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Transformer architecture

▶ Large language models (LLMs) are a groundbreaking
advancement in natural language processing

▶ They enable a wide range of applications and have become a
central focus of AI research

▶ Efficient memory usage and high throughput are critical to
scaling and deploying these models effectively

2 / 34



Transformer architecture
Words are embedded into high dimensional vectors and are fed to
the model in two phases:

▶ Pre-filling: the whole prompt is passed to the model, which
generates a first token

▶ Auto-regressive generation: the prompt + the first generated
token are passed to the model, generating a new token, and
the process repeats

Image credits: ”Role-Play with Large Language Models”, Shanahan et al.
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Transformer architecture

▶ Many different architectures, but usually
composed of a succession of layers which
look like this

▶ Their capabilities are mainly due to the
attention computation introduced by the
seminal paper ”Attention is all you need”,
Vaswani et al, 2017 [VSP+17]

▶ We are interested in optimizing the
Multi-Head Attention computation

Image source: Medium ”LLMs Explained: LLaMA and Its Architecture (Part 1)” 4 / 34



Multi-head attention
We are interested in the multi-head attention computation

▶ n: sequence length
▶ X ∈ Rn×D: input hidden states
▶ h: number of attention heads
▶ d = D/h: head dimension

Computes for each head queries, keys and values

Qi = XWQ
i ,Ki = XWK

i ,Vi = XWV
i ∈ Rn×d, i ∈ J1, hK

using learnable parameters WQ
i ,W

K
i ,WV

i ∈ RD×d

Hi = Softmax(QiK
T
i /
√
d)Vi

MHA(X) = [H1, . . . ,Hh]WO

Softmax(z)i =
ezi∑
j e

zj
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Multi-head attention

Hi = Softmax(QiK
T
i /
√
d)Vi

MHA(X) = [H1, . . . ,Hh]WO

Issue:

▶ The cost of this computation scales quadratically with the
sequence size n: prohibits long text generation

However

▶ The upper half of QiK
T
i is set to −∞ so that the attention

of a token is not influenced by future tokens.

Softmax(QKT ) =


α1,1 0 0 . . . 0
α2,1 α2,1 0 . . . 0

...
...

. . .
. . . 0

αn,1 αn,2 . . . . . . αn,n

 hj =

j−1∑
k=1

αj,kvk
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KV caching

▶ Computations for generating a token can be reused to
generate the next token

▶ More precisely keys and values can be cached
→ KV caching

For auto-regressive generation,

K
(n)
i ← Concat(K

(n−1)
i , k

(n)
i )

V
(n)
i ← Concat(V

(n−1)
i , v

(n)
i )

}
stored in memory

h
(n)
i = Softmax(q

(n)
i K

(n)
i

T /
√
d)V

(n)
i

The cost of generating the nth token is now O(n),
but the memory size of the cached keys and values scales as O(n)
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KV caching

K
(n)
i ← Concat(K

(n−1)
i , k

(n)
i )

V
(n)
i ← Concat(V

(n−1)
i , v

(n)
i )

}
stored in memory

h
(n)
i = Softmax(q

(n)
i K

(n)
i

T /
√
d)V

(n)
i

→ long sequence generation is a memory bound problem
because of the KV cache

Example: Llama2-7b (model size 14GB) for a sequence of length
32k the KV cache size is 16GB

How can we compress the KV cache
to reduce its memory footprint ?
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Dimension reduction

A lot of research in KV cache compression techniques

KV cache tensors (shape (n,L, h, d)) can be compressed along
different dimensions1:

▶ n: token eviction

▶ L number of layers: modify architecture such that the cache
is shared across layers

▶ h: Multi Query Attention (MQA), Grouped Query Attention
(GQA), details on these later

▶ bit precision: Quantization

▶ d: hidden dimension

1Survey: ”A survey on large language model acceleration based on kv cache management”, Haoyang et al., 2024
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KV cache tensors (shape (n,L, h, d)) can be compressed along
different dimensions1:

▶ n: token eviction

▶ L number of layers: modify architecture such that the cache
is shared across layers

▶ h: Multi Query Attention (MQA), Grouped Query Attention
(GQA), details on these later

▶ bit precision: Quantization

▶ d: hidden dimension

(survey [LLT+24]) :

1Survey: ”A survey on large language model acceleration based on kv cache management”, Haoyang et al., 2024
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SVD methods

▶ For a given layer and a given head, use a low-rank
approximation of the key and value cache

Ki ≈ EiFi

with Ei ∈ Rn×R and Fi ∈ RR×d

▶ Memory is O(nR+Rd) instead of O(nd)

▶ Post-training, only need a pass of the model on a small
calibration set of tokens
→ little time and ressources spent

▶ Introduced by Palu1, LORC2, MatryoshkaKV3

[CLL+25] [ZWL+24] [LZX+24]

1”Palu: KV-Cache Compression with Low-Rank Projection”, Chang et al., 2025
2”Lorc: Low-rank compression for llms kv cache with a progressive compression strategy”, Zhang et al., 2024
3”MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection”, Lin et al., 2024
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SVD methods

How to compute this low-rank approximation ?

▶ Take a collection of sequences from a text dataset (very small
compared to the train dataset).

▶ Pass each sequence into the model and collect the KV caches

▶ Perform a Singular Value Decomposition of K = UKΣKVT
K

and keep only the R first right singular vectors

Singular Value Decomposition (SVD), writes M ∈ Rn1×n2

(n1 ≥ n2) as

M = UΣVT =

n2∑
i=1

σiuiv
T
i

with U ∈ Rn1×n2 , V ∈ Rn2×n2 orthogonal, Σ diagonal with
positive decreasing entries (σi)i
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SVD methods

▶ Approximate K as K ≈ KVK,:RV
T
K,:R = UK,:RΣK,:RV

T
K,:R

▶ The basis VK,:R does not depend on the sequence length
→ it generalizes well to another key cache

K′ ≈ K′VK,:RV
T
K,:R with K′ ̸= K

▶ Do the same thing for V:
V = UV ΣV V

T
V and V ≈ VVV,:RV

T
V,:R
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SVD methods

▶ The attention computation is now

Hi = Softmax(QiVK,:RV
T
K,:RK

T
i /
√
d)ViVV,:RV

T
V,:R

= Softmax(QiVK,:R(KiVK,:R)
T /
√
d)(ViVV,:R)V

T
V,:R

▶ Store only KiVK,:R,ViVV,:R ∈ Rn×R

▶ For auto-regressive generation

K
(n)
i ← Concat(K

(n−1)
i , k

(n)
i VK,:R)

V
(n)
i ← Concat(V

(n−1)
i , v

(n)
i VV,:R)

and use q̃
(n)
i = q

(n)
i VK,:R
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SVD methods

▶ This method works well because singular values of K and V
decay fast, so they can be well approximated with R < d.

▶ The SVD provides the optimal low rank approximation
according to the Frobenius norm (Eckart–Young–Mirsky
theorem).

the solution of

min
P
∥K−KP∥2F subject to rank(P) ≤ R

is PK,R = VK,:RV
T
K,:R with K = UKΣKVT

K
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SVD methods

▶ However, we are not interested in approximating K and V
but the output of the attention

M̃HA(X) = [Softmax(Q̃iK̃
T
i /
√
d)Ṽi]iW̃O

≈ [Softmax(QiK
T
i /
√
d)Vi]iWO

with Q̃i ≈ Qi, K̃i ≈ Ki, Ṽi ≈ Vi

▶ Qi and WO also impact the result
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Taking queries into account

▶ Works in the litterature like Eigen4 and Zack5 observe that
queries should be taken into account.
[SSCR24] [ZS25]

▶ Indeed, PK,R = VK,:RV
T
K,:R is an orthogonal projection,

i.e. P2 = P and PT = P so

QiVK,:RV
T
K,:RK

T
i = QiPK,RK

T
i

= (QiPK,R)(KiPK,R)
T

We are projecting the row space of K AND Q

▶ Same thing for V: take WO into account

4”Eigen attention: Attention in low-rank space for kv cache compression”, Saxena et al., 2024
5”ZACK: Zero-Overhead LLM Inference Acceleration via Dimensionality Compression of the Key-Value Cache”,

Zhang and Shen, 2025
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Taking queries into account

Zack and Eigen find a projection by doing an SVD on

(
K
Q

)
Instead of solving

min
P
∥K−KP∥2F subject to rank(P) ≤ R

they solve

min
P, rk(P)≤R

∥
(
K
Q

)
−
(
K
Q

)
P∥2F = min

P, rk(P)≤R
∥K−KP∥2F+∥Q−QP∥2F

to find a projection matrix that will approximate K and Q at the
same time.

→ performs better that doing an SVD on K only
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Approximating the attention matrix

▶ However we are not interested in approximating K and Q at
the same time but the attention matrix KQT

▶ We would want to use A and B solution of

min
A,B∈Rd×R

∥KABTQT −KQT ∥2F

▶ This problem has a closed form solution, given by doing an
SVD of KQT (see e.g. DRONE6) [CYDH21]

6”DRONE: Data-aware Low-rank Compression for Large NLP Models”, Patrick et al.
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Approximating the attention matrix

min
A,B∈Rd×R

∥KABTQT −KQT ∥2F

▶ choose A and B such that KABTQT is the best rank R
approximation of KQT

▶ KQT = UΣVT ≈ U:RΣ:RV
T
:R

▶ we want KABTQT = U:RU
T
:RKQT = U:RΣ:RV

T
:R

▶ PKQT = ABT = QTV:RΣ
−1
:R UT

:RK works
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Approximating the attention matrix

▶ Doing an SVD of KQT ∈ Rn×n is costly compared to
K ∈ Rn×d as n≫ d

▶ Solution:
do an SVD of K = UKΣKVT

K and Q = UQΣQV
T
Q,

and finally an SVD of ΣKVT
KVQΣQ = UΣVT ∈ Rd×d

▶ Another formula is PKQT = (VKΣ−1
K U):R(VKΣKU)T:R

▶ Same asymptotic cost as Eigen and SVD on K
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Approximating the attention matrix

Recap of the method we propose

▶ Pass the model on a calibration set of sequences

▶ Gather the query, key and value cache

▶ Solve for each head and each layer

min
A,B∈Rd×R

∥KiABTQT
i −KiQ

T
i ∥2F

min
C,D∈Rd×R

∥ViCDTWO,i −ViWO,i∥2F

▶ Store KiA,ViC and incorporate B,D into the attention
computation to reduce the memory from O(nd) to O(nR)
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Grouped Query Attention

▶ This method needs to be compatible with Grouped Query
Attention (GQA) introduced by Ainslie et al.7 [ALTdJ+23]

▶ Dimension reduction technique that is present in most recent
LLMs and that we cannot avoid (in all Llama models after
Llama2-7B)

▶ Reduces the number of key and value heads from h to g
(number of query heads is still h)

7”GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints”, Ainslie et al.
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Grouped Query Attention

▶ Trains a model with h heads, then groups heads and mean
pools WK

i and WV
i in each group

▶ The model then is trained a little to restore performance

→ Number of query heads and key heads is different

Image credits: ”GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints”,
Ainslie et al.
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Compatibility with Grouped Query Attention

▶ Instead of solving

min
A,B∈Rd×R

∥KiABTQT
i −KiQ

T
i ∥2F

▶ We would want to solve the optimisation problem for each
head group

min
A,Bi

∥
∑

i∈ group

KABT
i Q

T
i −KQT

i ∥2F

▶ One basis for K but multiple each for each Qi in the group

▶ Previous works do not explain how to handle GQA
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Compatibility with Grouped Query Attention

We showed

Theorem
The optimisation problem

min
A,Bi

∥
∑

i∈ group

KABT
i Q

T
i −KQT

i ∥2F

has a closed form solution which can be computed efficiently by
doing an SVD on

K(
∑

i∈ group

Qi)
T

▶ Like WK,i weights are averaged to get a single key cache per
group, we need to average queries in each group.
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Comparing SVD methods

▶ Approximating the attention matrix KQT makes sense

▶ Other works decide to approximate other objects

▶ In which situations are other heuristics in the literature bad at
approximating the attention matrix, i.e. at solving

min
A,B∈Rd×R

∥KABTQT −KQT ∥2F

▶ Do these situations happen with real caches on real models ?
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Comparing SVD methods

We can quantify how bad doing an SVD on K is compared
to an SVD on KQT

Theorem
Let K = UKΣKVT

K , Q = UQΣQV
T
Q and

finally ΣKVT
KVQΣQ = UΣVT then

∥KVK,:RV
T
K,:RQ

T −KQT ∥2F = ∥KPKQTQT −KQT ∥2F + ϵ

with
ϵ = ∥Σ:R∥2F − ∥ΣK,:RV

T
K,:RVQΣQ∥2F ≥ 0

▶ the gap ϵ is easy to compute

▶ gives exactly how bad doing only an SVD on K will be at
approximating the attention matrix
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Comparing SVD methods Ungoing work

Comparing PKQT and PEigen, i.e SVD on KQT versus

(
K
Q

)
▶ In general PKQT is an oblique projection

▶ PEigen is always orthogonal

▶ Even if PKQT is orthogonal, we do not necessarily have
Range(PKQT ) = Range(PEigen)
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Future works

▶ Get a lower bound result for PKQT and PEigen

▶ Test on a collection of LLMs whether the theoretical
conditions we identify really happen

▶ Across layers

▶ Across different calibration set

→ know for a given model and a given layer which method to use
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Conclusion

▶ SVD methods reduce the dimension of the KV cache to allow
long sequence generation

▶ We argue that it makes more sense to approximate the
attention matrix

▶ Works in the literature do SVD on different objects

▶ We give conditions under which approximating the attention
matrix is better (and we will verify experimentally whenever
these conditions do happen)

Thank you for your attention
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Handling positional encodings

▶ Modern LLMs use positional encodings so that the interaction
between tokens depends on their relative position.

▶ Example: RoPE in Llama. Rows of K and Q are multipled by
a rotation matrix whose angle is a function of the token index

qmkTn = (xmWQ
i R

d
θ,m)(xnW

K
i Rd

θ,n)
T

= (xmWQ
i )R

d
θ,mRd

θ,n
T (xnW

K
i )

= (xmWQ
i )R

d
θ,m−n(xnW

K
i )

decays when m− n is large
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Handling positional encodings

The KV cache is less low-rank with RoPE applied. Multiple
options to handle it:

▶ Compress before RoPE, but you have to decompress to apply
RoPE

▶ Compress after RoPE, less low-rank but still possible. The
calibration set needs to contain the whole range of positional
embeddings.

▶ Some works have tried to remove RoPE from some heads8

▶ Without RoPE one can merge projections into weights and
reduce the size of attention weights

8”EliteKV: Scalable KV Cache Compression via RoPE Frequency Selection and Joint Low-Rank Projection”,
Zhou et al.
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Formula for GQA

Theorem
The solution of

min
A,Bi

∥
∑

i∈ group

KABT
i Q

T
i −KQT

i ∥2F

is given by

A = (
∑

i∈ group

QT
i )V:RΣ

−1
:R and Bi = UT

:RK

where U,Σ,V are obtained from the SVD of

K(
∑

i∈ group

Qi)
T = UΣVT

and U:R, V:R denote the first R columns of U and V respectively,
and Σ:R the first R rows and columns of Σ
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Taking queries into account

Doing an SVD on

(
K
Q

)
performs better that doing an SVD on K

only

4 / 4
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