheduled with an EASY-BF strategy

– Between queues, jobs are scheduled conservatively
• Jobs from a queue with a higher index cannot delay jobs with a lower index

– Minimize response times for high-priority jobs

• How to design priorities?

– Value-based (priority classes: high, low, medium)

• E.g. pre-processing for training, compression are high priority, QoI are low 

– Frequency-based (run job X at least every T steps)

• E.g. compression is needed every step, QoI for visualization every 10 steps
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J4
J5

J4

Priority-BF with our example

J3J2

time

J1

J3J2

time

J1

J5

High priority: J1, J2, J3, J4
Low priority: J5

High priority: J1, J2, J3, J5
Low priority: J4

• Strategies

– Jobs that did not finish by the end of the time window

• Kill all jobs (fresh start), keep all jobs that started, keep only high priority jobs

– Memory-less scheduling

• Each loop uses the same queue (J5/J4 will starve) or updated queue
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Evaluation

• Using ScheduleFlow simulator (for now)
– Simple to use and to add new algorithms

– For now we don’t need system characteristics

– BatSim or WRENCH in the future 

• Experiments
– Priority-BF compared to Easy-BF and Conservative-BF

• Ordered using the same priorities 

• Simulated on ScheduleFlow with multiple queues

– Neuroscience applications

• Highly stochastic

• Random priorities using values or QoS frequency

Metrics

1. Average job runs in 
one loop

2. Number of misses

3. Response time for 
each job priority
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Algorithms and implementation

Required QoS

Create bag of jobs

Number of queues
End of loop strategy

Simulation

Stop loop 0
Start loop 1

Create priority queues

Update backfill policy

• Changes at the user level
– Decide on number of queues

– Set policies for the end of 
loop strategy

– Update same queue task 
order

– Update priorities

• Changes in the scheduler
– Support multiple waiting 

queues

– Support mid-execution start

– New backfill strategy based 
on multiple queues

List of 
executed jobs
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Algorithms and implementation

Required QoS

Create bag of jobs

Number of queues
End of loop strategy

Simulation

Stop loop 0
Start loop 1

Create priority queues

Update backfill policy

• Priority to queue mapping

– Value-based
• Implement as many queues as 

priority classes

• Jobs do not transition from one 
class to another

– Frequency-based
• Two priority queues

• Jobs that need executing in 
the current step are high

• Everything else is low

• Jobs move from one queue to 
another based on past 
schedule

List of 
executed jobs
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Results

• 20 jobs (nodes, reqest, walltime, priority) 

• 30 loops where loop i takes random time Xi

• 60 experiments with different random seeds

• Value and frequency based priorities

Value based priorities
Average number of times a job was executed across all 

simulation loops (max 30)

Frequency based priorities
Number of loops where a job was supposed to be 

executed and it wasn’t
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Moving beyond 
analysis tasks

• Can we use Priority-BF 
for existing jobs?

Jobs submitted to Mira and Polaris show increasing median wait 
times of hours, especially for large jobs

• Using ANL system logs

– Goal: decrease the 
average wait time for 
long jobs

– 3 levels of priorities
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Logs of jobs in real systems

• Utilization is within 2% of Easy-BF and LJF

– Response time improves for high priority jobs (20-55%) 

– Response time decreases by 3x for low priority jobs

Response time for high priority jobs Response time for medium priority jobs Response time for low priority jobs
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Based on submission time and start time recorded in the logs

Using Priority-BF

Overall results

• Uniform wait times
– Average of hours 

even for small jobs

– Decreased for 
large jobs

• Not necessary the 
best comparison
– Simulation vs real 

life

– More experiments 
are needed to 
better understand 
the impact
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Conclusions
• Separating scheduling strategies between 

different classes of jobs is necessary

– When dealing with limited time and resources

– When jobs have different priorities

• Future works include

– More simulations (e.g. BatSim) and experiments 
to understand the trade-offs

– Apply the scheduling for several fields

– Include decisions on where to compute tasks

• In-situ on the producer, consumer or in-transit 

gainarua@ornl.gov

• Scripts used and documentation: https://github.com/ORNL-Inria/PriorityBF

https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF
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