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Generative Al use cases evolution

We are moving from:

- Chatbots
- Classifiers

To:

- Reasoning Models
- Agentic Al
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The user perspective - Chatbot

Hello assistant, what should | wear in Montréal today ?

Good morning! Here's your weather update and outfit suggestion for Montréal today, Wednesday, July 9,
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The user perspective - Agentic Al

Hello assistant, what should | wear in Montréal today ?

Searching the web
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The user perspective - Agentic Al

Currently 71° - Partly sunny

Montreal, QC, Canada
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The user perspective - Agentic + Reasoning

Hello assistant, what should | wear in Montréal today ?

Sure! I'll look up today's weather forecast in Montréal to suggest what you should wear, including
considerations for temperature, precipitation, and time of day.
I'll be back shortly with personalized recommendations.

Starting research
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The user perspective - Agentic + Reasoning

Weather Forecast and Clothing
Recommendations for Montréal on July 9, 2025

Weather Forecast Details for July 9, 2025

Montreal is expected to have warm and partly sunny conditions on July 9, 2025. According to the latest
forecast, the day will reach a high of about 27°C (feeling like ~32°C with humidity) westherscea . The morning
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The user perspective

Gains:

Artificial Analysis Intelligence Index by Model Type @ &
Artificial Analysis Intelligence Index incorporates 7 evaluations: MMLU-Pro, GPQA Diamond, Humanity's Last Exam, LiveCodeBench, SciCode, AIME,
MATH-500

- Qu al ity ¥/ Estimate (independent evaluation forthcoming)
@ Reasoning Model @ Non-Reasoning Model

- Relevance

- Better understanding
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The user perspective

Gains:

- Quality
- Relevance
- Better understanding

Loss:

- Waiting time

End-to-End Response Time
Seconds to Output 500 Tokens, including reasoning model 'thinking' time; Lower is better
@ Input processing time @ 'Thinking' time (reasoning models) Outputting time
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Why the waiting time ?

Obtaining the final answer requires generating ‘intermediary results’:
Reasoning traces, calling tools / browsing web, etc.
- Pipelining reasoning calls make it worse

Output Tokens Used to Run Artificial Analysis Intelligence Index 7z
Tokens used to run all evaluations in the Artificial Analysis Intelligence Index
@ Reasoning Tokens M@ Answer Tokens
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https://artificialanalysis.ai/
https://artificialanalysis.ai/

Autoregressive Generation

- The whole model is used

for every new token

- First pass is named ‘Prefilling’

- Every following pass is

‘Decoding’

We focus on Decoding today !
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https://www.cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed

Autoregressive Generation

- Each pass is memory
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How to optimize per user speed ?
We focus on batch size 1

Time
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https://www.cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed

Efficient Inference Solutions

Model compression:

- Pruning
- Quantization

Smarter decoding algorithm

- Speculative decoding
- KV Cache

Leveraging hardware

- Kernel optimization
- Parallelization
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Efficient Inference Solutions

Model compression:

- Pruning
- Quantization

Smarter decoding algorithm

- Speculative decoding
- KV Cache

Leveraging hardware

- Kernel optimization
- Parallelization
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Parallelization for speed

- Reduce memory reads per GPU .
. GPU 1 *
- Split the model along weights
-  Combine Column e?nd .Row W|se. splits . -
to reduce communications required T
- Almost divides memory read by .
*
number of GPU used e

Source: Lightning Al
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https://lightning.ai/docs/pytorch/stable/advanced/model_parallel/tp.html

Application and Limitations to Transformer

- Megatron-LM efficiently applies this at scale to every layer - Using 2
communications per layer
- Poor performance scaling is observed at small batch
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https://arxiv.org/pdf/2504.03624#cite.shoeybi2020megatronlmtrainingmultibillionparameter

Multi GPU Limitations

Launching the comm takes
~few us

In this span of time, each GPU
can read multiple MBs of data
On small models and

batch sizes, it dominates the
runtime.
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#2 (Attention + MLP)

1 GPU / /

/

/

GPU Busy GPU Busy

GPU Busy GPU Busy

#1 #2

2 GPUs

—

.

8 GPUs LEL_|#2

— (I

Gather
results

Time

@




Multi GPU Limitations

Benchmarking from Databricks showing the
reduced memory usage:
More GPU, less efficiency!
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https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

Solution : Natively Parallel Transformer

- We propose to break the information flow to avoid immediate data need
across workers

- Remove all but one communications !

- We call the parallel sequences of layers ‘Lane’

Laneformer Lanef
Block Decoder Ly Decoder Ly Block
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Building the model

Given a target model size, we use hyperparameters from the Chinchilla paper:
number of layers, hidden size, attention dimension...

For lane number L, we solve hidden size to keep the budget similar while keeping
other hyperparameters constant: h’ = h / sqrt(L).

Since the architecture is deeply changed, we need to retrain it.
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https://arxiv.org/abs/2203.15556

Initial Scaling Laws

Our architecture changes embedding
and output parameter budget

We count ‘parameters read’ for inference
fair comparison.

How to improve ?

Final Loss
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Reordering information flow

We reintroduce information sharing in a delayed setting:

Overlap the communication with other layers computations
Size the delay according to inference setting (e.g. GPU speed)
Aggregate using basic mean or sum with ‘up to date’ hidden states
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Delayed communication experiments

- Current results show lower performance than no communication
- We are investigating impact on the gradients

- Parametrized combination instead of mean/sum

- Avoid changing the whole hidden states?

- Different starting/ending module

- Ongoing !
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From Pre to Post-training

Our splitting increases the already high compute budget for training model.

How to leverage post training to avoid

paying the pre_training tO” ? train/total_flos ] X

1,000 2,000 3,000 4000 5,000
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Al bottleneck : Long Context vs KV Cache

Inference is speeded up by caching redundant results (KV Cache), growing with
longer context. Reading the cache can easily dominate the inference speed.

The quick brown

VvV

Layer 1

¥

Layer 2

¥

Layer 3

L 2

Layer 4

vV

fox

—

The quick brown fox

v

Layer 1

¥

Layer 2

¥

Layer 3

¥

Layer 4

vV

jumps

* The quick brown fox jumps

v

Layer 1
¥

Layer 2
¥

Layer 3
¥

Layer 4

v

over

Time

Source: Cerebras

@


https://www.cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed

Al bottleneck : Long Context vs KV Cache

Inference is speeded up by caching redundant results (KV Cache), growing with
longer context. Reading the cache can easily dominate the inference speed.

KV Cache is usually reduced by using:

- Hybrid architecture (e.g. SSM)
- Sliding Window Attention

Both techniques show limitations at long context sizes, clashing with modern
needs.
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GPU Bottleneck : Kernel Launches, internal
synchronizations

- Launching a compute kernel usually takes a few microsecond, restraining the
number of decoding per second

- Fusing kernels removes them

- It also removes implicit synchronizations between kernels, we need to
explicitly reintroduce them: We traded launch time for inter device
synchronization.
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Thank you!
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