Green Scheduling on the Edge

Anne Benoit¹ Joachim Cendrier¹ Andrew A. Chien²

Yves Robert¹ Frédéric Vivien¹ Rajini Wijayawardana²

¹ENS Lyon, LIP, ROMA

²University of Chicago

July 9, 2025

The problem

- Edge servers are connected to the energy grid and to renewable energy sources: green and brown energy intervals known in advance
- Jobs have deadlines to respect
- Possible execution on a big distant cloud server with large carbon cost (transfer + computation)
- Aim: complete all jobs before their deadlines while minimizing the total carbon cost

The model

- Set of n identical edge servers, and each edge e_i has green and brown intervals which respective carbon cost of 0 and k
- \blacksquare A CLOUD server with a higher carbon intensity and speed: $\frac{K}{s_{cloud}} \geq k$
- Set of m jobs, for each job J_j :
 - ℓ_j : execution time of job J_j on an edge
 - lacksquare r_j : release date of job J_j
 - \blacksquare d_i : deadline of job J_i
 - \bullet o_i : arrival (and departure) edge of job J_i
 - f_i : communication volume of job J_i

Communications:

- Complete interconnection network
- lacksquare Transfer time linear in the communication volume of the job: $rac{f_j}{b_{trans}}$
- **Carbon** cost linear in the communication volume of the job: $f_j k_{trans}$

Assumptions and objective function

Assumptions:

- Full knowledge of energy intervals on all edges
- Jobs arrive online
- We can pause and resume (freeze) a job without any penalty (but neither preemption nor migration)

All jobs must be completed before their deadlines (potentially using the CLOUD)

Objective function: minimization of the total carbon cost:

$$\min \left(\sum_{0 \le j \le m} \left(\left(\alpha_{j} k + \delta_{j} \frac{K}{s_{cloud}} \right) \ell_{j} + t r_{j} f_{j} k_{trans} \right) \right)$$

where α_j is the fraction of the job J_j executed using brown energy and δ_j indicates whether the job is executed on the CLOUD ($\delta_j \in \{0,1\}$ and $\alpha_j + \delta_j \leq 1$), tr_j is the number of transfers of job J_j .

Contents

- Introduction
- 2 Theoretical results for the one edge, offline case
- **3** Algorithms
- Experiments
- Conclusion

Contents

- Introduction
- Theoretical results for the one edge, offline case
- Algorithms
- 4 Experiments
- 5 Conclusion

Complexity for the single edge, offline case

Assumptions:

- One edge
- Offline (release dates and deadlines are known)

Complexity:

■ **Strongly NP-Complete** problem: proof by 3-partition

Algorithm for the single edge, offline case and ordered jobs

Assumptions:

- One edge
- Offline (release dates and deadlines are known)

Algorithm divided into two phases:

- Ordering of the jobs: e.g., Earliest Deadline First (EDF)
- Optimal linear algorithm, OfflineGreenest, for job scheduling

Jobs are **ordered**: $\forall i, j \in [1, m], i < j$ job J_i must complete before job J_j starts

 rr_j : earliest starting time for job J_j

$$rr_1 = r_1,$$

$$\forall j \in [2, m], rr_j = \max(rr_{j-1} + \ell_{j-1}, r_j)$$

 \blacksquare rd_j : latest completion time for job J_j

$$rd_m = d_m,$$
 $\forall j \in [1, m-1], \ rd_j = \min(rd_{j+1} - \ell_{j+1}, d_j)$

Jobs are **ordered**: $\forall i, j \in [1, m], i < j$ job J_i must complete before job J_j starts

 rr_j : earliest starting time for job J_j

$$rr_1 = r_1,$$

$$\forall j \in [2, m], rr_j = \max(rr_{j-1} + \ell_{j-1}, r_j)$$

 \blacksquare rd_j : latest completion time for job J_j

$$rd_m = d_m,$$
 $\forall j \in [1, m-1], \ rd_j = \min(rd_{j+1} - \ell_{j+1}, d_j)$

Jobs are **ordered**: $\forall i, j \in [1, m], i < j$ job J_i must complete before job J_j starts

 rr_j : earliest starting time for job J_j

$$rr_1 = r_1,$$

$$\forall j \in [2, m], rr_j = \max(rr_{j-1} + \ell_{j-1}, r_j)$$

 \blacksquare rd_j : latest completion time for job J_j

$$rd_m = d_m,$$

$$\forall j \in [1, m-1], \ rd_j = \min(rd_{j+1} - \ell_{j+1}, d_j)$$

Jobs are **ordered**: $\forall i, j \in [1, m], i < j$ job J_i must complete before job J_j starts

 rr_j : earliest starting time for job J_j

$$rr_1 = r_1,$$
 $\forall j \in [2, m], rr_j = \max(rr_{j-1} + \ell_{j-1}, r_j)$

 $ightharpoonup rd_j$: latest completion time for job J_j

$$rd_m = d_m,$$
 $\forall j \in [1, m-1], \ rd_j = \min(rd_{j+1} - \ell_{j+1}, d_j)$

- Browse from the completion time of the previous job to rd_j , allocating green worktime while J_j not completed
- Browse from the completion time of the previous job to rd_j , allocating brown worktime while J_j not completed

- Browse from the completion time of the previous job to rd_j , allocating green worktime while J_j not completed
- Browse from the completion time of the previous job to rd_j , allocating brown worktime while J_j not completed

- Browse from the completion time of the previous job to rd_j , allocating green worktime while J_j not completed
- Browse from the completion time of the previous job to rd_j , allocating brown worktime while J_j not completed

- Browse from the completion time of the previous job to rd_j , allocating green worktime while J_j not completed
- Browse from the completion time of the previous job to rd_j , allocating brown worktime while J_j not completed

- Browse from the completion time of the previous job to rd_j , allocating green worktime while J_j not completed
- Browse from the completion time of the previous job to rd_j , allocating brown worktime while J_j not completed

For each job J_i in the **order**:

- Browse from the completion time of the previous job to rd_j , allocating green worktime while J_i not completed
- Browse from the completion time of the previous job to rd_j , allocating brown worktime while J_j not completed

Carbon cost of the solution: 25k; completion time: 90

Optimal for an offline problem but with a poor behavior for an online problem

Two-rounds algorithm:

Two-rounds algorithm:

First round: Book *green*

Two-rounds algorithm:

- First round: Book *green*
- Second round: Allocate green, evaluate missing work and add brown if necessary

First round:

$$\begin{array}{ll} rr_j & \rightarrow \mathbf{S}_i = \mathbf{S}_{i-1} + \ell_j \\ green \ I_i & \rightarrow \mathbf{PF}_i = \mathbf{PF}_{i-1} + \min(|I_i|, \mathbf{S}_{i-1} - \mathbf{PF}_{i-1}) \\ rd_j & \rightarrow \left\{ \begin{array}{ll} \mathbf{S}_i & = \mathbf{S}_{i-1} - \ell_j \\ \mathbf{PF}_i & = \max(0, \mathbf{PF}_{i-1} - \ell_j) \end{array} \right. \end{array}$$

$$rr_{j} \rightarrow \begin{cases} missing_{j} &= \max(0, \ell_{j} - PB_{i-1}) \\ PB_{i} &= \max(0, PB_{i-1} - \ell_{j}) \end{cases}$$

$$qreen\ I_{i} \rightarrow PB_{i} = PB_{i-1} + |I_{i}|$$

Two-rounds algorithm:

- First round: Book *green*
- Second round: Allocate green, evaluate missing work and add brown if necessary

First round:

$$\begin{array}{ll} rr_j & \rightarrow \mathbf{S}_i = \mathbf{S}_{i-1} + \ell_j \\ green \ I_i & \rightarrow \mathbf{PF}_i = \mathbf{PF}_{i-1} + \min(|I_i|, \mathbf{S}_{i-1} - \mathbf{PF}_{i-1}) \\ rd_j & \rightarrow \left\{ \begin{array}{ll} \mathbf{S}_i & = \mathbf{S}_{i-1} - \ell_j \\ \mathbf{PF}_i & = \max(0, \mathbf{PF}_{i-1} - \ell_j) \end{array} \right. \end{array}$$

$$rr_{j} \rightarrow \begin{cases} missing_{j} &= \max(0, \ell_{j} - PB_{i-1}) \\ PB_{i} &= \max(0, PB_{i-1} - \ell_{j}) \end{cases}$$

$$qreen\ I_{i} \rightarrow PB_{i} = PB_{i-1} + |I_{i}|$$

Two-rounds algorithm:

- First round: Book *green*
- Second round: Allocate green, evaluate missing work and add brown if necessary

First round:

$$\begin{array}{ll} rr_j & \rightarrow \mathbf{S}_i = \mathbf{S}_{i-1} + \ell_j \\ green \ I_i & \rightarrow \mathbf{PF}_i = \mathbf{PF}_{i-1} + \min(|I_i|, \mathbf{S}_{i-1} - \mathbf{PF}_{i-1}) \\ rd_j & \rightarrow \left\{ \begin{array}{ll} \mathbf{S}_i & = \mathbf{S}_{i-1} - \ell_j \\ \mathbf{PF}_i & = \max(0, \mathbf{PF}_{i-1} - \ell_j) \end{array} \right. \end{array}$$

$$rr_{j} \rightarrow \begin{cases} missing_{j} &= \max(0, \ell_{j} - PB_{i-1}) \\ PB_{i} &= \max(0, PB_{i-1} - \ell_{j}) \end{cases}$$

$$qreen \ I_{i} \rightarrow PB_{i} = PB_{i-1} + |I_{i}|$$

Two-rounds algorithm:

- First round: Book *green*
- Second round: Allocate green, evaluate missing work and add brown if necessary

First round:

$$\begin{array}{ll} rr_j & \rightarrow \mathbf{S}_i = \mathbf{S}_{i-1} + \ell_j \\ green \ I_i & \rightarrow \mathbf{PF}_i = \mathbf{PF}_{i-1} + \min(|I_i|, \mathbf{S}_{i-1} - \mathbf{PF}_{i-1}) \\ rd_j & \rightarrow \left\{ \begin{array}{ll} \mathbf{S}_i & = \mathbf{S}_{i-1} - \ell_j \\ \mathbf{PF}_i & = \max(0, \mathbf{PF}_{i-1} - \ell_j) \end{array} \right. \end{array}$$

$$rr_{j} \rightarrow \begin{cases} missing_{j} &= \max(0, \ell_{j} - PB_{i-1}) \\ PB_{i} &= \max(0, PB_{i-1} - \ell_{j}) \end{cases}$$

$$qreen \ I_{i} \rightarrow PB_{i} = PB_{i-1} + |I_{i}|$$

Two-rounds algorithm:

- First round: Book *green*
- Second round: Allocate green, evaluate missing work and add brown if necessary

First round:

$$\begin{array}{ll} rr_j & \rightarrow \mathbf{S}_i = \mathbf{S}_{i-1} + \ell_j \\ green \ I_i & \rightarrow \mathbf{PF}_i = \mathbf{PF}_{i-1} + \min(|I_i|, \mathbf{S}_{i-1} - \mathbf{PF}_{i-1}) \\ rd_j & \rightarrow \left\{ \begin{array}{ll} \mathbf{S}_i & = \mathbf{S}_{i-1} - \ell_j \\ \mathbf{PF}_i & = \max(0, \mathbf{PF}_{i-1} - \ell_j) \end{array} \right. \end{array}$$

$$rr_{j} \rightarrow \begin{cases} missing_{j} &= \max(0, \ell_{j} - PB_{i-1}) \\ PB_{i} &= \max(0, PB_{i-1} - \ell_{j}) \end{cases}$$

$$qreen \ I_{i} \rightarrow PB_{i} = PB_{i-1} + |I_{i}|$$

Two-rounds algorithm:

- First round: Book *green*
- Second round: Allocate green, evaluate missing work and add brown if necessary

Carbon cost of the solution: 25k; completion time 70

Better completion time! Still linear!

Contents

- Introduction
- 2 Theoretical results for the one edge, offline case
- Algorithms
- Experiments
- 5 Conclusion

Greedy baseline heuristics

- ALLCLOUD: Sends and executes all jobs on the CLOUD server
- Local: Schedules each job at the earliest on its edge
- ECT: Schedules each job at the earliest on any edge
- LOCALGREEN: Schedules each job at the earliest on its edge but only using green energy
- ECTGREEN: Schedules each job at the earliest on any edge but only using green energy

Algorithms built on OfflineGreenest

Three mapping strategies:

- LowCarb: Assign a job on the server that minimizes total carbon cost
- NoCarbComm: Assign a job on the server that minimizes total carbon cost, while ignoring transfer costs
- INPLACE: Assign a job on its *origin* server; if not feasible use strategy LOWCARB

Once a job is mapped on a server, schedule it using OfflineGreenest

Direct utilization defines three heuristics:

- GreedyLowCarb
- GreedyNoCarbComm
- GreedyInPlace

Algorithms built on OfflineGreenest with re-evaluation

At each job release time, mapping decisions for not yet started jobs, and scheduling decisions of started-but-not-completed jobs are re-considered

Two job priorities:

- \blacksquare Looseness: non-decreasing order of remaining time before deadline: $\frac{d_j-t}{\ell_j}$
- EDF: Earliest Deadline First

Choice of mapping strategy and job priority defines six heuristics

- REALLOCINPLACELOOSENESS
- REALLOCLOWCARBLOOSENESS
- REALLOCNOCARBCOMMLOOSENESS
- ReallocInPlaceEDF
- REALLOCLOWCARBEDF
- REALLOCNOCARBCOMMEDF

Contents

- Introduction
- 2 Theoretical results for the one edge, offline case
- 3 Algorithms
- Experiments
- 5 Conclusion

Traces from real data

CAISO data

Green and brown intervals over 1 week, across the 4 on-site generation models

- Simulation length: T = 30 days
- 12 months
- 10 edge servers, with various on-site generation models:
 - Solar only: 4%-43% green intervals
 - Wind only: 27%-55% green intervals
 - Solar and wind: 45%-61% green intervals
 - Mix: 1 grid, 3 solar, 3 wind, 3 solar and wind
- $k = K/s_{cloud} = 180$ unit of carbon/s

Synthetics simulation parameters

- Job duration: between 20 seconds and 4 hours, with mean 1 hour
- Job data volume: uniformly distributed in [2, 200] Gbit
- Load $\in \{0.1, 0.2, \dots, 1\}$
- Looseness = $\frac{d_j r_j}{\ell_j}$: $\{2, 4, 6\} \pm 10\%$
- Job arrival models:
 - Uniform: the workload is distributed uniformly across all 10 edges
 - Clustered: 30% of the edges receive 90% of the workload
 - Event/Mall: one edge receives 80% of the workload
- ullet b_{trans} : $\{10, 100, 500, 1000\}$ Mbit/s; 250 Mbit/s for Cloud
- lacktriangledown k_{trans} : $\{1, 10, 100, 1000\}$ unit of carbon/Mbit; 1000 unit of carbon/Mbit for Cloud

Run 20,000 experiments by randomly selecting a value for each parameter

Comparison to oracle

Oracle: for each instance knows which heuristic is best

 \blacksquare $RatioOracle = \frac{Algorithm}{Oracle}$

Algorithms	Mean	SD	Best	10%
ALLCLOUD	18.058	3.608	0	0
LocalGreen	8.824	3.143	0	0
Local	4.940	3.247	1	3
ECTGREEN	3.748	2.416	1	3
GreedyNoCarbComm	2.642	2.132	0	5
REALLOCNOCARBCOMMLOOSENESS	2.321	1.969	0	6
GreedyLowCarb	2.007	1.815	1	10
GreedyInPlace	1.883	1.683	1	8
ECT	1.816	1.644	0	3
ReallocLowCarbLooseness	1.617	1.493	1	13
REALLOCNOCARBCOMMEDF	1.590	1.935	18	37
ReallocInPlaceLooseness	1.587	1.433	0	9
REALLOCINPLACEEDF	1.118	1.256	48	70
ReallocLowCarbEDF	1.060	1.091	32	79

Table 1: Statistics on 20,000 random instances. Sorted by mean values.

■ Very good performance for the REALLOCLOWCARBEDF algorithm

LOWER BOUND

Simplifying assumptions:

- Communications are free (in time and carbon cost)
- Preemption and migration are allowed

Comparison with $RatioLowerBound = \frac{ Algorithm}{ LowerBound}$

Impact of the carbon cost of transfer

Global algorithms get worse when carbon cost of transfer is high

Impact of the load

■ Consistent performance from the REALLOCLOWCARBEDF algorithm

Impact of the month

■ REALLOCLOWCARBEDF gets a saving of 79% compare to LOCAL and a saving of 42% compare to ECT

Contents

- Introduction
- 2 Theoretical results for the one edge, offline case
- Algorithms
- Experiments
- Conclusion

Conclusion and future work

Conclusion:

- Modelisation of a complex edge scheduling problem
- Optimal linear algorithm to schedule ordered jobs, with good online properties
- A heuristic delivering robust performance and close to the lower bound

Future work:

- More than two carbon costs for energy
- Imperfect energy predictions