
Some theoretical results on SVD methods
for KV cache compression

Damien Lesens,
with Beheshteh T. Rakhshan and Guillaume Rabusseau

8 July 2025

1 / 34

Plan

Introduction
Transformer architecture
Multi-head attention
KV caching

Dimension reduction
SVD methods
Taking queries into account

Approximating the attention matrix

Compatibility with Grouped Query Attention

Comparing SVD methods

Future works

1 / 34

Transformer architecture

▶ Large language models (LLMs) are a groundbreaking
advancement in natural language processing

▶ They enable a wide range of applications and have become a
central focus of AI research

▶ Efficient memory usage and high throughput are critical to
scaling and deploying these models effectively

2 / 34

Transformer architecture
Words are embedded into high dimensional vectors and are fed to
the model in two phases:

▶ Pre-filling: the whole prompt is passed to the model, which
generates a first token

▶ Auto-regressive generation: the prompt + the first generated
token are passed to the model, generating a new token, and
the process repeats

Image credits: ”Role-Play with Large Language Models”, Shanahan et al.

3 / 34

Transformer architecture

▶ Many different architectures, but usually
composed of a succession of layers which
look like this

▶ Their capabilities are mainly due to the
attention computation introduced by the
seminal paper ”Attention is all you need”,
Vaswani et al, 2017 [VSP+17]

▶ We are interested in optimizing the
Multi-Head Attention computation

Image source: Medium ”LLMs Explained: LLaMA and Its Architecture (Part 1)” 4 / 34

Multi-head attention
We are interested in the multi-head attention computation

▶ n: sequence length
▶ X ∈ Rn×D: input hidden states
▶ h: number of attention heads
▶ d = D/h: head dimension

Computes for each head queries, keys and values

Qi = XWQ
i ,Ki = XWK

i ,Vi = XWV
i ∈ Rn×d, i ∈ J1, hK

using learnable parameters WQ
i ,W

K
i ,WV

i ∈ RD×d

Hi = Softmax(QiK
T
i /
√
d)Vi

MHA(X) = [H1, . . . ,Hh]WO

Softmax(z)i =
ezi∑
j e

zj

5 / 34

Multi-head attention

Hi = Softmax(QiK
T
i /
√
d)Vi

MHA(X) = [H1, . . . ,Hh]WO

Issue:

▶ The cost of this computation scales quadratically with the
sequence size n: prohibits long text generation

However

▶ The upper half of QiK
T
i is set to −∞ so that the attention

of a token is not influenced by future tokens.

Softmax(QKT) =


α1,1 0 0 . . . 0
α2,1 α2,1 0 . . . 0

...
...

. . .
. . . 0

αn,1 αn,2 αn,n

 hj =

j−1∑
k=1

αj,kvk

6 / 34

KV caching

▶ Computations for generating a token can be reused to
generate the next token

▶ More precisely keys and values can be cached
→ KV caching

For auto-regressive generation,

K
(n)
i ← Concat(K

(n−1)
i , k

(n)
i)

V
(n)
i ← Concat(V

(n−1)
i , v

(n)
i)

}
stored in memory

h
(n)
i = Softmax(q

(n)
i K

(n)
i

T /
√
d)V

(n)
i

The cost of generating the nth token is now O(n),
but the memory size of the cached keys and values scales as O(n)

7 / 34

KV caching

K
(n)
i ← Concat(K

(n−1)
i , k

(n)
i)

V
(n)
i ← Concat(V

(n−1)
i , v

(n)
i)

}
stored in memory

h
(n)
i = Softmax(q

(n)
i K

(n)
i

T /
√
d)V

(n)
i

→ long sequence generation is a memory bound problem
because of the KV cache

Example: Llama2-7b (model size 14GB) for a sequence of length
32k the KV cache size is 16GB

How can we compress the KV cache
to reduce its memory footprint ?

8 / 34

Dimension reduction

A lot of research in KV cache compression techniques

KV cache tensors (shape (n,L, h, d)) can be compressed along
different dimensions1:

▶ n: token eviction

▶ L number of layers: modify architecture such that the cache
is shared across layers

▶ h: Multi Query Attention (MQA), Grouped Query Attention
(GQA), details on these later

▶ bit precision: Quantization

▶ d: hidden dimension

1Survey: ”A survey on large language model acceleration based on kv cache management”, Haoyang et al., 2024

9 / 34

Dimension reduction

A lot of research in KV cache compression techniques

KV cache tensors (shape (n,L, h, d)) can be compressed along
different dimensions1:

▶ n: token eviction

▶ L number of layers: modify architecture such that the cache
is shared across layers

▶ h: Multi Query Attention (MQA), Grouped Query Attention
(GQA), details on these later

▶ bit precision: Quantization

▶ d: hidden dimension

(survey [LLT+24]) :

1Survey: ”A survey on large language model acceleration based on kv cache management”, Haoyang et al., 2024

9 / 34

SVD methods

▶ For a given layer and a given head, use a low-rank
approximation of the key and value cache

Ki ≈ EiFi

with Ei ∈ Rn×R and Fi ∈ RR×d

▶ Memory is O(nR+Rd) instead of O(nd)

▶ Post-training, only need a pass of the model on a small
calibration set of tokens
→ little time and ressources spent

▶ Introduced by Palu1, LORC2, MatryoshkaKV3

[CLL+25] [ZWL+24] [LZX+24]

1”Palu: KV-Cache Compression with Low-Rank Projection”, Chang et al., 2025
2”Lorc: Low-rank compression for llms kv cache with a progressive compression strategy”, Zhang et al., 2024
3”MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection”, Lin et al., 2024

10 / 34

SVD methods

How to compute this low-rank approximation ?

▶ Take a collection of sequences from a text dataset (very small
compared to the train dataset).

▶ Pass each sequence into the model and collect the KV caches

▶ Perform a Singular Value Decomposition of K = UKΣKVT
K

and keep only the R first right singular vectors

Singular Value Decomposition (SVD), writes M ∈ Rn1×n2

(n1 ≥ n2) as

M = UΣVT =

n2∑
i=1

σiuiv
T
i

with U ∈ Rn1×n2 , V ∈ Rn2×n2 orthogonal, Σ diagonal with
positive decreasing entries (σi)i

11 / 34

SVD methods

How to compute this low-rank approximation ?

▶ Take a collection of sequences from a text dataset (very small
compared to the train dataset).

▶ Pass each sequence into the model and collect the KV caches

▶ Perform a Singular Value Decomposition of K = UKΣKVT
K

and keep only the R first right singular vectors

Singular Value Decomposition (SVD), writes M ∈ Rn1×n2

(n1 ≥ n2) as

M = UΣVT =

n2∑
i=1

σiuiv
T
i

with U ∈ Rn1×n2 , V ∈ Rn2×n2 orthogonal, Σ diagonal with
positive decreasing entries (σi)i

11 / 34

SVD methods

▶ Approximate K as K ≈ KVK,:RV
T
K,:R = UK,:RΣK,:RV

T
K,:R

▶ The basis VK,:R does not depend on the sequence length
→ it generalizes well to another key cache

K′ ≈ K′VK,:RV
T
K,:R with K′ ̸= K

▶ Do the same thing for V:
V = UV ΣV V

T
V and V ≈ VVV,:RV

T
V,:R

12 / 34

SVD methods

▶ The attention computation is now

Hi = Softmax(QiVK,:RV
T
K,:RK

T
i /
√
d)ViVV,:RV

T
V,:R

= Softmax(QiVK,:R(KiVK,:R)
T /
√
d)(ViVV,:R)V

T
V,:R

▶ Store only KiVK,:R,ViVV,:R ∈ Rn×R

▶ For auto-regressive generation

K
(n)
i ← Concat(K

(n−1)
i , k

(n)
i VK,:R)

V
(n)
i ← Concat(V

(n−1)
i , v

(n)
i VV,:R)

and use q̃
(n)
i = q

(n)
i VK,:R

13 / 34

SVD methods

▶ This method works well because singular values of K and V
decay fast, so they can be well approximated with R < d.

▶ The SVD provides the optimal low rank approximation
according to the Frobenius norm (Eckart–Young–Mirsky
theorem).

the solution of

min
P
∥K−KP∥2F subject to rank(P) ≤ R

is PK,R = VK,:RV
T
K,:R with K = UKΣKVT

K

14 / 34

SVD methods

▶ However, we are not interested in approximating K and V
but the output of the attention

M̃HA(X) = [Softmax(Q̃iK̃
T
i /
√
d)Ṽi]iW̃O

≈ [Softmax(QiK
T
i /
√
d)Vi]iWO

with Q̃i ≈ Qi, K̃i ≈ Ki, Ṽi ≈ Vi

▶ Qi and WO also impact the result

15 / 34

Taking queries into account

▶ Works in the litterature like Eigen4 and Zack5 observe that
queries should be taken into account.
[SSCR24] [ZS25]

▶ Indeed, PK,R = VK,:RV
T
K,:R is an orthogonal projection,

i.e. P2 = P and PT = P so

QiVK,:RV
T
K,:RK

T
i = QiPK,RK

T
i

= (QiPK,R)(KiPK,R)
T

We are projecting the row space of K AND Q

▶ Same thing for V: take WO into account

4”Eigen attention: Attention in low-rank space for kv cache compression”, Saxena et al., 2024
5”ZACK: Zero-Overhead LLM Inference Acceleration via Dimensionality Compression of the Key-Value Cache”,

Zhang and Shen, 2025

16 / 34

Taking queries into account

Zack and Eigen find a projection by doing an SVD on

(
K
Q

)
Instead of solving

min
P
∥K−KP∥2F subject to rank(P) ≤ R

they solve

min
P, rk(P)≤R

∥
(
K
Q

)
−
(
K
Q

)
P∥2F = min

P, rk(P)≤R
∥K−KP∥2F+∥Q−QP∥2F

to find a projection matrix that will approximate K and Q at the
same time.

→ performs better that doing an SVD on K only

17 / 34

Approximating the attention matrix

▶ However we are not interested in approximating K and Q at
the same time but the attention matrix KQT

▶ We would want to use A and B solution of

min
A,B∈Rd×R

∥KABTQT −KQT ∥2F

▶ This problem has a closed form solution, given by doing an
SVD of KQT (see e.g. DRONE6) [CYDH21]

6”DRONE: Data-aware Low-rank Compression for Large NLP Models”, Patrick et al.

18 / 34

Approximating the attention matrix

min
A,B∈Rd×R

∥KABTQT −KQT ∥2F

▶ choose A and B such that KABTQT is the best rank R
approximation of KQT

▶ KQT = UΣVT ≈ U:RΣ:RV
T
:R

▶ we want KABTQT = U:RU
T
:RKQT = U:RΣ:RV

T
:R

▶ PKQT = ABT = QTV:RΣ
−1
:R UT

:RK works

19 / 34

Approximating the attention matrix

▶ Doing an SVD of KQT ∈ Rn×n is costly compared to
K ∈ Rn×d as n≫ d

▶ Solution:
do an SVD of K = UKΣKVT

K and Q = UQΣQV
T
Q,

and finally an SVD of ΣKVT
KVQΣQ = UΣVT ∈ Rd×d

▶ Another formula is PKQT = (VKΣ−1
K U):R(VKΣKU)T:R

▶ Same asymptotic cost as Eigen and SVD on K

20 / 34

Approximating the attention matrix

Recap of the method we propose

▶ Pass the model on a calibration set of sequences

▶ Gather the query, key and value cache

▶ Solve for each head and each layer

min
A,B∈Rd×R

∥KiABTQT
i −KiQ

T
i ∥2F

min
C,D∈Rd×R

∥ViCDTWO,i −ViWO,i∥2F

▶ Store KiA,ViC and incorporate B,D into the attention
computation to reduce the memory from O(nd) to O(nR)

21 / 34

Grouped Query Attention

▶ This method needs to be compatible with Grouped Query
Attention (GQA) introduced by Ainslie et al.7 [ALTdJ+23]

▶ Dimension reduction technique that is present in most recent
LLMs and that we cannot avoid (in all Llama models after
Llama2-7B)

▶ Reduces the number of key and value heads from h to g
(number of query heads is still h)

7”GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints”, Ainslie et al.

22 / 34

Grouped Query Attention

▶ Trains a model with h heads, then groups heads and mean
pools WK

i and WV
i in each group

▶ The model then is trained a little to restore performance

→ Number of query heads and key heads is different

Image credits: ”GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints”,
Ainslie et al.

23 / 34

Compatibility with Grouped Query Attention

▶ Instead of solving

min
A,B∈Rd×R

∥KiABTQT
i −KiQ

T
i ∥2F

▶ We would want to solve the optimisation problem for each
head group

min
A,Bi

∥
∑

i∈ group

KABT
i Q

T
i −KQT

i ∥2F

▶ One basis for K but multiple each for each Qi in the group

▶ Previous works do not explain how to handle GQA

24 / 34

Compatibility with Grouped Query Attention

We showed

Theorem
The optimisation problem

min
A,Bi

∥
∑

i∈ group

KABT
i Q

T
i −KQT

i ∥2F

has a closed form solution which can be computed efficiently by
doing an SVD on

K(
∑

i∈ group

Qi)
T

▶ Like WK,i weights are averaged to get a single key cache per
group, we need to average queries in each group.

25 / 34

Comparing SVD methods

▶ Approximating the attention matrix KQT makes sense

▶ Other works decide to approximate other objects

▶ In which situations are other heuristics in the literature bad at
approximating the attention matrix, i.e. at solving

min
A,B∈Rd×R

∥KABTQT −KQT ∥2F

▶ Do these situations happen with real caches on real models ?

26 / 34

Comparing SVD methods

We can quantify how bad doing an SVD on K is compared
to an SVD on KQT

Theorem
Let K = UKΣKVT

K , Q = UQΣQV
T
Q and

finally ΣKVT
KVQΣQ = UΣVT then

∥KVK,:RV
T
K,:RQ

T −KQT ∥2F = ∥KPKQTQT −KQT ∥2F + ϵ

with
ϵ = ∥Σ:R∥2F − ∥ΣK,:RV

T
K,:RVQΣQ∥2F ≥ 0

▶ the gap ϵ is easy to compute

▶ gives exactly how bad doing only an SVD on K will be at
approximating the attention matrix

27 / 34

Comparing SVD methods Ungoing work

Comparing PKQT and PEigen, i.e SVD on KQT versus

(
K
Q

)
▶ In general PKQT is an oblique projection

▶ PEigen is always orthogonal

▶ Even if PKQT is orthogonal, we do not necessarily have
Range(PKQT) = Range(PEigen)

28 / 34

Future works

▶ Get a lower bound result for PKQT and PEigen

▶ Test on a collection of LLMs whether the theoretical
conditions we identify really happen

▶ Across layers

▶ Across different calibration set

→ know for a given model and a given layer which method to use

29 / 34

Conclusion

▶ SVD methods reduce the dimension of the KV cache to allow
long sequence generation

▶ We argue that it makes more sense to approximate the
attention matrix

▶ Works in the literature do SVD on different objects

▶ We give conditions under which approximating the attention
matrix is better (and we will verify experimentally whenever
these conditions do happen)

Thank you for your attention

30 / 34

Conclusion

▶ SVD methods reduce the dimension of the KV cache to allow
long sequence generation

▶ We argue that it makes more sense to approximate the
attention matrix

▶ Works in the literature do SVD on different objects

▶ We give conditions under which approximating the attention
matrix is better (and we will verify experimentally whenever
these conditions do happen)

Thank you for your attention

30 / 34

References I

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai, Gqa:
Training generalized multi-query transformer models from
multi-head checkpoints, 2023.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan
Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi Huang, Luis
Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu, Palu:
Kv-cache compression with low-rank projection, The
Thirteenth International Conference on Learning
Representations, 2025.

31 / 34

References II

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui
Hsieh, Drone: Data-aware low-rank compression for large nlp
models, Advances in Neural Information Processing Systems
(M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, eds.), vol. 34, Curran Associates, Inc.,
2021, pp. 29321–29334.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao
Xu, Xuejia Chen, Nicole Hu, Wei Dong, Qing Li, and Lei Chen,
A survey on large language model acceleration based on kv
cache management, arXiv preprint arXiv:2412.19442 (2024).

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou,
Xiaofeng Gao, Hao Zhang, and Zhijie Deng, Matryoshkakv:
Adaptive kv compression via trainable orthogonal projection,
arXiv preprint arXiv:2410.14731 (2024).

32 / 34

References III

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and
Kaushik Roy, Eigen attention: Attention in low-rank space for
kv cache compression, arXiv preprint arXiv:2408.05646 (2024).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, L ukasz Kaiser, and Illia
Polosukhin, Attention is all you need, Advances in Neural
Information Processing Systems (I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

Zeyu Zhang and Haiying Shen, Zack: Zero-overhead llm
inference acceleration via dimensionality compression of the
key-value cache, 2025.

33 / 34

References IV

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang,
Hao Cheng, Chao Zhang, and Yelong Shen, Lorc: Low-rank
compression for llms kv cache with a progressive compression
strategy, arXiv preprint arXiv:2410.03111 (2024).

34 / 34

Handling positional encodings

▶ Modern LLMs use positional encodings so that the interaction
between tokens depends on their relative position.

▶ Example: RoPE in Llama. Rows of K and Q are multipled by
a rotation matrix whose angle is a function of the token index

qmkTn = (xmWQ
i R

d
θ,m)(xnW

K
i Rd

θ,n)
T

= (xmWQ
i)R

d
θ,mRd

θ,n
T (xnW

K
i)

= (xmWQ
i)R

d
θ,m−n(xnW

K
i)

decays when m− n is large

1 / 4

Handling positional encodings

The KV cache is less low-rank with RoPE applied. Multiple
options to handle it:

▶ Compress before RoPE, but you have to decompress to apply
RoPE

▶ Compress after RoPE, less low-rank but still possible. The
calibration set needs to contain the whole range of positional
embeddings.

▶ Some works have tried to remove RoPE from some heads8

▶ Without RoPE one can merge projections into weights and
reduce the size of attention weights

8”EliteKV: Scalable KV Cache Compression via RoPE Frequency Selection and Joint Low-Rank Projection”,
Zhou et al.

2 / 4

Formula for GQA

Theorem
The solution of

min
A,Bi

∥
∑

i∈ group

KABT
i Q

T
i −KQT

i ∥2F

is given by

A = (
∑

i∈ group

QT
i)V:RΣ

−1
:R and Bi = UT

:RK

where U,Σ,V are obtained from the SVD of

K(
∑

i∈ group

Qi)
T = UΣVT

and U:R, V:R denote the first R columns of U and V respectively,
and Σ:R the first R rows and columns of Σ

3 / 4

Taking queries into account

Doing an SVD on

(
K
Q

)
performs better that doing an SVD on K

only

4 / 4

	Introduction
	Transformer architecture
	Multi-head attention
	KV caching

	Dimension reduction
	SVD methods
	Taking queries into account

	Approximating the attention matrix
	Compatibility with Grouped Query Attention
	Comparing SVD methods
	Future works
	Appendix

