
Towards Real Time 
Transformer Inference

18th Scheduling for large-scale systems workshop
Loris Marchal - CNRS Research Director
Gaël Delalleau - Kog CEO
Félix Wirth - (soon) PhD Student @ Kog/CNRS



Generative AI use cases evolution

We are moving from:

- Chatbots
- Classifiers

To:

- Reasoning Models
- Agentic AI



The user perspective - Chatbot



The user perspective - Agentic AI



The user perspective - Agentic AI



The user perspective - Agentic + Reasoning 



The user perspective - Agentic + Reasoning 



The user perspective

Gains:

- Quality
- Relevance
- Better understanding

Source:
Artificial 
Analysis

https://artificialanalysis.ai/
https://artificialanalysis.ai/


The user perspective

Gains:

- Quality
- Relevance
- Better understanding

Loss:

- Waiting time

Source:
Artificial 
Analysis

https://artificialanalysis.ai/
https://artificialanalysis.ai/


- Obtaining the final answer requires generating ‘intermediary results’: 
Reasoning traces, calling tools / browsing web, etc.

- Pipelining reasoning calls make it worse

Source:
Artificial 
Analysis

Why the waiting time ?

https://artificialanalysis.ai/
https://artificialanalysis.ai/


Autoregressive Generation

- The whole model is used
for every new token

- First pass is named ‘Prefilling’
- Every following pass is

‘Decoding’

We focus on Decoding today !

Source: Cerebras

https://www.cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed


Autoregressive Generation

- Each pass is memory
bound

- This is usually alleviated
by predicting multiple
sentences at a time
(higher batch size)

How to optimize per user speed ?
We focus on batch size 1 Source: Cerebras

https://www.cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed


Efficient Inference Solutions

Model compression:

- Pruning
- Quantization

Smarter decoding algorithm

- Speculative decoding
- KV Cache

Leveraging hardware

- Kernel optimization
- Parallelization



Efficient Inference Solutions

Model compression:

- Pruning
- Quantization

Smarter decoding algorithm

- Speculative decoding
- KV Cache

Leveraging hardware

- Kernel optimization
- Parallelization



Parallelization for speed

- Reduce memory reads per GPU
- Split the model along weights
- Combine Column and Row wise splits

to reduce communications required
- Almost divides memory read by

number of GPU used

Source: Lightning AI

https://lightning.ai/docs/pytorch/stable/advanced/model_parallel/tp.html


Application and Limitations to Transformer

- Megatron-LM efficiently applies this at scale to every layer - Using 2 
communications per layer

- Poor performance scaling is observed at small batch

https://arxiv.org/pdf/2504.03624#cite.shoeybi2020megatronlmtrainingmultibillionparameter


Multi GPU Limitations

- Launching the comm takes
~few µs

- In this span of time, each GPU
can read multiple MBs of data

- On small models and
batch sizes, it dominates the
runtime.

…

#1 #2

#1 (Attention + MLP)

GPU Busy
1 GPU

2 GPUs

8 GPUs

#2 (Attention + MLP)

GPU Busy GPU Busy GPU Busy

#1 #2

Time

Gather
results



Multi GPU Limitations

Benchmarking from Databricks showing the
reduced memory usage:
More GPU, less efficiency!

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices


Solution : Natively Parallel Transformer

- We propose to break the information flow to avoid immediate data need 
across workers

- Remove all but one communications !
- We call the parallel sequences of layers ‘Lane’



Building the model

Given a target model size, we use hyperparameters from the Chinchilla paper:
number of layers, hidden size, attention dimension…

For lane number L, we solve hidden size to keep the budget similar while keeping 
other hyperparameters constant: h’ = h / sqrt(L).

Since the architecture is deeply changed, we need to retrain it.

https://arxiv.org/abs/2203.15556


Initial Scaling Laws

Our architecture changes embedding
and output parameter budget

We count ‘parameters read’ for inference
fair comparison.

How to improve ?



Reordering information flow

We reintroduce information sharing in a delayed setting:

- Overlap the communication with other layers computations
- Size the delay according to inference setting (e.g. GPU speed)
- Aggregate using basic mean or sum with ‘up to date’ hidden states



Delayed communication experiments

- Current results show lower performance than no communication
- We are investigating impact on the gradients
- Parametrized combination instead of mean/sum
- Avoid changing the whole hidden states?
- Different starting/ending module
- Ongoing !



From Pre to Post-training

Our splitting increases the already high compute budget for training model.

How to leverage post training to avoid
paying the pre-training toll ?



AI bottleneck : Long Context vs KV Cache

Inference is speeded up by caching redundant results (KV Cache), growing with 
longer context. Reading the cache can easily dominate the inference speed.

Source: Cerebras

https://www.cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed


AI bottleneck : Long Context vs KV Cache

Inference is speeded up by caching redundant results (KV Cache), growing with 
longer context. Reading the cache can easily dominate the inference speed.

KV Cache is usually reduced by using:

- Hybrid architecture (e.g. SSM)
- Sliding Window Attention

Both techniques show limitations at long context sizes, clashing with modern 
needs.



GPU Bottleneck : Kernel Launches, internal 
synchronizations

- Launching a compute kernel usually takes a few microsecond, restraining the 
number of decoding per second

- Fusing kernels removes them
- It also removes implicit synchronizations between kernels, we need to 

explicitly reintroduce them: We traded launch time for inter device 
synchronization.



Thank you!

Loris Marchal - CNRS Research Director
Gaël Delalleau - Kog CEO
Félix Wirth - (soon) PhD Student @ Kog/CNRS

Towards Real Time Transformer Inference


