
11

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Scheduling in-situ analysis tasks attached to 
HPC simulations

Ana Gainaru, 

Guillaume Pallez, Scott Klasky

18th workshop on Scheduling for large-scale systems
Montréal, Québec, Canada, July 8-10, 2025

gainarua@ornl.gov



22

Why do we need scheduling for in-situ tasks?

• Current HPC simulations generate up to PB data/step

– Often requiring post-processing tasks in real time

• QoI computation, compression, data transformation, pre-processing, check 
correctness, identify regions of interest

– Could be done in-situ or on dedicated cores

• Pre-processing tasks executed every simulation step

– Time/resource constraints

– Some tasks are more important than others

This talk: Priority based scheduling with resource constraints



33

Examples of data processing tasks

• Post-processing data to identify features
– E3sm (climate) data to identify the trajectory of tornadoes and refactor

– QIUP (medical) data to identify cancerous cells

• Post-processing data for training 
– FASTRAN (fusion) data to identify regions in the training space where data is missing

• Remote visualization 
– S3D (combustion) data to visualize temperature in regions of interest

• Surrogate model execution
– GE (aerospace) to predict the trajectory of the simulation

• Correctness checks
– GE (aerospace) data to audit properties of the data

• Post-mortem visualization and analysis
– For non-critical tasks that will help scientists after the simulation is done



44

• Our problem: execute as many high priority tasks as possible 
– Input: set of tasks that need to be executed each simulation step

– There is not enough space/time to execute all of them

– Some tasks are critical, some are optional

• Schedulers in HPC: Easy-BF
– Jobs are ordered based on some priority criteria

• FCFS, LJF, SJF

– Backfilling based the queue order

• And what job can start earliest

– Conservative-BF as an alternative

• Backfill with jobs in the order of their submission

Current solutions

J0 finished, J1 and J2 are scheduled

• J1 starts running

• J2 is guaranteed a start after J1

• All other jobs are mutable
• Available area is between red lines

J0

J1
J2

time



55

Example of limitation

time

J3

time

J1

Easy-BF Conservative-BF

J2

J5

J4

J1
Priority 
queue

• Limited time and resources to perform 
as many jobs as possible
– Example one simulation loop (red lines)

– Allocate external nodes

• Assuming we can set job priorities
– J4 higher priority than J5



66

J4

J5

J4

Example

J3J2

time

J1

J3J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is 
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting 
queue



77

Our proposal for scheduling algorithm

• Philosophy
– Simplicity

• System administrators understand the rationale behind scheduling decisions

– Robustness

• Accommodate diverse workloads

– Rely on qualitative constraints rather than rigid specifications

• Incorporate job importance
– At the granularity of the job (set by users)

– When all jobs share the same priority our algorithm reverts to Easy-BF



88

Our proposal for scheduling algorithm

• Main idea
– Use several priority queues 

– Within a queue, jobs are scheduled with an EASY-BF strategy

– Between queues, jobs are scheduled conservatively
• Jobs from a queue with a higher index cannot delay jobs with a lower index

– Minimize response times for high-priority jobs

How do we get scientists to set task priorities?



99

Our proposal for scheduling algorithm

• Main idea
– Use several priority queues 

– Within a queue, jobs are scheduled with an EASY-BF strategy

– Between queues, jobs are scheduled conservatively
• Jobs from a queue with a higher index cannot delay jobs with a lower index

– Minimize response times for high-priority jobs

• How to design priorities?

– Value-based (priority classes: high, low, medium)

• E.g. pre-processing for training, compression are high priority, QoI are low 

– Frequency-based (run job X at least every T steps)

• E.g. compression is needed every step, QoI for visualization every 10 steps



1010

J4
J5

J4

Priority-BF with our example

J3J2

time

J1

J3J2

time

J1

J5

High priority: J1, J2, J3, J4
Low priority: J5

High priority: J1, J2, J3, J5
Low priority: J4

• Strategies

– Jobs that did not finish by the end of the time window

• Kill all jobs (fresh start), keep all jobs that started, keep only high priority jobs

– Memory-less scheduling

• Each loop uses the same queue (J5/J4 will starve) or updated queue



1111

Evaluation

• Using ScheduleFlow simulator (for now)
– Simple to use and to add new algorithms

– For now we don’t need system characteristics

– BatSim or WRENCH in the future 

• Experiments
– Priority-BF compared to Easy-BF and Conservative-BF

• Ordered using the same priorities 

• Simulated on ScheduleFlow with multiple queues

– Neuroscience applications

• Highly stochastic

• Random priorities using values or QoS frequency

Metrics

1. Average job runs in 
one loop

2. Number of misses

3. Response time for 
each job priority



1212

Algorithms and implementation

Required QoS

Create bag of jobs

Number of queues
End of loop strategy

Simulation

Stop loop 0
Start loop 1

Create priority queues

Update backfill policy

• Changes at the user level
– Decide on number of queues

– Set policies for the end of 
loop strategy

– Update same queue task 
order

– Update priorities

• Changes in the scheduler
– Support multiple waiting 

queues

– Support mid-execution start

– New backfill strategy based 
on multiple queues

List of 
executed jobs



1313

Algorithms and implementation

Required QoS

Create bag of jobs

Number of queues
End of loop strategy

Simulation

Stop loop 0
Start loop 1

Create priority queues

Update backfill policy

• Priority to queue mapping

– Value-based
• Implement as many queues as 

priority classes

• Jobs do not transition from one 
class to another

– Frequency-based
• Two priority queues

• Jobs that need executing in 
the current step are high

• Everything else is low

• Jobs move from one queue to 
another based on past 
schedule

List of 
executed jobs



1414

Results

• 20 jobs (nodes, reqest, walltime, priority) 

• 30 loops where loop i takes random time Xi

• 60 experiments with different random seeds

• Value and frequency based priorities

Value based priorities
Average number of times a job was executed across all 

simulation loops (max 30)

Frequency based priorities
Number of loops where a job was supposed to be 

executed and it wasn’t



151515

Moving beyond 
analysis tasks

• Can we use Priority-BF 
for existing jobs?

Jobs submitted to Mira and Polaris show increasing median wait 
times of hours, especially for large jobs

• Using ANL system logs

– Goal: decrease the 
average wait time for 
long jobs

– 3 levels of priorities



1616

Logs of jobs in real systems

• Utilization is within 2% of Easy-BF and LJF

– Response time improves for high priority jobs (20-55%) 

– Response time decreases by 3x for low priority jobs

Response time for high priority jobs Response time for medium priority jobs Response time for low priority jobs



1717

Based on submission time and start time recorded in the logs

Using Priority-BF

Overall results

• Uniform wait times
– Average of hours 

even for small jobs

– Decreased for 
large jobs

• Not necessary the 
best comparison
– Simulation vs real 

life

– More experiments 
are needed to 
better understand 
the impact



181818

Conclusions
• Separating scheduling strategies between 

different classes of jobs is necessary

– When dealing with limited time and resources

– When jobs have different priorities

• Future works include

– More simulations (e.g. BatSim) and experiments 
to understand the trade-offs

– Apply the scheduling for several fields

– Include decisions on where to compute tasks

• In-situ on the producer, consumer or in-transit 

gainarua@ornl.gov

• Scripts used and documentation: https://github.com/ORNL-Inria/PriorityBF

https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF

	Slide 1: Scheduling in-situ analysis tasks attached to HPC simulations
	Slide 2: Why do we need scheduling for in-situ tasks?
	Slide 3: Examples of data processing tasks 
	Slide 4: Current solutions
	Slide 5: Example of limitation
	Slide 6: Example
	Slide 7: Our proposal for scheduling algorithm
	Slide 8: Our proposal for scheduling algorithm
	Slide 9: Our proposal for scheduling algorithm
	Slide 10: Priority-BF with our example
	Slide 11: Evaluation
	Slide 12: Algorithms and implementation
	Slide 13: Algorithms and implementation
	Slide 14: Results
	Slide 15: Moving beyond analysis tasks
	Slide 16: Logs of jobs in real systems
	Slide 17: Overall results
	Slide 18: Conclusions

