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Inference:

● User-centric

● Latency-critical

● SLO compliance required

Why?

Finetuning:

● Data-driven

● More latency-tolerant

● Throughput & accuracy prioritized
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● Unpredictable traffic ● Steady, predictable workload
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Inference:

● User-centric

● Latency-critical

● SLO compliance required

Why?

Finetuning:

● Data-driven

● More latency-tolerant

● Throughput & accuracy prioritized

(1) Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, & Esha Choukse. (2024). 
DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency.

Load over a week for Coding and 
Conversation LLM inference workloads (1)

GPU Underutilization at low traffic period

→ Use free cycles for finetuning?

● Unpredictable traffic ● Steady, predictable workload
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Objectives:

● A unified, scalable runtime that co-serves inference and fine-tuning on the same cluster

● Fine-tuning is low-overhead and transparent to users

● Maintains inference performance on par with dedicated inference-only systems

● Maximize GPU utilization by scheduling finetuning during inference idle periods
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How to co-serve inference & finetuning?

● Shared forward pass in inference & finetuning

● But finetuning updates parameters, inference does not.

→ Finetuning weight update should not interfere inference

Inference uses iterative forward pass

Finetuning requires one forward pass and one backward pass

→ Can we keep the update separate from the base model?

→ Can we use the same forward pass for inference and finetuning forward?

LoRA Adapter!



Low-Rank Adaptation (LoRA)
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LoRA 
Adapter

1. LoRA introduce additional layer 
of weights 

2. Original weights (d*d) are frozen 
during finetuning

3. LoRA weights (WA,WB) are 
low-rank vectors (d*r, r*d)

4. Forwarding:

5. Backpropagation update LoRA 
weights only 

Main idea: Decompose weight update Δ to two low rank matrices



Scenario: Base Model + Adapters
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Note: LoRA Layers can be treated as an add-on of the backbone model.
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Scalable LoRA Co-serving Cluster



Batched Forward with Hetergeneous LoRA Adapters

Several systems have been developed to leverage this flexibility

S-LoRA: Scalable Serving of Thousands of LoRA Adapters  is one of them

It is able to batch different adapters in a single forward pass:

Heterogeneous LoRA batching: 

many requests, one backbone, mixed adapters

Split compute:
● Pretrained weights computation uses matrix 

multiplication. 

● Different LoRA layers are computed together with 

customized CUDA kernel

Our system is built on S-LoRA and extend it to support finetuning 

https://arxiv.org/pdf/2311.03285


Workload Breakdown & Fused Batch
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Inference: 

Finetuning: Backward

Prefill Decode

Forward

Decode…

KVCache

Prompt

Sample

Fused Forward Batch 

Most Similar
 Computation
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Backward 
Engine

Activation 
buffer

KVCache

Inference Pool

Scheduler

Prefill Reqs

Finetuning Data Pool

Forward 
Engine

User

Decode 
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Scheduler:

● Decides when to run 

forward/backward

● Form fused batch or decode 

batch

● Tracks finetuning status

(eg. epoch, #tokens pending 

backprop)

Inference Pool: 
Track status of all inference 

requests

Backward Engine:
Implements manual backward 

gradient computation

Forward Engine:
Implements hetergeneous LoRA Batching, 

with selective activation saving

S-LoRA Code

Modified Code

Added Code



Scheduler Design
     while running:

    # 1. Decode work has top priority
    if inference_pool.has_decode():
        batch = inference_pool.take_decode()
        forward_engine.run(batch)
        continue

    # 2. No inference work + enough activations → run backward
    if inference_pool.is_empty() 

and activation_pool.size() >= ACTIVATION_LIMIT:
        batch = activation_pool.take_all()
        backward_engine.run(batch)
        continue

    # 3. Build a fused forward batch (prefill + finetune)
    batch = []
    batch += inference_pool.take_prefill(MAX_BSZ - len(batch))
    batch += finetune_data_pool.take(MAX_BSZ - len(batch))
    if batch:
        forward_engine.run(batch)

Inference first, always:

Decode-phase tokens are dispatched immediately to 

keep user latency minimal.

Opportunistic training:

Finetuning backward runs only when the inference 

pool is empty, ensuring it never delays live queries.

Inference Prioitized Fused Batch:

Prefill requests are packed alongside training 

samples, maximizing GPU occupancy.

→ Priority order:
Decode ▶ Fused (Prefill ▶Finetune) ▶ Backward



Scenario: No Inference
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Backward 
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1.  Scheduler checks finetuning status

2.  Scheduler forms a forward batch using   

only finetuning samples

1

2

3.  Scheduler gives the batch to forward engine

3

4.  Forward engine performs forward pass, saves 

activations and updates finetuning status 

6. Scheduler issue a backward batch to the 

backward engine

7. Backward engine uses activation to perform 

backpropagation

4

4

6

7

5. Repeat 1-4 until activation limit reached



Scenario: Light Inference

15
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Inference Pool
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Engine

1.  Scheduler pulls the prefill request

2.  As space allows, scheduler checks the 

finetuning status and pulls finetuning samples to 

form a fused batch 
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7
Prefill Req

User

3.  Scheduler issue the batch to the forward engine

4.  Forward engine performs forward pass, saves 

activations, KV cache and updates finetuning status 

4

5.  Scheduler update inference request status

Decode Req

5

6.  In the following iteration, scheduler forms  decode 

batches using the KV cache, until the request is 

completed. 

7.  Sometime in the future, when there is no pending 

inference requests, and enough saved activations, the 

scheduler issues backward batch.

6

6



Optimizations
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Finetuning Interruptibility:

To ensure low-latency serving, the system can preempt ongoing fine-tuning tasks—whether in the forward 

or backward phase—to serve new inference requests immediately. Interrupted backprop tasks are 

checkpointed and can be resumed from the saved state without loss of progress.
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Memory Manager: Unified Paging:

 The LoRA adapter weights (d × r), per-sample activations (seq_len × d), and per-request KV-cache entries 

(seq_len × d) all share the same hidden-size dimension d. This symmetry lets us treat them as 

interchangeable “pages” and implement a single, unified paging layer, eliminating fragmentation.

Page Swapping:

Besides, given the high demand of memory in LLM finetuning & serving, the runtime must also handle 

oversubscription. The memory manager should swap pages, freeing space without disrupting computation.



Evaluation Plan

Expected Outcome Trend: Comparing our system to a traditional 
system with 2 GPUs for finetuning and 2 for inference

Goal:  Compare co-serving vs. static GPU splits

Example Experiment Setup

● Hardware: 4-GPU node

● Baselines: fixed splits  →  1/3 • 2/2 • 3/1 (Inf / FT)

● Workload trace: mix of inference + finetune 

● Increase inference rate 0 → Max Load req/min

Expect outcome:

● At low inference rate, our system achieves better 

throughput at finetuning 

● For inference, our system shows higher capability 

during high inference rate period



Key Takeaways

● Unified Co-Serving Runtime
One software stack handles both real-time inference and continuous 
fine-tuning — no extra GPUs and no changes to model architecture.

● Latency First, Maximize Utilization
Priority scheduling keeps user-facing latency on par with dedicated inference 
servers while harvesting idle cycles for training, raising overall GPU utilization.

● Fused Batch with LoRA
By heterogeneous LoRA batching, inference prefill, and finetuning forward 
samples can be fused into one forward pass, eliminating context switch 
between inference and finetuning.

https://discslab.cs.mcgill.ca

https://discslab.cs.mcgill.ca/

