
Inference and Fine-Tuning
Co-serving for LoRA-Adapted
LLMs
Jiaxuan Chen, Oana Balmau

Massive-scale general
dataset

Decoder-only LLM Structure

General Purpose
LLM

Training
LLM Inference

Systems

Deploy User

LLM Lifecycle

Finetuning
Systems Deploy

Inference

Finetuning

Domain-specific
Datasets

Finetuned
Models

Massive-scale general
dataset

Decoder-only LLM Structure

General Purpose
LLM

Training
LLM Inference

Systems

Deploy User

LLM Lifecycle

Finetuning
Systems Deploy

Inference

Finetuning

Domain-specific
Datasets

Finetuned
Models

Inference & Finetuing Co-serving

4

Inference:

● User-centric

● Latency-critical

● SLO compliance required

Why?

Finetuning:

● Data-driven

● More latency-tolerant

● Throughput & accuracy prioritized

LLM Inference
System

User Finetuning
System

Finetuning
Dataset

● Unpredictable traffic ● Steady, predictable workload

Inference & Finetuing Co-serving

5

Inference:

● User-centric

● Latency-critical

● SLO compliance required

Why?

Finetuning:

● Data-driven

● More latency-tolerant

● Throughput & accuracy prioritized

(1) Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, & Esha Choukse. (2024).
DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency.

Load over a week for Coding and
Conversation LLM inference workloads (1)

GPU Underutilization at low traffic period

→ Use free cycles for finetuning?

● Unpredictable traffic ● Steady, predictable workload

Project Goal: Inference & Finetuing Co-serving

6

Objectives:

● A unified, scalable runtime that co-serves inference and fine-tuning on the same cluster

● Fine-tuning is low-overhead and transparent to users

● Maintains inference performance on par with dedicated inference-only systems

● Maximize GPU utilization by scheduling finetuning during inference idle periods

Project Goal: Inference & Finetuing Co-serving

7

How to co-serve inference & finetuning?

● Shared forward pass in inference & finetuning

● But finetuning updates parameters, inference does not.

→ Finetuning weight update should not interfere inference

Inference uses iterative forward pass

Finetuning requires one forward pass and one backward pass

→ Can we keep the update separate from the base model?

→ Can we use the same forward pass for inference and finetuning forward?

LoRA Adapter!

Low-Rank Adaptation (LoRA)

8

LoRA
Adapter

1. LoRA introduce additional layer
of weights

2. Original weights (d*d) are frozen
during finetuning

3. LoRA weights (WA,WB) are
low-rank vectors (d*r, r*d)

4. Forwarding:

5. Backpropagation update LoRA
weights only

Main idea: Decompose weight update Δ to two low rank matrices

Scenario: Base Model + Adapters

9

Note: LoRA Layers can be treated as an add-on of the backbone model.

LLM

Activations

LoRA

GPU

LoRA Finetuning GPU

LLM

KVCache

LoRA

GPU

LoRA Inference GPU

LLM

Activations

LoRA

GPU

LoRA Co-serving GPU

KVCache

LoRA LLM

Activations

LoRA

GPU

KVCache

LoRA

LoRA LoRA

… …

LLM

Activations

LoRA

GPU

KVCache

LoRA

LoRA LoRA

… ……

Main Memory

LoRA LoRA LoRA …

Scalable LoRA Co-serving Cluster

Batched Forward with Hetergeneous LoRA Adapters

Several systems have been developed to leverage this flexibility

S-LoRA: Scalable Serving of Thousands of LoRA Adapters is one of them

It is able to batch different adapters in a single forward pass:

Heterogeneous LoRA batching:

many requests, one backbone, mixed adapters

Split compute:
● Pretrained weights computation uses matrix

multiplication.

● Different LoRA layers are computed together with

customized CUDA kernel

Our system is built on S-LoRA and extend it to support finetuning

https://arxiv.org/pdf/2311.03285

Workload Breakdown & Fused Batch

11

Inference:

Finetuning: Backward

Prefill Decode

Forward

Decode…

KVCache

Prompt

Sample

Fused Forward Batch

Most Similar
 Computation

System Design

12

Backward
Engine

Activation
buffer

KVCache

Inference Pool

Scheduler

Prefill Reqs

Finetuning Data Pool

Forward
Engine

User

Decode
Reqs

Scheduler:

● Decides when to run

forward/backward

● Form fused batch or decode

batch

● Tracks finetuning status

(eg. epoch, #tokens pending

backprop)

Inference Pool:
Track status of all inference

requests

Backward Engine:
Implements manual backward

gradient computation

Forward Engine:
Implements hetergeneous LoRA Batching,

with selective activation saving

S-LoRA Code

Modified Code

Added Code

Scheduler Design
 while running:

 # 1. Decode work has top priority
 if inference_pool.has_decode():
 batch = inference_pool.take_decode()
 forward_engine.run(batch)
 continue

 # 2. No inference work + enough activations → run backward
 if inference_pool.is_empty()

and activation_pool.size() >= ACTIVATION_LIMIT:
 batch = activation_pool.take_all()
 backward_engine.run(batch)
 continue

 # 3. Build a fused forward batch (prefill + finetune)
 batch = []
 batch += inference_pool.take_prefill(MAX_BSZ - len(batch))
 batch += finetune_data_pool.take(MAX_BSZ - len(batch))
 if batch:
 forward_engine.run(batch)

Inference first, always:

Decode-phase tokens are dispatched immediately to

keep user latency minimal.

Opportunistic training:

Finetuning backward runs only when the inference

pool is empty, ensuring it never delays live queries.

Inference Prioitized Fused Batch:

Prefill requests are packed alongside training

samples, maximizing GPU occupancy.

→ Priority order:
Decode ▶ Fused (Prefill ▶Finetune) ▶ Backward

Scenario: No Inference

14

Backward
Engine

Activation
buffer

KVCache

Inference Pool

Scheduler

Finetuning Data Pool

Forward
Engine

1. Scheduler checks finetuning status

2. Scheduler forms a forward batch using

only finetuning samples

1

2

3. Scheduler gives the batch to forward engine

3

4. Forward engine performs forward pass, saves

activations and updates finetuning status

6. Scheduler issue a backward batch to the

backward engine

7. Backward engine uses activation to perform

backpropagation

4

4

6

7

5. Repeat 1-4 until activation limit reached

Scenario: Light Inference

15

Backward
Engine

Activation
buffer

KVCache

Inference Pool

Scheduler

Finetuning Data Pool

Forward
Engine

1. Scheduler pulls the prefill request

2. As space allows, scheduler checks the

finetuning status and pulls finetuning samples to

form a fused batch

1

2

3

4

4

7

7
Prefill Req

User

3. Scheduler issue the batch to the forward engine

4. Forward engine performs forward pass, saves

activations, KV cache and updates finetuning status

4

5. Scheduler update inference request status

Decode Req

5

6. In the following iteration, scheduler forms decode

batches using the KV cache, until the request is

completed.

7. Sometime in the future, when there is no pending

inference requests, and enough saved activations, the

scheduler issues backward batch.

6

6

Optimizations

16

Finetuning Interruptibility:

To ensure low-latency serving, the system can preempt ongoing fine-tuning tasks—whether in the forward

or backward phase—to serve new inference requests immediately. Interrupted backprop tasks are

checkpointed and can be resumed from the saved state without loss of progress.

Optimizations

17

Memory Manager: Unified Paging:

 The LoRA adapter weights (d × r), per-sample activations (seq_len × d), and per-request KV-cache entries

(seq_len × d) all share the same hidden-size dimension d. This symmetry lets us treat them as

interchangeable “pages” and implement a single, unified paging layer, eliminating fragmentation.

Page Swapping:

Besides, given the high demand of memory in LLM finetuning & serving, the runtime must also handle

oversubscription. The memory manager should swap pages, freeing space without disrupting computation.

Evaluation Plan

Expected Outcome Trend: Comparing our system to a traditional
system with 2 GPUs for finetuning and 2 for inference

Goal: Compare co-serving vs. static GPU splits

Example Experiment Setup

● Hardware: 4-GPU node

● Baselines: fixed splits → 1/3 • 2/2 • 3/1 (Inf / FT)

● Workload trace: mix of inference + finetune

● Increase inference rate 0 → Max Load req/min

Expect outcome:

● At low inference rate, our system achieves better

throughput at finetuning

● For inference, our system shows higher capability

during high inference rate period

Key Takeaways

● Unified Co-Serving Runtime
One software stack handles both real-time inference and continuous
fine-tuning — no extra GPUs and no changes to model architecture.

● Latency First, Maximize Utilization
Priority scheduling keeps user-facing latency on par with dedicated inference
servers while harvesting idle cycles for training, raising overall GPU utilization.

● Fused Batch with LoRA
By heterogeneous LoRA batching, inference prefill, and finetuning forward
samples can be fused into one forward pass, eliminating context switch
between inference and finetuning.

https://discslab.cs.mcgill.ca

https://discslab.cs.mcgill.ca/

